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Abstract—The growing dependence on digital financial and 

banking transactions has brought about a significant focus on 

implementing strong security protocols. Blockchain technology 

has proved itself throughout the years to be a reliable solution 

upon which transactions can safely take place. This study 

explores the use of blockchain technology, specifically Ethereum 

Classic (ETC), to enhance the security of digital financial and 

banking transactions. The aim is to develop a system using an 

LSTM model to predict and detect anomalies in transaction data. 

The proposed LSTM model was trained before being tested and 

the results prove that the proposed model can effectively enhance 

the security, especially when compared to other studies in the 

same domain. The proposed model achieved a prediction 

accuracy of 99.5%, demonstrating its effectiveness in enhancing 

security by preventing overfitting and identifying potential 

threats in network activities. The results suggest significant 

improvements in digital transaction security, enhancing both the 

traceability and transparency of blockchain transactions while 

reducing fraud rates. Future work will extend this model's 

applicability to larger-scale decentralized finance systems. 
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I. INTRODUCTION 

Financial transactions are essential to both the national and 
global economy. Each day, trillions of dollars are traded in the 
global financial networks that serve a vast number of 
individuals. Nakamoto [1] claims that although the financial 
system still uses an underlying trust-based methodology, it 
works well enough for the majority of transactions. He said 
that because financial organizations must arbitrate disputes, 
irrevocable transactions are not feasible. The banking sector is 
heavily regulated and conservative, and the revenue model 
hasn't changed in many years. Financial institutions already 
deal with a number of problems that impair their effectiveness 
and performance, including high transaction costs, high fraud 
rates, centralized control that might be challenged by pirates, 
and a lack of traceability and transparency [2]. Blockchain 
technology may boost a company's level of trust and control. 
Performance is impacted when banking institutions attempt to 
adapt to new client registration and money transfer procedures. 
Recently, crypto currencies have attracted the attention of both 
industry and academia. According to Coinmarketcap [3], the 
capital market for Bitcoin which is the original 
cryptocurrency, is expected to reach $880 billion. Thus, the 
influence of blockchain technology acceptance on financial 
transactions and implementation concerns in the banking 
sector are determined by this research. 

ETC which is known today as legitimate and famous 
decentralized platform for cryptocurrency other than ETH. In 
particular, as balanced books are maintained and computers do 
everything very quickly, the system create such a secure 
digital stamp, just from the blockchain [4]. 

Digital technology in the form that has already existed in 
the pre-digital era and has been introduced and popularized 
can change and acquire new functions such that it can involve 
completely new tools and services [5]. Cybersecurity is 
already integrated in many aspects of digital forensics, which 
poses as a necessary cornerstone to achieving desirable level 
of security in Internet of Things [6]. Nevertheless, banking 
industry represents the bunker of all different kinds of money 
and private conversations and the secrete storage for people's 
monetary resources. Competitive factors such as efficiency, 
performance enhancement, and deposit security have 
significantly propelled the financial sector forward. However, 
there is a risk that grows in proportion to the increasing 
number of users for whom the system is designed or as the 
system becomes more sophisticated. This situation is not a fair 
play because people started exploring the system's flaws [7]. 

The identification of errors in blockchain networks is an 
enormous task because you may find similar issues if you are 
looking for attacks or fraudulent activities. Anomaly detection 
plays out as a key element in blockchain security, allowing for 
deviations to encrypted content or other unexpected events 
through the monitoring of blockchain data. A quick 
recognition and response to the anomaly help minimize the 
possible damage by attackers and safeguard the whole web 
[8]. 

Although Blockchain technology has significantly 
enhanced security in financial transactions, several gaps 
remain, particularly in detecting sophisticated anomalies such 
as 51% attacks. Existing machine learning methods have not 
fully addressed these gaps, often struggling with overfitting 
and real-time detection issues. This research seeks to bridge 
this gap by leveraging an Encoder-Decoder LSTM model 
within the Ethereum Classic blockchain ecosystem to improve 
anomaly detection and enhance transaction security. 

In this paper, the following contributions can be 
considered: 

 Use of Encoder-Decoder LSTM approach for Ethereum 
Classic Blockchain (ETC) attack detection enhances 
blockchain security. 
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 LSTM model's ability to identify sequential 
dependencies improves accuracy in anomaly detection. 

 Encoder-Decoder LSTM model excels in learning from 
serialized data. 

 Application of recurrent neural networks, particularly 
LSTM, enhances current blockchain security. 

 Improved anomaly detection aids in early detection of 
threats. 

 Enhancements contribute to the reliability of 
blockchain systems. 

II. LITERATURE REVIEW 

Blockchain technology has been utilized by the majority of 
today's companies in order to improve the safety of their data. 
It is one of the newest technologies that is gaining the greatest 
traction in the field of protecting the digital world. This section 
explores a variety of approaches, surveys, strategies, and 
procedures that have been used in blockchain to address 
concerns around data sharing and security. 

Javaid et al. [9], explored the potential applications of 
blockchain technology for financial service providers seeking 
to improve risk management, authenticity, and security. In 
order to create smart contracts, improve efficiency and 
transparency, and open up new revenue streams, a lot of 
organizations are aggressively integrating blockchain into 
trade and finance systems. The adoption of blockchain-
enabled IDs is growing widespread in the banking industry, as 
the unique recordkeeping capabilities of blockchain render 
traditional clearing and settlement procedures obsolete. In 
addition to stressing the transfer of asset ownership and the 
need of keeping accurate financial ledgers, the study highlights 
the significance of enterprises anticipating upcoming trends in 
financial blockchain applications. The measurement, 
communication, and analysis of financial data are the main 
areas of concentration for accounting experts. The paper 
focuses on the importance of blockchain technology for 
financial services by methodically locating and analyzing 
pertinent papers. It also explores a range of tools, tactics, and 
featured services. At the end, major applications of blockchain 
technology in financial services are identified and evaluated, 
demonstrating the technology's superior security in credit 
reporting and its potential to open up new markets, cut costs 
for issuers, and reduce counterparty risk by customizing digital 
financial instruments. Blockchain provides a single 
trustworthy source of truth for network users, making it 
simpler for members of the business network to collaborate, 
handle data, and reach consensus by utilizing mutualized 
standards, protocols, and shared procedures. 

Trivedi et al. [10], focused in their study on how 
blockchain technology is used in the financial and e-finance 
industries. Research questions about the technology's 
development, acceptance obstacles, and useful applications are 
examined. After conducting a thorough analysis of 76 
scholarly articles, the study narrowed its attention to 59 
articles and created a three-dimensional classification 
framework that encompasses blockchain development, 
obstacles, and financial sector applications. The results point 

to untapped blockchain potential in the finance industry and 
point to areas in need of technological advancement. The 
report highlights that the technology is now unregulated, 
suggesting that it is still in its early stages and that there is 
ample opportunity for further growth and research in this area. 

Hartmann and Hasan [11] drew attention to the abundance 
of Decentralized Finance (DeFi) Peer-to-Peer (P2P) lending 
platforms that either demand collateral from users or use 
conventional credit scoring techniques based on variables like 
credit history. Some users may find these requirements 
burdensome, nevertheless. The authors suggest using social 
media, which has a wealth of publicly accessible personal data 
and is used by over 55% of the world's population, as an 
alternative risk mitigator for lending. A user's professional 
behavior and dependability can be inferred by examining their 
social media accounts, which results in the creation of a 
"social score". The study's major contribution is the creation of 
a fully decentralized lending network that is enabled by the 
Ethereum blockchain and depends on this social score. With 
the help of this cutting-edge platform, consumers can obtain a 
loan even in the event that they don't have enough credit or 
collateral. The study also explores privacy issues, offering an 
improved platform that is intended to safeguard the borrower's 
privacy. 

Liao et al. [12] focused on the open banking (OB) adoption 
trend that financial institutions are currently experiencing for 
service innovation and integration. Third-party service 
providers (TSPs) can now access user financial data in an 
effort to improve user experiences and find the best offers. 
However, the OB ecosystem's success depends on public 
confidence in third parties, which raises questions regarding 
data sharing, privacy protection, and the integration of digital 
identities. Although there are already decentralized 
applications (DApps) that address these issues, their 
integration into a workable three-phase OB method is still 
lacking, especially in areas like Taiwan. The study presents a 
blockchain-based identity management and access control 
(BIMAC) framework and lists the main needs of OB 
participants. The BIMAC framework creates a trustworthy 
platform for personal information transaction security control 
(PITSC) by utilizing smart contracts and a stateless 
authentication method. This platform provides features like 
online bank account opening, decentralized third-party login 
(TPL), integrated payouts, data authorization/revocation, and 
TSP access monitoring. The evaluation's findings show that 
the suggested framework's frequently executed functions have 
less computational overhead than the typical Ethereum 
transaction cost. 

Boughaci et al. [13]  introduced, blockchain technology 
and its fundamental ideas opens the discussion. The paper 
explores machine learning as a sophisticated instrument for 
examining large datasets and spotting potentially harmful 
transactions in untrusted networks. For the purpose of making 
wise decisions in the fields of banking and finance, the 
synergy of these clever strategies is highlighted. The suggested 
method is applied to the Bitcoin system, using the Elliptic 
dataset available on Kaggle as a standard. Because the dataset 
is not fully labeled, unlabeled data is divided into two primary 
clusters using the kmeans technique, and labeled data is 
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allocated to the appropriate cluster. Four machine learning 
approaches are then used for a thorough classification of the 
data. The results show promise, especially when k-means and 
the random forest classifiers are combined, indicating the 
potential effectiveness of this integrated approach in boosting 
security precautions. 

Song and Chen [14], conducted research on the security of 
digital financial transactions using blockchain technology. To 
begin, the security of sdte is examined, as well as the DoS 
attacks that each role may launch, the assaults that a single 
role may send, and the attacks that numerous roles may launch 
in cooperation. It demonstrates that sdte can withstand various 
assaults and has robust security. Then, the system test's 
environment is detailed. Then, performance testing and 
analysis are performed on the key security transmission, smart 
contract execution in the trusted environment SGX, and 
overall running time. The testing findings demonstrate that 
employing the k-nearest neighbor (KNN) method to process 
data takes less than 0.45 seconds. At the same time, the 
system's additional cost is acceptable. 

With the advent of post-quantum cryptography, it has 
become increasingly important to stay informed about the 
latest developments in cryptographic techniques and systems. 
Post-quantum cryptography is a branch of cryptography that 
aims to develop cryptographic systems that are secure against 
quantum computers. Quantum computers have the potential to 
break many of the classical cryptographic systems currently in 
use, such as RSA and ECC, by solving the underlying 
mathematical problems (like integer factorization and discrete 
logarithms) much more efficiently. As a result, researchers and 
organizations are actively working on developing 
cryptographic algorithms that can withstand attacks from 
quantum computers. Several relevant papers discussing 
advances in post-quantum cryptography and related topics, 
such as low-cost S-box implementations for AES [15], a 
survey on quantum-resistant algorithms and their applications, 
and strategies for optimizing cryptographic systems to resist 
quantum attacks [16]. Additionally, studies on lightweight 
cryptographic techniques for resource-constrained 
environments and their relevance in the post-quantum era 
provide further insights into the field [17]. Jalali [18] offer 
insights into the development of efficient and secure post-
quantum cryptographic algorithms. This work, for example, 
presents a constant-time software library for the CSIDH 
(Commutative Supersingular Isogeny Diffie-Hellman) 
protocol, optimized for 64-bit ARM processors, and discusses 
its potential in the quantum era, particularly regarding its 
resistance to timing attacks. Another paper by Koziel et al. 
[19] focuses on the optimization of cryptographic algorithms 
based on Binary Edwards Curves (BEC), which are designed 
to be both efficient and secure, particularly for resource-
constrained environments such as embedded systems and IoT 
devices. 

Side-channel attacks (SCA) pose a significant threat to the 
security of cryptographic implementations, particularly in 
lightweight cryptography designed for resource-constrained 
environments such as IoT devices. Lightweight cryptographic 

algorithms such as PRINCE and GIFT-128 offer efficiency in 
power and memory usage, making them suitable for 
applications with strict resource limitations. However, their 
compact designs often expose vulnerabilities to side-channel 
attacks. For instance, in the work by Xue et al. [20], an SCA 
was demonstrated against the PRINCE cipher, which utilizes 
an unrolled architecture optimized for low latency but requires 
careful handling to prevent leakages during encryption rounds. 
Similarly, Benjamin et al. [21] explored deep learning-based 
side-channel attacks on GIFT-128, revealing the effectiveness 
of neural networks like CNNs in recovering cryptographic 
keys, even in scenarios involving desynchronized traces. 
Furthermore, a comprehensive survey by Chao Su and Qingkai 
Zeng [22] provides an analysis of CPU cache-based side-
channel attacks, discussing security models and mitigation 
strategies, emphasizing the need for resilient designs in 
modern cryptography. These studies highlight the pressing 
need for enhanced countermeasures to safeguard lightweight 
cryptographic algorithms from the growing threat of side-
channel attacks. 

Table I shows the comparison of the related work 
mentioned earlier. 

TABLE I. COMPARISON OF RELATED WORK 

Work Method Technologies Advantages Limitations 

[9] Integration, smart 
contracts, revenue 

Blockchain 
technology 

Improved 
risk 
management, 
authenticity, 
security 

Privacy 
concerns, data 
verification 
challenges 

[10] Study, examination 
of development, 
acceptance, 
applications 

Blockchain 
technology 

Untapped 
potential, 
areas for 
advancement 

Lack of 
regulations, 
need for 
further 
research 

[11] Risk mitigation, 
social score creation 

Ethereum 
blockchain 

Decentralized 
lending, 
accessibility 
for users 
without credit 
or collateral 

Privacy issues, 
reliance on 
social media 

[12] Blockchain-based 
identity management, 
access control 

Blockchain 
technology 

Improved 
user 
experiences, 
data sharing, 
privacy 
protection 

Lack of 
integration, 
regulatory 
challenges 

[13] Analysis of large 
datasets, 
identification of 
harmful transactions 

Blockchain 
technology, 
machine 
learning 

Enhanced 
decision-
making in 
banking and 
finance 

Limited 
labeled data, 
computational 
overhead 

[14] Analyzing the 
security of digital 
financial transactions 
using blockchain 
technology, using 
KNN algorithm to 
process data for 
digital financial 
transaction security. 

Blockchain 
technology, 
machine 
learning. 

 Offering 
strong 
security 
against 
various 
attacks and 
acceptable 
performance 
costs. 

Lack of 
extensive 
studies and 
established 
frameworks to 
build upon. 

  



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 8, 2024 

296 | P a g e  

www.ijacsa.thesai.org 

IV. BACKGROUND 

A. Blockchain in Financial and Banking Transactions 

Blockchain is a distributed ledger technology that makes it 
possible for all parties to check and agree on a transaction 
before it is added to the value chain [23]. The banking industry 
has tried out new ways to use technology to improve customer 
flexibility, the speed of transactions and efficiency. 
Blockchain technology, as part of Industry 4.0, has the 
potential to transform business operations across a wide range 
of industries. Blockchain has been widely adopted and used in 
the banking and finance industries. Many financial institutions 
are often run by trusted third parties who are in charge of their 
operations. In the last step of a digital payment, a bank, credit 
or debit card, or other service provider acts as a trusted central 
expert and charges a fee to complete the transaction. For this 
operation to work, it needs an infrastructure that is both 
expensive and inefficient. The largest financial institutions in 
the world are now using this technology (see Fig. 1). 

 
Fig. 1. Decentralization  [24]. 

A blockchain can accommodate any new digital asset 
across multiple nodes. If a node fails, the data remains 
accessible and can be delivered by the other nodes. Since the 
blockchain is a public ledger, any sensitive personal 
information stored on it must be encrypted and can only be 
viewed by two parties. Data on the blockchain is encrypted 
using a public key and decrypted using a private key. Due to 
its consensus mechanism, the blockchain is immutable and 
cannot be duplicated. A block is added to the chain if there is 
consensus that the transactions within it are valid [25]. Despite 
this, blockchain is not yet widely adopted in the investment 
sector. However, industries are expected to quickly move 
towards implementing blockchain-integrated infrastructure in 
business organizations [26]. 

The primary advantages of blockchain in the banking 
sector include improved efficiency, enhanced security, 
immutable records, faster transaction times, and the 
elimination of third-party involvement, which reduces costs. 
One of the key benefits of blockchain is its history of 
unchangeable transactions—once a transaction is made, it 
cannot be undone, thereby reducing threats to financial 
institutions. Blockchain utilizes smart contracts, which are sets 
of rules agreed upon by the contracting parties. These 
contracts allow digital information to be stored, accessed, or 
altered only under specific conditions. Blockchain accelerates 
transaction processing and, due to its decentralized nature, 
reduces the need for financial intermediaries. This makes 

currency conversion cheaper and easier compared to 
traditional banking methods, while also protecting against 
scams, money laundering, and trust issues. Financial 
institutions are expected to adopt blockchain technology very 
soon, and the banking industry is planning for rapid growth in 
its use. 

B. Ethereum Classic (ETC) Blockchain 

Ethereum Classic functions as both a smart contract 
platform and a cryptocurrency. It's important to note that 
Ethereum Classic (ETC) should not be mistaken for Ethereum 
(ETH), despite their shared origins prior to a contentious 
disagreement that resulted in a split. Below, we delve into the 
factors that precipitated this divergence. 

Ethereum Classic closely resembles Ethereum due to their 
shared origin. Both are blockchains that facilitate the 
development of other applications on top of them. These 
decentralized applications, often referred to as dapps, utilize 
smart contracts, enabling individuals to exchange money, 
property, or any other valuable assets without the need for 
intermediaries. ETC serves as the network's native currency. 
Additionally, the Ethereum Classic network allows dApps on 
its platform to create their own tokens, including NFTs [27]. 

In summary, Ethereum Classic is a decentralized public 
ledger based on proof-of-work, featuring an embedded Turing-
complete programming language that enables the creation of 
smart contracts and decentralized applications [28][29]. 

The underlying principles of the Ethereum Classic 
blockchain closely resemble those of Bitcoin, which stands as 
the most renowned and prosperous cryptocurrency presently 
[30]. The consistency of a public ledger in a proof-of-work 
system is maintained through decentralized mining. Miners 
continually attempt to solve a complex computational puzzle 
to find a hash value lower than a specified target. Upon 
success, miners can generate a block and receive a reward 
from it. 

Fig. 2 represents an example of the general scheme of a 
blockchain system. 

 
Fig. 2. General scheme of a blockchain system  [31]. 

We won't delve deeply into the technical intricacies of the 
Ethereum platform here, but notable differences from Bitcoin 
include the use of accounts instead of UTXO, enhanced 
internal structures, and Turing-complete scripting languages. 
Those keen on exploring further can find comprehensive 
details in the original sources [28]. Instead, we'll focus on a 
few aspects relevant to the proposed treasury system. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 8, 2024 

297 | P a g e  

www.ijacsa.thesai.org 

Firstly, it's important to note that the average block time is 
approximately 14 seconds. This translates to approximately 
𝐵𝑚𝑜𝑛𝑡ℎ =  1851428 blocks generated every 30 days. 

Top of Form 

Another significant distinction lies in the block reward 
system. Each block incorporates a special reward payment for 
the miner who mined it. Presently, in Ethereum Classic, this 
reward amounts to 5 newly created coins per block (uncle 
blocks excluded). This translates to approximately 9,257,140 
coins generated per month 𝑅𝑚𝑜𝑛𝑡ℎ  =  𝐵𝑚𝑜𝑛𝑡ℎ  ·  5 =
 9257140 . Miners receive the entirety of these rewards, 
constituting the sole source of new coins within the system. 

In summary, while Ethereum introduces advanced features 
such as a Turing-complete programming language, enhanced 
Merkle trees, and a modified GHOST protocol, its 
foundational principles remain akin to those employed in 
Bitcoin and other proof-of-work altcoins. 

C. Ethereum Classic Security Challenges 

In the early days, Ethereum stood alone. A collective 
known as The DAO (decentralized autonomous organization) 
utilized Ethereum to establish what essentially functioned as a 
venture capital fund. Ordinary individuals could invest using 
ETH, participate in decisions regarding asset allocation, and 
ideally, reap profits. The venture amassed over $100 million 
through token sales. However, a vulnerability in the fund's 
code was exploited, resulting in millions of dollars’ worth of 
ETH being siphoned out and causing panic among investors. 
Developers had a 28-day window to devise a solution before 
the hackers could convert the tokens, representing a substantial 
portion of Ethereum's market capitalization at that time. The 
prevailing solution involved implementing a hard fork to 
nullify the hack and reimburse affected individuals. Although 
endorsed by Buterin and other prominent figures, this moves 
triggered backlash from purists advocating for the blockchain 
principle of non-interference with the ledger—arguing that the 
blockchain should persist with the theft intact. Those 
advocating for maintaining the status quo remained on the 
original platform, renaming it Ethereum Classic. Meanwhile, 
the majority of miners, developers, and users migrated to the 
forked network, which retained the Ethereum name [27]. 

Similar to Ethereum, the Ethereum Classic blockchain 
operates on a "proof of work" mining mechanism, where 
individuals worldwide utilize hardware and software to 
validate transactions and maintain network security, earning 
ETC as a reward. Users can send ETC to each other, akin to 
Bitcoin or Ethereum transactions with BTC or ETH, 
respectively. Furthermore, ETC can be used to engage with 
applications on the Ethereum Classic network, including 
decentralized exchanges for token swapping. However, it's 
worth noting that the Ethereum Classic ecosystem isn't as 
vibrant as Ethereum or other smart contract networks like 
Solana. As of February 2022, Ethereum Classic exhibited 
minimal activity in decentralized finance applications, as 
reported by DeFi Llama. This lower usage rate has raised 
concerns. Blockchain security hinges on having a diverse 
group of users actively operating the network; insufficient 
participation can leave the blockchain susceptible to 

vulnerabilities. Between 2019 and 2020, the Ethereum Classic 
network faced several "51% attacks," allowing a hacker to 
seize control of the majority of the network's computational 
power. This enabled them to manipulate the ledger and acquire 
more ETC. Despite these challenges, Ethereum Classic 
enthusiasts persist in network maintenance and code updates. 
In December 2020, core developers enhanced the network to 
render 51% attacks economically unfeasible. The latest 
upgrade, the Mystique hard fork, occurred in 2022 [27]. 

D. Machine Learning in Anomaly Detection of Blockchain 

Transactions 

The merging of both technologies: Machine Learning and 
Blockchain Technology, has the potential to provide outcomes 
that are strong and of practical value. This chapter provides an 
overview of distributed ledger technology and investigates the 
ways in which machine learning skills may be incorporated 
into a system that is based on distributed ledgers. In addition 
to that, it highlighted a number of well-known uses and 
instances of how this connected method might be used [32]. 

The capacities for learning that machine learning 
algorithms possess are very remarkable. These features can be 
implemented in the blockchain, which will result in the chain 
becoming wiser than it was in the past. This collaboration 
could be useful in helping to enhance the safety of the 
blockchain's shared ledger in some way. Also, the processing 
power of ML can be used to take advantage of the shorter time 
it takes to find the best nonce, and ML can also be used to 
improve how data is exchanged. Additionally, it is able to 
construct a great many improved models of machine learning 
by utilizing the decentralized design characteristics that 
distributed ledger technology offers [33]. 

The selfish mining assault, often referred to as a 
transaction holdback attack, is a deliberate effort to 
compromise the integrity of the decentralized network. Once 
one member of a mining pool tries to prevent a correctly 
verified block from being announced to the others in the 
mining group cluster, this is known only as "selfish miner 
assault." This selfish operator shows greater proof-of-work 
than all the other prospectors in the network as a consequence 
of hiding their correctly extracted block from the community 
before moving onto the next frame. By doing this, the 
community as a whole may accept their transaction methods 
while the self-centred node keeps the block benefits or cash 
benefits [32]. 

V. SYSTEM MODEL AND PROBLEM FORMULATION 

A. Problem Formulation 

In today's world of digital finance and banking, the 
security and integrity of financial transactions are at risk due 
to increased reliance on technology and growing cyber risks. 
For example, consider a business owner who transfers funds 
between accounts frequently using online banking services. 
Suddenly he notices unauthorized transactions on his account, 
which indicates a violation in security. In addition to causing 
financial loss, this incident also damages people's trust in the 
banking sector. 
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The aim of the project is to use blockchain technology to 
improve the security of online banking services and financial 
transactions. The paper covers a number of important topics 
such as cyber risk prevention, protecting data privacy, 
maximizing business efficiency and assessing the pros and 
cons of integrating blockchain technology into the financial 
sector. Given the weaknesses of current digital financial 
transactions (lack of trust, inefficient data sharing, privacy 
concerns and immutable data silos) a comprehensive review is 
needed to build a robust and secure blockchain framework. 

B. System Model 

A number of processes are involved in the suggested 
methodology for anomaly detection in the Ethereum Classic 
Blockchain (ETC), beginning with database analysis, 
employing the Encoder-Decoder LSTM architecture, and 
evaluating the outcomes as shown in Fig. 3. 

 

Fig. 3. Methodology used in the research. 

VI. PROPOSED SOLUTION 

A. Introduction 

Ethereum Classic Blockchain has risen to prominence as 
one of the leading decentralized platforms leveraging the 
immutable nature of a ledger to undertake safe and transparent 
transactions. As blockchain technology progresses and is used 
in more and more industries, the importance of securing and 
protecting the immutability of blockchain networks grows 
more important. Given that these systems contain significant 
monetary transactions and sensitive data, they are prime 
targets for cybercriminals looking for areas to exploit. Aside 
from cryptocurrency exchange platforms, another significant 
challenge that threatens the credibility of blockchain networks 
is maintaining the safety and security of blockchain networks. 

Detecting anomalies is one of the most important 
challenges to keep blockchain networks trustworthy since 
these might suggest possible attacks or malicious actions. It is 
an essential part of proactive measures that help identify any 
movements or actions that are not consistent with normal 
blockchain behavior. Early detection and appropriate 
responses to such anomalies can minimize the consequences 
of an attack and protect the network. 

Deep learning methods have shown impressive results 
recently in a number of fields, from natural language 
processing to computer vision. The Encoder-Decoder Long 

Short-Term Memory (LSTM) architecture in particular has 
become well-known due to its capacity to learn and represent 
intricate sequential patterns. This project focuses on using the 
Encoder-Decoder LSTM architecture to address the anomaly 
identification problem on the Ethereum Classic Blockchain by 
utilizing deep learning. 

The Encoder-Decoder LSTM model is a good fit for jobs 
involving anomaly detection because it can efficiently identify 
temporal patterns and long-term dependencies in sequential 
data. The model can be trained on past ETC blockchain data to 
find patterns in the expected behavior of the network and then 
spot variations that might point to possible attacks or 
anomalies. The model effectively captures the subtle patterns 
that rule-based or statistical approaches may miss because of 
its capacity to encapsulate the input data and produce 
insightful representations. 

B. Methodology 

1) Database Analysis: Ethereum Classic is a public, open-

source distributed computing platform built on the blockchain. 

It is notable for having smart contract capabilities, which 

enable scripts to run on the Ethereum Virtual Machine (EVM), 

a decentralized Turing-complete virtual machine. An 

international network of public nodes enables this 

functionality. 

Ethereum Classic is notable for having a native value token 
called "ether." Ether is a cryptocurrency that may be held in 
wallets, transferred between users on the network, and used to 
pay nodes for the processing power they provide to the 
Ethereum platform. 

Over the course of four years, from July 2015 to July 2019, 
we conducted tests on a section of the ETC blockchain as part 
of our research. The seven tables in the dataset we used are 
blocks, transactions, contracts, logs, token transfers, tokens, 
and traces. It can be accessed on Kaggle. These tables include 
important details regarding the blocks themselves, the 
operation of the network, and network use. 

Multiple preprocessing stages were carried out in order to 
get the data ready for additional analysis. First, we carried out 
feature engineering, which included aggregation, correlation 
analysis, filtering, and the selection of the most relevant 
features. In order to rescale values and lessen the possibility of 
instability impacts during neural modeling, we secondly 
normalized the data. In addition, the process of normalization 
attempted to regularize the data by removing trending, cyclic, 
and seasonal irregularities. Using a shifting quantile ratio, we 
were able to achieve normalization. 

The two parameters that the function first requires are {x}, 
which stands for the input data, and `window}, which 
indicates the rolling window's size (the default value is 20). 
Next, we make an object that rolls windows. 

Next, we compute the first quartile. The value that divides 
the lowest 25% of the data from the remaining 75% is 
determined by passing the argument {0.25}. Furthermore, we 
set {interpolation='midpoint'} to ascertain the quartile value 
estimation technique. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 8, 2024 

299 | P a g e  

www.ijacsa.thesai.org 

In addition, we compute the third quartile. This time, the 
parameter {0.75} is passed in order to determine the value that 
divides the bottom 75% of the data from the top 25%. Lastly, 
we use the formula: 

S= {(x - q2) / (1.5 * (q3 - q1))} 

The original data is denoted by {df}, the median by {q2}, 
the first quartile by {q1}, and the third quartile by {q3}. 
Taking into consideration the interquartile range, the algorithm 
scales each value in the DataFrame according to how far it is 
from the median. 

In a similar manner, we get the median by using the rolling 
window object's `median () ` function. The center figure that 
divides the data's upper and lower halves is known as the 
median. 

2) Model architecture: The model's architecture is made 

up of multiple layers and hyperparameters that are specifically 

engineered to handle and evaluate data sequences as 

represented in Fig. 4. First, the training set is used to extract 

the length of the sequence and the number of features. One 

kind of recurrent neural network is the LSTM layer, which has 

64 cells or neurons in its configuration. Additionally, the 

model has attention mechanisms with four attention heads, 

each with 64 dimensions. In addition, a convolutional neural 

network (CNN) layer with 64 filters and a kernel size of three 

is included in the architecture. Regularization methods like L1 

and L2 regularization are used with lambda values of 0.2 to 

avoid overfitting. 

Sequence support is defined for the input layer. Masking is 
applied to the input layer to manage sequences of varying 
lengths. To lessen overfitting, the model then incorporates 
numerous CNN layers with L2 regularization, dropout layers, 
and ReLU activation functions. To extract significant features 
and downsample the output, max pooling layers are used. The 
ReLU activation function and the designated number of cells 
are integrated into the LSTM layer. Furthermore, a multi-head 
attention layer is added to capture sequence relationships. Next 
come further CNN layers, dropout layers, and max pooling 
layers, then another LSTM layer. 

To create the output sequence, a time-distributed dense 
layer is added last. The mean squared error loss function and 
Adam optimizer are used to construct the model. The model's 
summary is printed, together with information on its layers 
and parameter count. A predetermined path is used to save the 
trained model, and checkpoints are made to save the optimal 
model in accordance with validation loss. Additionally, a CSV 
logger is used to monitor the training progress. 

The model has a batch size of 100, a validation split of 0.3, 
and is trained for 50 epochs on the training data. The model 
checkpoint and CSV logger are two of the callbacks that are 
used in the training process. 

The architecture we've adopted to predict data, whether it's 
an attack or normal data. In our model, the green blocks 
represent the inputs and outputs. Then, there's the masking 
block, which allows us to handle data of different sizes. When 
we preprocess the data, we take a fixed-size sliding window. 

However, at the end of each time sequence, we have a set of 
data whose size is smaller than the window's size. So, instead 
of discarding this data, we add it to the model. Thus, the data 
won't have a fixed size altogether, and there won't be data of 
different sizes. Therefore, we have to deal with this data, and 
that's where we use the masking block. 

Moving on, the blue block represents the convolutional 
layer, and the yellow block represents the dropout layer. Here, 
we'll use two sets, each consisting of two convolutional layers 
followed by a dropout layer. In the first set, the dropout will be 
0.5, and in the second set, it will be 0.8. After finishing the 
second set, we'll transition to the LSTM layer. Then, after the 
LSTM layer, we'll apply a multi-head attention layer. At the 
end of the architecture, in the last group, we have two LSTM 
layers, and in between, there's a multi-head attention layer. 
After the LSTM layer, we'll enter two more sets, each 
comprising two convolutional layers and a dropout layer. The 
dropout rate will be reversed here, with the first set at 0.8 and 
the second at 0.5. The transition between them will be done 
through max pooling, and finally, we'll have the output layer. 

 

Fig. 4. Architecture of the proposed model. 

a) LSTM layer: One kind of recurrent neural network 

(RNN) layer that is frequently utilized for sequence modeling 

is the Long Short-Term Memory (LSTM) layer [34]. The 

LSTM layer in this architecture is set up with 64 cells, or 

neurons. By preserving a memory state, LSTM cells are made 

to detect long-term dependencies in sequential input. Rectified 

Linear Unit (ReLU), the activation function utilized in this 

layer, gives the output non-linearity. 

The LSTM (Long Short-Term Memory) layer employs a 
gating mechanism to regulate the memorization process. 
Through gates that open and close, you can store, write, or 
read information within LSTMs. An LSTM layer comprises 
the following components as can be seen in Fig. 5: 

Forget gate: Responsible for deciding what information to 
retain and what to discard. 

Input gate: Updates the cell state by incorporating 
information from the current input state (x) and the previous 
hidden state (h). 

Cell state: Stores information based on the previous cell 
state (c) and new layer state. The current cell state is denoted 
as g. 

Output gate: Determines the value of the next hidden state (h). 
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Fig. 5. The components of an LSTM layer  [34]. 

b) Multi-Head attention layer: For the purpose of 

identifying linkages within the sequence, the Multi-Head 

Attention layer [35] is essential. It makes use of an attention 

mechanism with several attention heads, each of which 

focuses on a distinct segment of the input sequence. This 

enables the model to extract useful features by concentrating 

on pertinent data. With four attention heads and a key 

dimension of 64, the Multi-Head Attention layer in this design 

is applied to the LSTM layer's output. 

At their core, they consist of keys (k) and values (v). We 
can create queries (q) to interact with these (k,v) pairs in a way 
that remains valid regardless of the size of the database. 

The same query can yield varied responses depending on 
the database's contents. Let 𝐷 = {(𝑘1, 𝑣1), … , (𝑘𝑚, 𝑣𝑚)} 
represent a database of key-value pairs, and denote a query. 
We can define attention over D as: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑞, 𝐷) =  ∑ ∝ (𝑞, 𝑘𝑖) 

𝑚

𝑖=1

𝑣𝑖  

Where ∝ (𝑞, 𝑘𝑖) ∈  ℝ (𝑖 = 1 , … , 𝑚) represents scalar 
attention weights, with the operation commonly known as 
attention pooling. The term "attention" stems from the focus 
placed on terms with significant weights ∝ , implying larger 
values. Consequently, attention over D produces a linear 
combination of database values. Notably, this encompasses the 
earlier example as a special case where all weights except one 
are zero. 

Given a query𝑞 ∈  ℝ𝑝𝑞, a key 𝑘 ∈  ℝ𝑝𝑘 , and a value 𝑣 ∈
 ℝ𝑝𝑣  , each attention head ℎ𝑖( 𝑖 = 1, … ℎ)  is computed as: 

ℎ𝑖 = 𝑓( 𝑊𝑖
𝑞

𝑞 , 𝑊𝑖
𝑘𝑘 , 𝑊𝑖

𝑣𝑣 ) ∈  ℝ𝑝𝑣 

Where 𝑊𝑖
𝑞

∈  ℝ𝑝𝑞×𝑑𝑞  , 𝑊𝑖
𝑘 ∈  ℝ𝑝𝑘×𝑑𝑘  , 𝑊𝑖

𝑣 ∈  ℝ𝑝𝑣×𝑑𝑣  are 

learnable parameters and is attention pooling, such as additive 
attention and scaled dot product attention .The multi-head 
attention output is another linear transformation via learnable 

parameters 𝑊𝑜 ∈  ℝ𝑝𝑜×ℎ𝑝𝑣 of the concatenation of heads: 

𝑊𝑜 [
ℎ1

⋮
ℎℎ

] ℝ𝑝𝑜 

According to this structure, each head has the ability to 
focus on distinct segments of the input, which allows for the 
expression of more complex functions beyond simple 
weighted averages. 

The components of a Multi-Head Attention layer are 
shown in Fig. 6. 

 

Fig. 6. The components of a Multi-Head Attention layer  [36]. 

c) Convolutional Neural Network (CNN) layers: When 

attempting to extract geographical and temporal information 

from data, CNN layers are frequently employed. CNN layers 

are used in this model to examine the sequence data. Multiple 

CNN layers with the same configuration are part of the 

architecture. A predetermined number of filters make up each 

CNN layer, and these filters are in charge of identifying 

various patterns and features in the input. When a kernel size 

of three is employed, the CNN layer scans the input sequence 

using a three-size window. ReLU is the activation function 

used in these layers, which gives the output non-linearity. 

Furthermore, padding is set to'same' to guarantee that the 

length of the output and the input sequence match. 

d) Dropout layers: A regularization method called 

dropout layers is employed to stop overfitting. During training, 

they arbitrarily deactivate a subset of the neurons, which 

compels the model to acquire more resilient and 

comprehensive representations. Dropout layers with a dropout 

rate of 0.5 or 0.8 are placed after specific CNN layers in this 

architecture. Dropout layers are strategically placed to 

improve the model's generalization ability and lessen its 

sensitivity to noise. 

e) Max pooling layers: The most notable aspects of the 

data are captured by downsampling the output using max 

pooling layers. They remove less significant data by dividing 

the input into non-overlapping parts and keeping just the 

largest value within each zone. By keeping the most important 

attributes, this downsampling aids in lowering the 

dimensionality of the data. In order to help with relevant 

information extraction and efficient feature representation, this 

design uses many max pooling layers after certain CNN 

layers. 

f) Time-Distributed dense layer: The output sequence is 

produced at the end of the architecture using the Time-

Distributed Dense layer. It separately applies a dense 

(completely linked) layer to every time step. As a result, the 

temporal relationships in the data are captured by the model, 

(2) 
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which can now generate predictions for every element in the 

sequence. Since the aim in this scenario is to predict a single 

value for each element in the sequence, a dense layer with a 

single unit is used. 

VII. RESULTS 

The results that were obtained in this study are divided into 
three categories, the first of which is the output of the 
Preprocessing stage, where the data scanning process was 
applied. The second category, which is model training, is 
summarized using the loss function. Finally, the third stage is 
predicting attack data. 

There are seven parameters in the database, the result of 
the Preprocessing for each variable will be presented 
separately. Regarding the attack data, it will be identified the 
same for all the data, so that it is possible to see at what 
timestamp it was determined to be attack data. To show the 
experimental results, initially the results of data processing are 
displayed after being pre-processed such that the horizontal 
axis represents the timestamps, and the vertical axis represents 
the different variables. Fig. 7 plots the normalized average gas 
provided along the time window to show the effect of the 
preprocessing processes. The red lines within the graphs 
indicate the attack-prone periods. 

 
Fig. 7. Relationship of provided gas average with timestamp after 

normalization. 

Similarly, Fig. 8 shows the timestamps represented on the 
horizontal axis, while the normalized transaction number is 
represented on the vertical axis. The red lines also represent 
attack data at these timestamps. 

 
Fig. 8. Relationship of Transactions Number with Timestamp after 

normalization. 

Fig. 9 shows the relationship between Block Difficult 
Average and Timestamp after normalization, where the 
horizontal axis represents the timestamps, while the vertical 
axis represents the normalized Block difficult average. 

 
Fig. 9. Relationship of Block Difficult Average with Timestamp after 

normalization. 

Another figure, Fig. 10 illustrates the relationship between 
block size average and timestamp after normalization, where 
timestamps are represented on the horizontal axis, whereas the 
block size average is represented on the vertical axis. 

 
Fig. 10. Relationship of Block Size Average with Timestamp after 

normalization. 

Fig. 11 shows the relationship between the gas used sum 
and the timestamps, where the latter is plotted on the 
horizontal axis, whereas the sum of used gas is plotted on the 
vertical axis. 

 

Fig. 11. Relationship of Gas Used Sum with Timestamp after normalization. 
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Fig. 12 and Fig. 13 show the relationship between the 
timestamps and the transaction average per plot, and the gas 
average per transaction respectively. 

 
Fig. 12. Relationship of Transaction Average per Block with Timestamp after 

normalization. 

 
Fig. 13. Relationship of Gas Average Per Transaction Per Block with 

Timestamp after normalization. 

The second part of the results involves the model training 
process. Fig. 14 shows the training loss for both training 
(orange) and testing (blue), where it is noticed that the 
presented model completely handles overfitting as a result of 
the L2 regularization with a value of 0.02 and the two dropout 
layers. A dropout rate of 0.8 is considered high enough to 
address overfitting, so the overfitting ratio was nearly zero 
from the beginning to the end of the training. However, this 
will affect the model's accuracy, making it lower than usual or 
expected, which is also compensated for by data scanning and 
pre-processing. Therefore, the model with almost have no 
overfitting and achieve high accuracy. 

 
Fig. 14. Training and Validation Loss. 

Fig. 15 shows the results of testing the proposed model on 
the test data, which includes attack data consistent with the 
reference study 1 [37]. This data includes a set of natural data 
over a period of time. Within these time periods, there will be 
attack data. This model output shows that the data marked by 
the red lines are attack data, while the rest of the data is 
natural. The test results show that the pre-processing and the 
proposed model give good performance for detecting logger 
anomalies on the network. Within the test data, it is worth 
noting that the test accuracy of the proposed model is 0.995. 

 
Fig. 15. Results obtained by the proposed model. 

VIII. DISCUSSION 

Fig. 16 and Fig. 17 represent a comparison between the 
results obtained in this study and the results found in study 1 
[37] and study 2 [38]. The red line represents attack data, 
while the other data points represent normal data. In both our 
model and the reference study, the horizontal axis represents 
the timestamp, while the vertical axis represents a parameter 
from the database, such as average gas. As we can see, there is 
a difference because we applied preprocessing to our data, 
while the reference study used a different preprocessing 
method. Therefore, there is a slight difference in the data 
representation. However, both studies practically cover the 
same time period. We also observed that both models identify 
attack data during the same time periods. The difference lies in 
the fact that our model achieved higher accuracy in testing, i.e. 
in classifying this data as either attack or natural. 

 
Fig. 16. Comparison of Results with reference Study 1 [37]. 
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The anomaly detection results of the proposed model and 
results of Study 2 are shown in Fig. 17.  

Our Study 2 [38] 

 
 

  

  

 

 
 

Fig. 17. Comparison of results with reference study 2 [38].  

As a result, the proposed model shows the ability to predict 
the detection of anomalies for activities recorded on the 
network. It also efficiently addresses the challenge of 
overfitting during model training. It also achieves a prediction 
accuracy rate of 0.995 for the model on test data. Compared 
with reference studies, we find that the proposed model has the 
ability to capture dependencies. It is time efficient and has the 
ability to detect attacks on the network. For further 
development, we recommend using more general training data, 
as well as testing transformers on this type of challenges. 

IX. OPEN ISSUES AND RESEARCH CHALLENGES 

Open issues and research challenges in the field of 
enhancing the security of digital financial and banking 
transactions through blockchain-enabled approaches, 
particularly the implementation of a Long Short-Term 
Memory (LSTM) model, remain to be addressed. One of the 
key challenges is the need to develop more sophisticated 
anomaly detection techniques to effectively identify and 
mitigate potential threats in network-recorded activities. 
Additionally, there is a requirement for further exploration of 
the scalability and performance implications of using 
blockchain technology in large-scale financial systems, as well 
as the development of robust security systems to withstand 
evolving cyberattacks. Furthermore, the integration of 

blockchain technology with existing regulatory frameworks 
and compliance standards poses legal and regulatory 
challenges that need to be addressed for widespread adoption. 
These open issues call for continued research and 
collaboration among academia, industry, and regulatory bodies 
to ensure the successful implementation and utilization of 
blockchain-enabled security solutions in the realm of digital 
financial and banking transactions. 

X. CONCLUSION 

Blockchain has shown to be a revolutionary technology, 
but its widespread adoption has been hampered by a number 
of restrictions. Our project focused on enhancing the security 
of digital financial and banking transactions using blockchain 
technology. It addresses the challenges faced by the banking 
industry, such as inefficiency, high fraud rates, and lack of 
transparency, and proposes a solution through the 
implementation of blockchain. The research aims to develop 
an analytical model capable of detecting attacks and anomalies 
on the Ethereum Classic (ETC) blockchain by employing an 
Encoder-Decoder LSTM architecture. The study emphasizes 
the importance of cybersecurity in the banking sector and the 
potential of blockchain technology to revolutionize the 
industry by providing a secure, efficient, and transparent 
platform for financial transactions. The thesis outlines the 
methodology used, the results obtained, and the contributions 
made to the field of blockchain security. It concludes with 
suggestions for future research directions, highlighting the 
ongoing need for innovation in the realm of digital financial 
security. 

The project's findings revealed that adding machine 
learning and blockchain technology may significantly improve 
and refine numerous security sectors. However, this study is 
simply the beginning of a broader and more extensive inquiry 
into this type of integration, underlining the need for more 
research that looks into numerous authentication elements 
across diverse datasets to balance security and usability. 

Future work will focus on addressing the scalability of the 
proposed LSTM model within larger decentralized financial 
ecosystems, particularly those operating on multiple 
blockchain platforms. Additionally, further research will 
explore the integration of reinforcement learning techniques to 
enhance real-time anomaly detection. Another promising 
avenue is the application of this model to emerging blockchain 
networks to determine its effectiveness in varied contexts. 
Extending the study to multi-blockchain scenarios could also 
provide insights into cross-network security enhancements. 
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