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Abstract—The stock market is a financial marketplace where 

investors may participate through the acquisition and sale of 

stocks in publicly traded companies. Predicting stock prices in 

the securities sector may be challenging due to the intricate 

nature of the subject, which necessitates a comprehensive grasp 

of several interconnected factors. Numerous factors, including 

politics, society, as well as the economy, have an impact on the 

stock market. The primary objective of financial market 

investing is to exploit larger profits. Financial markets provide 

many opportunities for market analysts, investors, and 

researchers in several industries due to significant technology 

advancements. Conventional approaches encounter difficulties in 

capturing the complex, non-linear connections that exist in 

market data, which requires the implementation of sophisticated 

artificial intelligence models. This paper presents a new 

approach to tackling certain issues by suggesting a unique model. 

It combines the long short-term memory method and Empirical 

Mode Decomposition with the Manta Ray Foraging 

Optimization. When tested in the current study's dynamic stock 

market, the EMD-MRFO-LSTM model outperformed other 

models regarding performance and efficiency. The Nasdaq index 

data from January 2, 2015, to June 29, 2023, were used in this 

study. The findings demonstrate how the suggested model is 

capable of making precise stock price predictions. The suggested 

model offers a workable approach to studying and predicting 

stock price time series by obtaining values of 0.9973, 91.99, 71.54, 

and 0.57, for coefficient of determination (𝐑𝟐), root means square 

error (RMSE), mean absolute error (MAE), and mean absolute 

percentage error (MAPE), respectively. Compared to other 

methods currently in use, the proposed model has a higher 

accuracy in forecasting and is more physically relevant to the 

dynamic stock market, according to the outcomes of the 

experiment. 

Keywords—Stock price; hybrid forecasting method; Manta Ray 

Foraging Optimization; empirical mode decomposition; Nasdaq 
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I. INTRODUCTION 

Having a thorough understanding of the stock market is 
essential for anyone working in the finance sector. To reduce 
risk and maximize returns, investors have to be able to 
correctly forecast stock prices. Macroeconomic policies, stock 
options, capital movements of significant firms, and changes 
in ownership are only a few of the important variables that 
might affect stock prices. Making precise predictions is 

difficult due to the unpredictable nature of price fluctuations, 
which are characterized by non-linear, non-stationary, 
stochastic noise, and fluctuating [1]. Although econometric 
and statistical methods could be employed to forecast asset 
market-related series statistics analysis is constrained by 
excessive noise and non-linearity. 

Artificial intelligence models are preferred over traditional 
methods for learning complex and non-linear relationships. In 
the domain of quantitative analysis in finance, their popularity 
is on the rise because of their ability to extract valuable data 
from input variables. They are used to detect patterns in 
historical data and forecast future trends [2], [3]. Deep 
learning has developed a number of sophisticated structures 
that address a variety of issues when it comes to varied data 
sets. A well-known model of neural networks that only 
processes data in one direction is called feedforward. 
However, working with sequential data in which earlier 
occurrences are crucial to projecting future results, can be 
challenging. As a result, such models have trouble correctly 
forecasting outcomes in such situations. To handle sequential 
data more successfully, there are sophisticated neural network 
models like recurrent neural network (RNN) as well as long 
short-term memory (LSTM). Data can be conveyed from one 
step to the next thanks to the RNNs' loop-based structural 
design, which allows them to retain critical data across time 
[4]. To train an RNN, a labeled training dataset is utilized to 
compute the error or cost between the actual and predicted 
values. The network's biases and weights are then continually 
adjusted to lower the error until it reaches the lowest 
practicable level. A gradient is used in the training process to 
calculate how much each parameter raises the cost [5]. 
Utilizing the gradient as a guide, backpropagation is used to 
iteratively change the error surface's parameters. Errors are 
propagated through this procedure between the intake and 
output layers. The main issue with this strategy is that to 
compute the gradient, partial derivatives must be generated for 
each parameter. Vanishing gradients are a typical problem 
during neural network training when gradients disappear or 
get smaller as they go back through the networks [6], [7]. The 
vanishing gradient problem was addressed through recurrent 
neural network development, including LSTM. The 
fundamental advantage of LSTM is that it can sustain long-
term memory, which makes it a great option for tasks 
requiring long-term memory [8]. The vanishing gradient 
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problem makes it impossible for traditional recurrent neural 
networks to retain long-term dependencies, however, LSTM is 
made to get around these limitations. 

The process of decomposing time series data using 
empirical mode decomposition (EMD) involves separating the 
data into interpretable intrinsic mode functions (IMFs) and a 
residue that represents the trend [9]. Obtaining immediate 
frequency data from natural signals, which often exhibit 
nonlinear and nonstationary characteristics, is a technique 
supported by actual evidence. 

As opposed to previous methods, the optimization process 
has witnessed breakthroughs recently, making it more efficient 
in handling challenges associated with confined, rigid, or 
unidentified search areas. The genetic algorithm (GA), a 
powerful computer-based technique, mimics natural selection 
to find the best solutions. GA utilizes a set of potential 
solutions called individuals and genetic operations involving 
selection, crossover, and mutation to produce new individuals 
[10]. A set of optimization techniques known as meta-
heuristic algorithms was developed to overcome the 
constraints of mathematical computation, convergence issues, 
and the need for informed guesses [11]. By continually 
iterating through a collection of initial random replies, these 
distinct kinds of optimization strategies seek the best general 
solutions for specific problems. battle royale optimization 
(BRO), manta ray foraging optimization (MRFO), and grey 
wolf optimization (GWO) are three of the most well-known 
techniques in the field [12], [13], [14]. In response to gray 
wolves' social foraging behavior, the Gray Wolf Optimizer 
algorithm, a meta-heuristic optimization technique, was 
created [13]. 

The motivation for this research is multifaceted and is 
rooted in the complexity and non-linearity that are inherent in 
stock markets. These complex relationships are not adequately 
captured by conventional linear models, which is why 
advanced models are necessary to make more precise 
predictions. The unprecedented opportunity to improve stock 
price forecasting is presented by the accelerated advancements 
in artificial intelligence and machine learning, which can be 
employed to implement sophisticated algorithms such as 
LSTM networks and optimization techniques like MRFO. For 
investors, analysts, and financial institutions, accurate 
predictions are essential for making informed investment 
decisions, optimizing portfolios, mitigating risks, and 
maximizing returns. The dynamic and volatile nature of stock 
markets presents a challenge for conventional methods, 
underscoring the necessity of innovative approaches that 
provide reliable performance in real-world scenarios. The 
powerful combination of EMD and LSTM networks is 
achieved through the synergy between the two. EMD 
decomposes complex time series data into simpler 
components, enabling LSTM to accurately represent them. 
The efficacy of the model is further improved by the 
integration of advanced optimization methods, such as MRFO, 
for hyperparameter tuning. The value of accurate stock price 
prediction models in trading and investment contexts can be 
underscored by the EMD-MRFO-LSTM model's superior 
performance on Nasdaq index data, which can demonstrate 

their practical application and real-world relevance. Following 
are the contributions of the investigation: 

 A novel hybrid model that integrates EMD, LSTM 
network, and MRFO is introduced in this research. The 
accuracy and robustness of stock price predictions are 
improved by this combination, which capitalizes on the 
assets of each method. 

 This research contributes to a more profound 
comprehension of market dynamics by effectively 
capturing the complex, non-linear relationships in stock 
market data. The model's capacity to analyze and 
process complex financial data is crucial in identifying 
the factors that influence stock price fluctuations.  

 The research offers a thorough assessment of a variety 
of stock price forecasting models, such as EMD-LSTM, 
LSTM, EMD-GA-LSTM, EMD-BRO-LSTM, and 
EMD-GWO-LSTM. The study provides vital insights 
into the relative performance of these models and the 
advantages of the proposed EMD-MRFO-LSTM model 
by benchmarking them. 

The following text comprises the remaining contents of the 
paper. The background of the study is covered in Section II. 
Related works are specified in Section III. The materials, data 
gathering, decomposition, evaluation metrics, and 
methodology are detailed in Section IV. The experimental 
results are reported in Section V. The discussions of the 
results are presented in Section VI. In the concluding section, 
the study's findings are briefly discussed in Section VII. The 
prospects and challenges are discussed in Section VIII. 

II. BACKGROUND 

A multitude of determinants impact the stock market, 
which is a dynamic and intricate system. These determinants 
comprise investor sentiment, geopolitical events, and [15], 
[16], [17]. Accurately forecasting stock prices is critical in 
order to facilitate well-informed investment decision-making 
and proficient risk management. Conventional financial 
models, which heavily depend on technical and fundamental 
analysis, frequently fail to encompass the intricacies of market 
dynamics. Conventional approaches frequently encounter 
challenges in capturing the complex patterns and non-linear 
associations that are intrinsic to market data. The utilization of 
artificial intelligence models in finance is becoming more 
prevalent due to their capacity to extract valuable insights 
from historical data as well as to discover complex 
relationships among input variables, as discussed in this study. 
In addition to price forecasting, trend analysis, and anomaly 
detection, ML algorithms have been implemented in a variety 
of stock market prediction domains. These methods assist in 
discerning parallels and distinctions between equities, 
identifying market anomalies, and revealing concealed 
correlations that could potentially impact price fluctuations. 
The article's primary contribution is the introduction of the 
GWO-LSTM hybrid model, which integrates the operational 
characteristics of LSTM and GWO to enhance the accuracy of 
stock price forecasts [18], [19]. To verify the efficacy of the 
hybrid model, the research utilizes a stringent methodology 
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that includes data analysis, model evaluation, and comparison 
with alternative techniques. 

III. RELATED WORKS 

The Shanghai Index's close price for the next day was 
predicted by Lu et al. [20] using the convolutional neural 
network (CNN) and LSTM approach. CNN's primary 
objective was to identify the most valuable features in the 
data, as well as the closing stock price was predicted using the 
LSTM approach. The problem stemmed from CNN's inability 
to identify the optimal feature from the input data. Rezaei et 
al. [21] introduced two hybrid algorithms called EMD-CNN-
LSTM for stock price prediction. On the historical data of the 
S&P 500, Dow Jones Industrial Average, and Hang Seng 
Index dataset, Qiu et al. [22] constructed an LSTM-based 
model. Using the stock trading data from the S&P 500, to 
forecast the stock price for the ensuing 1, 5, and 10 minutes, 
Lanbouri et al. [23] employed the LSTM model for the high-
frequency. To forecast the close price of the National Stock 
Exchange and NIFTY50 index, Yadav et al. [24] employed 
deep learning using the LSTM-based approach. According to 
the findings, a stateless LSTM model was discovered to be 
preferable due to its increased stability for time series 
forecasting problems. For the purpose of stock forecasting 
using time series data, Dash et al. [25] developed a novel 
machine learning (ML) technique that makes use of an 
optimized form of support vector regression. Zhang et al. [26] 
developed a two-stage prediction methodology that can 
accurately forecast stock prices. Three machine learning 
models, a nonlinear ensemble technique, and a decomposition 
algorithm are all incorporated into this mode. In the first stage, 
they decomposed stock price time series into sub-series using 
variational mode decomposition (VMD) as well as then used 
extreme learning machine (ELM), support vector regression 
(SVR), and deep neural network (DNN) to forecast each sub-
series. Rao et al. [27] addressed the challenge of accurate 
stock market forecasting by proposing a hybrid machine 
learning model for stock market prediction. Accounting et al. 
[28] employed LSTM for predicting the Tehran stock market. 
The CatBoost algorithm has been utilized to predict financial 
distress, and the dataset was gathered from the Chinese stock 
market between 2016 and 2020 by Zhao et al. [29]. Kumar et 
al. [30] suggested a hybrid deep learning model that combines 
adaptive particle swarm optimization (PSO) as well as LSTM 
network. 

IV. MATERIALS AND METHOD 

A. Data Description 

This study employs time series data, which are 
distinguished by their temporal dependencies. It is crucial to 
look at the volume of financial data and the open, high, low, 
and close prices (OHLC) over a specific period to conduct a 
thorough analysis. Open price is the initial price agreed upon 
by vendors and purchasers to conduct business following the 
market's regular trading hours. The open price holds 
considerable importance as it establishes the security's initial 
value for the course of the trading day. The term high price 
refers to the maximum price that fluctuates during a particular 
trading session for a given security. It represents the highest 
value point that the security price has reached during that 

particular period. The high price is indicative of the peak level 
of investors' demand and enthusiasm for the security 
throughout the trading session. In the context of a given 
trading process, a low price denotes the lowest price at which 
a specific security was transacted. The expression close price 
denotes the ultimate price at which certain securities were 
exchanged after a trade. It is the final price at which a 
transaction occurs just before the market's closing time. 
Volume denotes the aggregate quantity of shares or contracts 
that have been traded. As a result, information was gathered 
between January 2, 2015, and June 29, 2023, from the Yahoo 
Finance website's Nasdaq index. 

The aforementioned information is contained within the 
dataset used in the investigation. Following the acquisition of 
the dataset, a comprehensive process of data cleansing was 
executed in order to preserve the precision and uniformity of 
the forecasting models. The multi-step procedure was 
designed to protect the dataset's integrity and avoid any 
inaccurate or incomplete information from being added that 
would cause problems. One of the critical stages required a 
careful analysis of the data to identify any outliers, anomalies, 
or discrepancies that can potentially undermine the validity of 
the outcomes. The information was preprocessed and cleaned 
using a variety of methods to ensure its suitability for use. To 
prevent gradient errors and inconsistent training results, the 
data was scaled and normalized. The data were normalized 
before training using the Min-Max-Scaler method, which 
helped to guarantee a stable model and avoid having too high 
weight values.  Prices and volume for OHLC were used as the 
training data, which was fed into the model. High price, low 
price, open price, as well as volume data were given to the 
model for testing. The data were divided into 20% for testing 
and 80% for training. 

By preprocessing the data to preserve its accuracy and 
consistency, it can be guaranteed that the models can 
accurately learn from historical stock price trends and make 
precise predictions. The inclusion of OHLC prices and volume 
data provided a comprehensive view of market activities, 
allowing the model to capture intricate patterns and 
dependencies in the stock market data. 

B. Empirical Mode Decomposition 

The empirical mode decomposition is a technique utilized 
to break down time series data into two components: a 
residual component that represents the trend, and a collection 
of interpretable intrinsic mode functions (IMFs) [31]. It is a 
technique that is backed by empirical evidence and used to 
obtain immediate frequency data from natural signals, which 
frequently display nonlinear and nonstationary properties. An 
IMF is a mathematical function that has an average value of 
zero and one extreme value between each time it crosses zero. 
Fig. 1 to 5 demonstrate the decomposition of a variety of stock 
market characteristics, including the Open, High, Low, 
Volume, and Close prices, using EMD. Each figure 
commences with the original time series data at the top, 
followed by 11 IMFs that capture various frequency 
components of the data. The highest frequency is captured in 
IMF 1, and subsequent IMFs progress to lower frequencies. 
After extracting the IMFs, the residual component is 
represented by the bottom plot in each figure, which illustrates 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 8, 2024 

366 | P a g e  

www.ijacsa.thesai.org 

the long-term trend. In addition to enhancing prediction 
models, this decomposition process also facilitates a detailed 

analysis by isolating various patterns within the stock market 
data.

 
Fig. 1. The decomposition of Open price by EMD. 

 
Fig. 2. The breakdown of High price using EMD. 
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Fig. 3. The breakdown of Low price using EMD. 

 
Fig. 4. The decomposition of Volume by EMD. 
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Fig. 5. The decomposition of Close price by EMD.

The method employed by EMD to decompose respiratory 
motion into IMFs is explained as follows [31]. 

 𝑍1is the mean value of the upper and lower boundaries 
of a time series signal 𝑥(𝑡) . These boundaries are 
determined by interpolating the local maximum and 
minimum points. 

 Deducting 𝑍1 from the original time series 𝑥(𝑡)yields 
the initial component 𝑃1 , which is defined as 𝑝1 =
𝑥(𝑡) − 𝑍1. 

 Let 𝑃1 represent the data in which the means of the 
upper and lower envelopes are 𝑍11 during the second 
shifting process; 𝑝11 = 𝑝1 − 𝑧11. 

 By the following conditions, the shifting process is 
terminated 𝑘  times: (a) 𝑧1𝑘 approaches zero; (b) the 
distinction between zero-crossings and the 𝑝1𝑘  number 
of extrema does not surpass one, or (c) the maximum 
number of iterations has been completed. When this 
occurs, the IMF, denoted as 𝑝1𝑘, can be determined by 
dividing 𝑝1𝑘 = 𝑝1(𝑘−1) − 𝑧1𝑘. 

 The initial IMF (the shortest component of the data), 
represented by𝑎1 = 𝑝1𝑘, is subtracted from the data as 
𝑥(𝑡) − 𝑎1 = 𝑦1. This operation is repeated for each of 
the following values of 𝑦2 = 𝑦1 − 𝑎2, … 𝑦𝑛 = 𝑦𝑛−1 −
𝑎𝑛. 

Consequently, the initial time series 𝑥(𝑡)is reduced to the 
collection of IMF functions shown below: 

𝑥(𝑡) = (∑ 𝑎𝑖 + 𝑦𝑛
𝑛
𝑖=1    (1) 

C. Manta Ray Foraging Optimization 

1) Inspiration: Manta rays are complex organisms despite 

their menacing appearance. They are among the largest marine 

organisms known to science [14]. Manta rays are flat-bodied 

from top to bottom as well as have two pectoral fins; they 

swim elegantly while birds soar effortlessly. Furthermore, 

they possess a pair of cephalic appendages that protrude 

anterior to their enormous, terminal jaws. They funnel prey as 

well as water into their jaws utilizing horn-shaped cephalic 

lobes while foraging. Then, using modified gill rakers, the 

prey is removed from the water. Two distinct species are 

identified as manta rays. The reef manta ray (Manta alfredi) is 

one of them that can attain a width of 5.5 meters and inhabits 

the Indian Ocean, western Pacific, and southern Pacific. The 

other is the 7-meter-wide giant manta ray (Manta birostris), 

which inhabits mild temperate, tropical, and subtropical 

oceans [14]. Their estimated age of existence is five million 

years. Many do not live to be the average age of 20 years due 

to the fact that they are pursued by fishermen. The illustration 

of MFRO is covered in Fig. 6. 
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Fig. 6. The illustration of MRFO. 

MRFO has been impacted by three distinct foraging 
behaviors: cyclone foraging, chain foraging, as well as 
somersault foraging. 

2) Chain foraging: Manta rays can travel in the direction 

of plankton they detect using MRFO. An elevated plankton 

concentration correlates with a more favorable geographical 

location. While the optimal solution remains unknown, MRFO 

hypothesizes that the ideal solution thus far is the high-

concentration plankton that manta rays desire to consume. A 

foraging chain is formed when manta rays are arranged from 

head to tail. At the same moment that individuals approach the 

food, they also approach the item that is immediately in front 

of them. Put simply, in each iteration, each individual gets 

revised with the best possible option that has been identified 

thus far, in addition to the solution that is currently in front of 

it. This is a representation of the chain foraging theoretical 

framework: 

 

𝑥𝑖
𝑑(𝑡 + 1) = 

{
  
 

  
 𝑥𝑖

𝑑(𝑡) + 𝑟. (𝑥𝑏𝑒𝑠𝑡
𝑑 (𝑡) − 𝑥𝑖

𝑑(𝑡))

+𝛼. (𝑥𝑏𝑒𝑠𝑡
𝑑 (𝑡) − 𝑥𝑖

𝑑(𝑡))  𝑖 = 1

𝑥𝑖
𝑑(𝑡) + 𝑟. (𝑥𝑖−1

𝑑 (𝑡) − 𝑥𝑖
𝑑(𝑡))

+𝛼. (𝑥𝑏𝑒𝑠𝑡
𝑑 (𝑡) − 𝑥𝑖

𝑑(𝑡))  𝑖 = 2,…𝑁

      (2) 

𝛼 = 2. 𝑟. √|log (𝑟)|   (3) 

where 𝑥𝑖
𝑑(𝑡)denotes the location of the 𝑖-th individual at 

time 𝑡  in the 𝑑 -th dimension, 𝑟  signifies an arbitrary vector 
from 0 to 1, α denotes the value of the ratio, and 

𝑥𝑏𝑒𝑠𝑡
𝑑 (𝑡)represents the plankton with the highest concentration. 

The current status of the 𝑖-th individual is established using 
the situation 𝑥𝑖−1(𝑡) as well as the position 𝑖 − 1-th of the 
food at the time 𝑥𝑏𝑒𝑠𝑡(𝑡) respectively. 

3) Cyclone foraging: When a group of manta rays detects 

a region of deep-water plankton, they will spiral in their 

pursuit of the food in a continuous foraging chain.  In contrast, 

as part of their cyclone foraging strategy, manta ray clusters 

swim each individual manta ray in the direction of the one in 

front of it, as opposed to spiraling towards the food. In other 

words, manta ray colonies engage in spiral foraging in a 

helical formation. An individual not only replicates the motion 

of the one preceding it but also proceeds in a spiral trajectory 

toward sustenance. The expression in mathematics that 

characterizes the spiral motion of manta rays in a two-

dimensional space is as follows: 

{
 
 

 
 

𝑋𝑖(𝑡 + 1) = 𝑋𝑏𝑒𝑠𝑡 + 𝑟. (𝑋𝑖−1(𝑡) − 𝑋𝑖(𝑡))

+𝑒𝑏𝑤 . 𝑐𝑜𝑠(2𝜋𝑤) . (𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑖(𝑡))

𝑌𝑖(𝑡 + 1) = 𝑌𝑏𝑒𝑠𝑡 + 𝑟. (𝑌𝑖−1(𝑡) − 𝑌𝑖(𝑡))

+𝑒𝑏𝑤 . 𝑠𝑖𝑛(2𝜋𝑤) . (𝑌𝑏𝑒𝑠𝑡 − 𝑌𝑖(𝑡))

  (4) 

where 𝑤 represents a random number from zero to one. 

This behavior of motion is extensible to 𝑛𝐷 space. 
Theoretical representation of cyclone scavenging may be 
defined succinctly as: 

𝑥𝑖
𝑑(𝑡 + 1) = 

{
  
 

  
 𝑥𝑏𝑒𝑠𝑡

𝑑 + 𝑟. (𝑥𝑏𝑒𝑠𝑡
𝑑 (𝑡) − 𝑥𝑖

𝑑(𝑡))

+𝛽. (𝑥𝑏𝑒𝑠𝑡
𝑑 (𝑡) − 𝑥𝑖

𝑑(𝑡))  𝑖 = 1

𝑥𝑏𝑒𝑠𝑡
𝑑 + 𝑟. (𝑥𝑖−1

𝑑 (𝑡) − 𝑥𝑖
𝑑(𝑡))

+𝛽. (𝑥𝑏𝑒𝑠𝑡
𝑑 (𝑡) − 𝑥𝑖

𝑑(𝑡))  𝑖 = 2,… , 𝑁

 


𝛽 = 2𝑒𝑟1
𝑇−𝑡+1

𝑇 . sin (2𝜋𝑟1) 

The variables denoted as [0,1], 𝑇  the maximal number of 
iterations, 𝛽 the weight coefficient, and 𝑟1 the rand number. 

Each individual conducts the search in a random manner, 
using the food as their reference position. As a result, the 
region where the most effective solution has been identified 
thus far benefits from cyclone foraging. Additionally, this 
behavior serves to significantly enhance the exploration 
process. By designating each individual, a reference position 
that is arbitrary and distinct from the current optimal one, we 
can compel them to seek out a new position. The 
mathematical equation for this mechanism, which enables 
MRFO to conduct an exhaustive global search and is primarily 
concerned with exploration, is provided below. 

𝑥𝑟𝑎𝑛𝑑
𝑑 = 𝐿𝑏𝑑 + 𝑟. (𝑈𝑏𝑑 − 𝐿𝑏𝑑) 

𝑥𝑖
𝑑(𝑡 + 1) =

{
  
 

  
 𝑥𝑟𝑎𝑛𝑑

𝑑 + 𝑟. (𝑥𝑟𝑎𝑛𝑑
𝑑 − 𝑥𝑖

𝑑(𝑡))

+𝛽. (𝑥𝑟𝑎𝑛𝑑
𝑑 − 𝑥𝑖

𝑑(𝑡))  𝑖 = 1

𝑥𝑟𝑎𝑛𝑑
𝑑 + 𝑟. (𝑥𝑖−1

𝑑 − 𝑥𝑖
𝑑(𝑡))

+𝛽. (𝑥𝑟𝑎𝑛𝑑
𝑑 − 𝑥𝑖

𝑑(𝑡))  𝑖 = 2,… , 𝑁

 

The variable 𝑥𝑟𝑎𝑛𝑑
𝑑  denotes a position generated at random 

within the search space. 𝐿𝑏𝑑 as well as 𝑈𝑏𝑑 represent, 
respectively, the 𝑑 -th dimension's minimum and maximum 
boundaries. 

X  (t)
i

X  (t)
i+1

X  (t)
i

X   (t)
best

(r  . X    (t)  . r  X  (t))
best i2 3

X   (t)
best

(a) Chain

(b) Cyclone (c) Somersault

X
best



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 8, 2024 

370 | P a g e  

www.ijacsa.thesai.org 

4) Somersault foraging: This behavior is characterized by 

the food's position being considered a pivot. Every individual 

undergoes a series of back-and-forth swims that involve a 

pirouette to a different position. As a result, they continuously 

adjust their positions in accordance with the most 

advantageous one discovered thus far. The formulation of the 

mathematical model is as follows: 

𝑥𝑖
𝑑(𝑡 + 1) = 𝑥𝑖

𝑑(𝑡) + 𝑆. (𝑟2. 𝑥𝑏𝑒𝑠𝑡
𝑑 − 𝑟3. 𝑥𝑖

𝑑(𝑡)) , 𝑖

= 1,… , 𝑁 


where 𝑆 is the somersault factor that controls the variety of 
somersaults that manta rays perform, 𝑆 = 2, 𝑟2and 𝑟3 are two 
arbitrary values from the interval [0,1] . The framework of 
MRFO can be displayed in Fig. 7. 

 

Fig. 7. The framework of MRFO.
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D. Long Short-term Memory 

The long short-term memory is a very well-liked and 
successful deep learning method. It is an effective tool for a 
variety of applications since it is built to handle and process 
enormous amounts of data [8]. Three a memory unit and 
gating units are used by the LSTM model to process incoming 
input. Together, these components control the flow of data, 
eliminating any extraneous material and generating output that 
is both brief and pertinent. The forgetting gate removes any 
potentially present irrelevant information, whereas the input 
gate handles the processing of incoming data. The function of 
the output gate is to regulate the flow of data that has been 
processed and generate a precise and relevant output. The gate 
formulas are used to sort, process, and store data, while the 
memory unit stores pertinent information for later use. The 
LSTM model may exclude any extraneous data by employing 
these algorithms, ensuring that only essential data is retained. 
As a result, it is a very effective method for handling vast 
amounts of data without creating extra clutter. The LSTM 
method is a significant asset in the field of deep learning since 
it is a strong and dependable tool for processing complex data 
sets [32]. The LSTM's operation is shown in the following 
equations. The forget gate decides whether to preserve or 
discard the information. A sigmoid layer processes the current 
input and the prior hidden state. The value that this layer 
output ranges from 0 to 1. Keep the data if the result value is 
more closely related to 1. Otherwise, disregard the knowledge. 

𝑓𝑡 = 𝜎(𝑊𝑓 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 

where 𝜎 denotes the sigmoid function, 𝑊𝑓 is the mass that 

is linked to the forget gate, the prior hidden state demonstrates 
as ℎ𝑡−1, the input value is 𝑥𝑡 , as well as 𝑏𝑓  denotes the bias 

associated with the forget gate. 

The gate that accepts input is responsible for modifying 
the cell state. An individual sigmoid layer and a tan layer 
process the present input as well as the prior hidden state first. 
A data value is transformed by the sigmoid layer into a value 
that ranges from 0 to 1. Using the tanh layer, a data value is 
transformed into a value between -1 and 1. The outputs of the 
sigmoid layer and the tanh layer are multiplied by a point-wise 
procedure. then computes the new cell state value. 

𝑖𝑡 = 𝜎(𝑊𝑖 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

The weight that is expressed as a symbol for the input gate 
by 𝑊𝑖 and 𝑏𝑖 is the component of the input gate that introduces 
bias. 

The below equation is used to calculate the output of the 
tanh layer: 

�̃�𝑡 = 𝑡𝑎𝑛ℎ (𝑊𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) 

Equation below is used to calculate the new cell state: 

𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × �̃�𝑡 

The output gate decides what secret state will be shown 
next. A sigmoid layer processes the input at hand in addition 

to the preceding hidden state at the beginning. The changed 
cell state is then transmitted to a tan layer. The outputs of the 
sigmoid layer and the tanh layer are multiplied point-wise to 
find the subsequent hidden state. The new cell state as well as 
the next concealed state are then transferred to the following 
time step. 

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

where 𝑏𝑜 denotes the bias associated with the output gate 
and 𝑤𝑜 is the weight associated with the output gate. 

ℎ𝑡 = 𝑜𝑡𝑡𝑎𝑛ℎ (𝐶𝑡) 

Using the following equation, the subsequent hidden state 
is determined: 

ℎ𝑡 = 𝑜𝑡𝑡𝑎𝑛ℎ (𝐶𝑡) 

E. Genetic Algorithm 

The genetic algorithm is a method of computation that 
simulate natural selection's technique to handle optimization 
and search issues [10]. With this algorithm, a collection of 
probable solutions known as people is created. To create new 
individuals, these individuals are then subjected to genetic 
processes like mutation, recombination, and selection. The 
illustration and framework of GA can be seen in Fig. 8 and 9. 
This evaluation procedure is iterative and is performed over 
several generations until a workable answer is discovered. As 
a result, GA is a potent instrument that is frequently employed 
in many different industries, involving engineering, finance, 
and science, to name a few [33]. Three components are 
essential to GA [34]. A chromosome is an encoded string of 
numbers or characters that is given to each individual by the 
encoding component. Encoding methodology is determined by 
the precise problem that must be resolved. Following this, the 
fitness metric is applied to assess how each individual 
embodies the solution. The ability to exercise has been 
deliberately designed to mitigate the present issue. 
Evolutionary operators utilize the crossing, transformation, 
and choice procedures. When two people's chromosomes 
crossover, a new being is created, mutation indiscriminately 
modifies an individual's chromosomes, and selection is used to 
determine which individuals are the most fertile. 

 
Fig. 8. The illustration of GA.

Selection Crossover

MutationEvaluation
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Fig. 9. The framework of GA.

F. Battle Royale Optimizer 

The battle royale optimizer is the name of a meta-heuristic 
algorithm that Farshi proposed [12]. The algorithm was 
inspired by a popular multiplayer online game in which 
players must eliminate rivals to find a safe haven to survive. 
Stepping outside the safe zone in the game puts the player at 
risk of getting hurt or being eliminated [12]. The damage rate 
of the injured player is calculated using the equation shown 
below: 

𝑥𝑖 . 𝑑𝑎𝑚𝑎𝑔𝑒 = 𝑥𝑖 . 𝑑𝑎𝑚𝑎𝑔𝑒 + 1 

Injured players strive to switch to other positions to 
confront the enemy. The equation that follows shows the 
players' newest placements: 

𝑥𝑑𝑎𝑚,𝑑 = 𝑥𝑑𝑎𝑚,𝑑 + 𝑟(𝑥𝑏𝑒𝑠𝑡,𝑑 − 𝑥𝑑𝑎𝑚,𝑑) 

where 𝑥𝑑𝑎𝑚,𝑑  denotes the location of the wounded player 

in the dimension 𝑑 ,  the best solution in dimension 𝑑  is 

indicated by the notation 𝑥𝑏𝑒𝑠𝑡,𝑑 , and 𝑟 is a random number 

generated from a uniform distribution between 0 and 1. The 
search agents are distributed at random throughout the 
problem space and cover it equally. 

In a d-dimensional problem space, the upper limit and 
lower bound are represented by 𝑢𝑏𝑑  and 𝑙𝑏𝑑   the following 
equation: 

𝑥𝑑𝑎𝑚,𝑑 = 𝑟(𝑢𝑏𝑑 − 𝑙𝑏𝑑) + 𝑙𝑏𝑑 

The best approach is shown in the formula below, and the 
worst-fitting options are discarded. Considering this, the 
starting value ∆ is log10(𝑀𝑎𝑥𝐶𝑖𝑐𝑙𝑒), where MaxCicle is the 
number of repetitions: 

∆= ∆ + 𝑟𝑜𝑢𝑛𝑑 (
∆

2
) 

G. Gray Wolf Optimizer 

A meta-heuristic technique has been used to create a novel 
optimization process known as the gray wolf optimizer. The 
approach, which mimics the seeking strategies and social 
organization of gray wolves, was first presented by Mirjalili et 
al. [13]. The best solution is Alpha, while there are four 
alternatives in the leadership hierarchy, Omega is the last 
competitor: Beta, Alpha, Omega, and Delta. 

The strategy employs three primary hunting techniques to 
mimic wolf behavior: pursuing prey, enclosing prey, and 
attacking prey. 

�⃗⃗� = |𝐶 ⋅ 𝑋 𝑝(𝑡) − 𝑋 (𝑡)| 

𝑋 ∣ (𝑡 + 1) = 𝑋 𝑝(𝑡) − 𝐴 ⋅ �⃗⃗�  


where 𝐶 ⃗⃗  ⃗ and  𝐴  represent coefficient vectors, 𝐷 ⃗⃗  ⃗ signifies 
motion, 𝑡  is the current stage of iteration, as well as 

𝑋 ⃗⃗  ⃗represents the whereabouts of a gray wolf. The construction 

of the parameter variables ( 𝐴 ⃗⃗  ⃗ and 𝐶 ⃗⃗  ⃗ ) is based on the 
subsequent relationships: 

Start

Generate initial random 
population

Calculate fitness of 
individuals

Satisfy stop 
criterion?

Selection of the 
individuals

Select Genetic 
Operator

Mutation Operator:
Select one individual and mutate 

the genes in it

Crossover Operator:
Select two individuals and swap a 

section of gene between them

End
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𝐴 = 2𝑎 ⋅ 𝑟 1 − 𝑎  

𝐶 = 2 ⋅ 𝑟 2 


The location of new search reps that involve omegas is 
adjusted utilizing the data from alpha, beta, and delta as 
follows: 

�⃗⃗� 𝑎 = |𝐶 1 ⋅ 𝑋 𝑎 − 𝑋 |, �⃗⃗� 𝛽 = |𝐶 2 ⋅ 𝑋 𝛽 − 𝑋 |, �⃗⃗� 𝛿
= |𝐶 3 ⋅ 𝑋 𝑠 − 𝑋 | 



𝑋 1 = 𝑋 𝑎 − 𝐴 1 ⋅ �⃗⃗� 𝑢, 𝑋 2 = 𝑋 𝛽 − 𝐴 2 ⋅ �⃗⃗� 𝛽 , 𝑋 3
= 𝑋 𝑏 − 𝐴 3 ⋅ �⃗⃗� 𝛿  



𝑋 (𝑡 + 1) =
𝑋 1 + 𝑋 2 + 𝑋 3

3
 

where the wolves are indicated by the subscripts 
𝛼, 𝛽, and 𝛿 to mount a final attack to complete the task. 𝑎   is 
used to mimic the last attack by changing a value from 2 to 0, 
whereas an is a random variable between −2𝑎  and 2𝑎 . As a 

result, decreasing 𝑎  would also cause  𝐴  to decrease. The 

wolves were forced by |𝐴 | < 1to cling to their prey. After 

following the leader wolf on a pack search, gray wolves 
disperse to collect sustenance before reconvening for an 
assault. In pursuit of prey, wolves may divide into groups if 

the value of |𝐴 ⃗⃗  ⃗| exceeds unity at random. Two of the most 

critical settings for the algorithm used by GWO are the 
number of wolves and generation. Generation after generation 
signifies a wolf's conclusive action. In addition, the number of 
wolves precisely reflects changes in performance estimates 
over time. In other words, the generation size multiplied by 
the wolf population will result in an equivalent quantity of 
objective function evaluations. 

𝑂𝐹𝐸𝑠 = 𝑁𝑊 × 𝑁𝐺  

H. Performances Metrics 

Several performance metrics were utilized to determine the 
dependability of future estimates. The root means square error 
(RMSE), mean absolute error (MAE), coefficient of 
determination ( 𝑅2) , and mean absolute percentage error 
(MAPE) were some of these. The accuracy of forecasting 
models can be evaluated using these metrics, which 
additionally helps to ensure that the estimates are solid and 
reliable. 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1

𝑛
 

𝑀𝐴𝑃𝐸 = (
1

𝑛
∑|

𝑦𝑖 − �̂�𝑖

𝑦𝑖

|

𝑛

𝑖=1

) × 100 

𝑅2 = 1 −
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1  

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 

𝑀𝐴𝐸 =
∑ |𝑦𝑖 − �̂�𝑖|

𝑛
𝑖=1

𝑛
 

where 𝑦
𝑖
 is the sample mean, 𝑦�̂�is the predicted value, and 

𝑦𝑖  is the actual value. 

V. EXPERIMENTAL RESULTS 

A. Statistical Values 

Table I which contains comprehensive statistical data 
about the dataset is included in this section of the study. The 
data are made more understandable by the table's inclusion of 
OHLC prices and volume figures. A robust dataset for 
analysis is provided by the 2137 observations in this table. 
This provides a clear indication of the data's scope and the 
extensive period over which it was collected by presenting the 
count. The central tendencies of the dataset are represented by 
the mean values in the table, which provide an average 
perspective on the market's performance during the analyzed 
period. For example, the mean closing price of 8745.8210 
serves as a foundation for comprehending typical market 
behavior. In the same way, the minimum and maximum 
values capture the extremes within the dataset, indicating the 
lowest and highest market activities observed, such as the 
minimum volume of 706.880 and the maximum closing price 
of 16057.440. Additionally, the table contains skewness 
values, which provide a deeper understanding of the 
asymmetry in the data distribution. The skewness, which is 
nearly zero, indicates that the distribution is fairly 
symmetrical, indicating that the data does not significantly 
favor one tail. This information is essential for comprehending 
the fundamental patterns in the data, which can have a 
substantial impact on modeling endeavors. 

TABLE I.  SUMMARY STATISTICS FOR THE DATA SET 

 Open High Low Volume Close 

count 2137 2137 2137 2137 2137 

mean 8744.3560 8805.2870 8677.5740 3143.80 8745.8210 

minimum 4218.810 4293.220 4209.760 706.880 4266.840 

maximum 16120.920 16212.230 16017.230 11621.190 16057.440 

skewness 0.4993140 0.493110 0.5027470 1.0283760 0.4977320 

B. Models' Outcomes 

Using data from Nasdaq Finance, the proposed method 
was both trained and evaluated. To forecast a numerical value, 

regression analysis is implemented. A large number of 
vendors, purchasers, and investors participate in the stock 
market, an extremely risky investment destination. A share 
typically signifies ownership in a corporation. Recognizing 
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stock price patterns and making investments at the optimal 
time and location are the sole prerequisites for potentially 
generating profits. Determining as well as evaluating the 
hybrid algorithm that is most efficient in predicting stock 
pricing is thus the primary objective, provided that an event is 
accurately predicted at the appropriate moment. Determining 
and evaluating the most effective hybrid algorithm for 
investing price forecasts is the principal aim of this study. 
Elaborate variables that influence stock market patterns have 
been analyzed in conjunction with the development of 
forecasting models. The goal was to provide insightful 

information that would aid investors and analysts in making 
prudent investment decisions. A detailed assessment of the 
performance of each mode, as well as an examination of its 
effectiveness, is presented in Table II. The principal goal of 
this investigation is to ascertain as well as evaluate the most 
efficient hybrid method for predicting stock prices. Through 
the development of predictive models and an understanding of 
the fundamental factors that influence stock market trends, 
this research aims to assist analysts and investors in making 
well-informed investment choices. 

TABLE II.  EVALUATION FINDINGS OF THE SIX BENCHMARKING ALGORITHMS' STATISTICAL FORECASTS 

MODEL/METRICS 
TRAIN SET TEST SET 

R2 RMSE MAE MAPE (%) R2 RMSE MAE MAPE (%) 

LSTM 0.9766 449.05 383.63 5.62 0.9609 311.60 259.87 2.06 

EMD-LSTM 0.9817 396.55 247.51 2.59 0.9703 271.63 208.55 1.70 

EMD-GA-LSTM 0.9890 307.53 193.82 2.16 0.9809 217.40 165.24 1.32 

EMD-BRO-LSTM 0.9916 268.93 178.14 2.17 0.9904 154.48 121.27 0.98 

EMD-GWO-LSTM 0.9966 170.78 153.74 1.99 0.9951 122.01 93.96 0.75 

EMD-MRFO-LSTM 0.9981 127.72 107.76 1.43 0.9973 91.99 71.54 0.57 

VI. DISCUSSION 

To assess the efficacy of the data analysis, four widely 
used metrics—RMSE, MAPE, MAE, and R2—were applied. 
To fully evaluate the results, a comprehensive assessment of 
the accuracy of the analysis, precision, as well as overall 
performance can be done using these metrics. R2, RMSE and 
MAPE criteria were assessed for the LSTM model using EMD 
decomposition both with and without the optimizer. During 
the evaluation period, LSTM achieved a R2value of 0.9609, as 
shown in Table II and Fig. 10 and 11. Frequently, the process 
of decomposing a problem reveals functions or recurrent 
patterns that apply to numerous components. The act of 
reusing modules or components serves to enhance stability, 
decrease the probability of errors, and accelerate the 
development process. In light of the data provided in this 
section, Clearly, it is apparent that the utilization of EMD 
decomposition decreases the value of MAE to 208.55 and 
247.51, respectively, during the testing and training phases. 
When optimizers are added to the LSTM model, its efficacy is 
substantially enhanced. By enabling the efficient modification 
of model parameters, optimizers mitigate performance 
degradation. In order to achieve a convergent set of 

parameters, a multitude of optimizers implement unique 
strategies, including adaptive learning rate, slope descent, 
momentum, and others. This degree of effectiveness 
accelerates the convergence process during training. The cited 
examples demonstrate that the simultaneous implementation 
of the GA optimizer and EMD decompose produces a more 
precise outcome and reduces calculation error, as shown in 
Table II. Moreover, in conjunction with GA, the BRO 
optimizer exhibited enhanced performance, as indicated by its 
reduced RMSE value. By attaining an MAE score of 93.96, 
EMD-GWO-LSTM demonstrated superior efficacy in 
comparison to EMD-BRO-LSTM. According to regression 
analysis, the EMD-MRFO-LSTM model is an exceptionally 
precise and reliable instrument. The respective R2 score of the 
model for the testing dataset was 0.9973. The outcomes of this 
study illustrate the model's robust predictive capability and its 
ability to explain nearly all of the variability in the data. 
Decreased values signify greater precision, as they represent 
the discrepancy between the predicted and realized values. In 
light of the exceptional accuracy demonstrated by both the 
training and assessment datasets, the EMD-MRFO-LSTM 
model has been validated. 

 

Fig. 10. Evaluation values for each model in the training set. 
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Fig. 11. Evaluation values for each model in the testing set.

The EMD-MRFO-LSTM model's ability to forecast the 
Nasdaq index during both the training and testing phases is 
illustrated in Fig. 12 and 13. The black line in Fig. 12, which 
illustrates the training phase, represents the actual Nasdaq 
index, while the red line illustrates the predicted values from 
the model. The model's capacity to learn from historical data 
is underscored by the close alignment of the two curves. 
Particularly, the Nasdaq index's reversal points, peaks, and 
troughs are precisely captured by the model. The predicted 
values closely follow the actual values at reversal points, 
where the market changes direction. The model also 
accurately predicts the market's peaks and troughs, matching 
them with precision. The model's capacity to learn intricate 
market dynamics and patterns is illustrated by this precise fit. 
The EMD-MRFO-LSTM model's robustness and 

generalization capability are validated by its continued 
performance in Fig. 13, which represents the testing phase. 
The model closely aligns the predicted peaks and troughs with 
the actual market values and maintains its accuracy in 
predicting reversal points, where the market shifts direction. 
This consistency in the testing phase, during which the model 
encounters new, unseen data, emphasizes its reliability and 
effectiveness in real-world applications. The model's ability to 
accurately capture critical market prices is demonstrated by 
the detailed fit between the predicted and actual curves in both 
phases, rendering it a valuable tool for investors and analysts. 
The EMD-MRFO-LSTM model's utility in stock market 
prediction is confirmed by its ability to accurately predict 
future market trends, which aids in the making of informed 
investment decisions. 

 
Fig. 12. Training-generated forecasting curve employing EMD-MRFO-LSTM. 
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Fig. 13. Testing-generated forecasting curve employing EMD-MRFO-LSTM.

According to Table III, in comparison to both traditional 
and advanced benchmark models, such as support vector 
regression (SVR), random forest (RF), multilayer perceptron 
(MLP), and long short-term memory (LSTM), the proposed 
EMD-MRFO-LSTM model has exhibited remarkable 
superiority in predicting stock market prices. In particular, the 

model attains an R²  value of 0.9973, which is statistically 
significantly greater than those of SVR (0.9097), RF (0.9258), 
MLP (0.9442), and LSTM (0.9609). The EMD-MRFO-LSTM 
model's high R² value suggests that it can account for nearly 
99.73% of the variance in the target data, which is a 
significant improvement over the closest competing model, 

LSTM, which explains 96.09%. Additionally, the EMD-
MRFO-LSTM model demonstrates superior error metrics, 
with an RMSE of only 91.99, in contrast to 311.60 for LSTM, 
329.03 for MLP, 379.37 for RF, and 418.38 for SVR. The 
MAE exhibits a comparable pattern, as evidenced by its value 
of 71.54, which is significantly lower than that of LSTM 
(259.87), MLP (254.90), RF (287.73), and SVR (361.18). 
Furthermore, the MAPE of the proposed model is a mere 
0.57%, which is a negligible error margin in comparison 
to 2.06% for LSTM, 2.09% for MLP, 2.24% for RF, and 3% 
for SVR. 

TABLE III.  PERFORMANCE OF THE PROPOSED MODEL IN COMPARISON WITH BENCHMARK MODELS 

MODEL/METRICS 
TEST SET 

𝑹𝟐 RMSE MAE MAPE (%) 

SVR 0.9097 418.38 361.18 3 

RF 0.9258 379.37 287.73 2.24 

MLP 0.9442 329.03 254.90 2.09 

LSTM 0.9609 311.60 259.87 2.06 

EMD-MRFO-LSTM 0.9973 91.99 71.54 0.57 

The EMD-MRFO-LSTM model's stability and reliability 
are further demonstrated by its consistent results across 
various cross-validation methods, as illustrated in Table IV. 
The model achieves an R² of 0.9967, an RMSE of 92.82, an 
MAE of 72.33, and a MAPE of 0.58% through 5-fold cross-
validation. The model maintains this high-performance level 
with an R² of 0.9970, an RMSE of 92.18, an MAE of 71.91, 
and a MAPE of 0.57% when a 10-fold cross-validation is 
implemented. The model's potential as a dependable tool for 
financial forecasting is underscored by these results, which are 
capable of delivering precise and stable predictions under 
varying conditions. 

The EMD-MRFO-LSTM method utilized in the current 
study has the highest R2 value among other methodologies in 
the literature, as illustrated in Table V. This model 
outperforms linear regression, support vector machine (SVM), 
multi-layer stacked long short-term memory (MLS-LSTM), 
convolutional neural network-bidirectional long short-term 
memory with attention mechanism (CNN-BiLSTM-AM), and 
combinations of long short-term memory and deep neural 
networks (LSTM and DNN) in terms of stock price prediction 
accuracy. This implies that the current model can account for 
nearly all of the variability in the stock market data. The 
incremental improvements in R2  in comparison to existing 
methods underscore the effectiveness of integrating EMD with 
the MRFO and LSTM networks. 
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TABLE IV.  PERFORMANCE OF THE PROPOSED MODEL WITH DIFFERENT CROSS-VALIDATIONS 

K-folds/METRICS 
TEST SET 

𝑹𝟐 RMSE MAE MAPE (%) 

Without k-fold 0.9973 91.99 71.54 0.57 

5-fold 0.9967 92.82 72.33 0.58 

10-fold 0.9970 92.18 71.91 0.57 

TABLE V.  COMPARISON OF THE COEFFICIENT OF DETERMINATION FOR A DIVERSE ARRAY OF STOCK MARKET PREDICTION METHODOLOGIES IN LITERATURE 

References Frameworks 𝑹𝟐 

[35] 

Linear regression 0.735 

SVM 0.931 

MLS-LSTM 0.95 

[36] LSTM 0.981 

[37] CNN-BiLSTM-AM 0.98 

[38] LSTM and DNN 0.972 

Present study EMD-MRFO-LSTM 0.9973 

The EMD-MRFO-LSTM model is capable of forecasting 
stock market trends. This model has the potential to assist 
investors in making more informed decisions regarding the 
purchase, sale, or retention of stocks by predicting the future 
values of stock indices, such as the Nasdaq. Portfolio 
managers and financial advisors may find the EMD-MRFO-
LSTM model advantageous for optimizing their investment 
portfolios. The model can help diversify portfolios to reduce 
risk and enhance returns by predicting the potential future 
performance of a variety of assets. It has the potential to offer 
valuable insights into the most advantageous times to 
rebalance portfolios by identifying the optimal moments to 
adjust the allocation of various assets. The EMD-MRFO-
LSTM model may be implemented by financial institutions to 
evaluate and mitigate risks. The model can assist in the 
identification of potential periods of high volatility or 
downturns by forecasting market trends. This allows 
institutions to employ risk mitigation strategies, such as 
adjusting their exposure to specific assets or hedging, to 
potentially safeguard their investments from adverse market 
movements. 

VII. CONCLUSIONS 

Forecasting stock prices is a complex and multifaceted 
process that poses numerous challenges. Social, political, and 
economic changes, as well as other factors, all have an impact 
on the stock market, which is an ever-evolving and dynamic 
system. Future stock prices must be correctly predicted by 
considering a variety of factors. Constraints and variables 
abound in the procedure of forecasting stock prices, which can 
make it difficult to develop accurate and dependable 
prediction models. It is imperative to comprehend the market's 
non-linear and unpredictable characteristics to achieve this 
objective. Thankfully, the EMD-MRFO-LSTM model has 
proven to be dependable and precise, providing a workable 
solution to these issues. The current study evaluated the 

efficacy of various stock price forecasting models, such as 
EMD-LSTM, LSTM, EMD-GA-LSTM, EMD-BRO-LSTM, 
as well as EMD-GWO-LSTM. The hyperparameter 
optimization techniques GA, BRO, MRFO, and GWO were 
utilized to enhance the LSTM's parameters. Nevertheless, 
optimal outcomes were achieved when the MRFO 
optimization method was coupled with LSTM. From January 
2, 2015, to June 29, 2023, OHLC pricing and the Nasdaq 
index's volume comprised the dataset employed in the 
research. According to the analysis, the EMD-MRFO-LSTM 
model was highly reliable and accurate at forecasting stock 
prices. The EMD-MRFO-LSTM model consistently displayed 
superior accuracy and efficacy in its predictions compared to 
other models tested during the study by having 0.9973, 91.99, 
71.54, and 0.57 values for R2, RMSE, MAE, and MAPE for 
the testing, respectively. In general, the EMD-MRFO-LSTM 
model demonstrates efficacy as a stock price forecasting 
instrument and the investor supplies astute information to 
enable prudent investment choices. 

VIII. CHALLENGES AND PROSPECTS 

A. Challenges 

Numerous variables impact stock market data, which is 
inherently chaotic. Deriving significant patterns and trends 
from the data is a difficult task due to its intricate nature. 
Conventional feedforward neural networks encounter 
difficulties when confronted with sequential data in which past 
events hold significant importance in forecasting future 
outcomes. Gradients in models may dissolve or become 
extremely small during training, making it challenging for the 
network to effectively learn long-term dependencies. To make 
accurate predictions, it is vital to identify pertinent 
characteristics of the supplied data. The process of regard to 
the optimization for complex models necessitates traversing 
extensive parameter spaces. The evaluation of various models 
and techniques necessitates the use of rigorous metrics for 
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assessment and methodologies. When evaluating the precision 
and efficacy of different methodologies, it is imperative to 
meticulously contemplate elements such as the origins of the 
data, the structures of the models, and the optimization 
strategies. 

B. Prospects 

Potentially more accurate and dependable stock market 
forecasts could result from the combination of sophisticated 
artificial intelligence models LSTM and optimization 
techniques (gray wolf optimization and meta-heuristic 
algorithms). These models have the potential to optimize 
forecasting capabilities by more effectively capturing the 
intricate relationships and patterns that are intrinsic in stock 
market data. The finance industry relies heavily on precise 
stock market forecasts to manage risk effectively. The 
proposed models have the potential to aid financial institutions 
and investors in making well-informed decisions related to 
risk mitigation and return optimization through the provision 
of more dependable forecasts. Investment firms and financial 
institutions that implement sophisticated predictive analytics 
methods are likely to gain a competitive advantage in the 
marketplace. By investing in modern technologies to improve 
decision-making procedures, these institutions can strengthen 
their financial achievements and maintain an excellent market 
position. The creation and implementation of advanced 
forecasting models offer educational programs and academic 
institutions with a vision to offer courses and seminars 
covering areas such as machine learning in the financial 
sector, optimization methodology, and quantitative analysis. 
This can help develop the next generation of professionals 
who have the expertise to handle complex financial issues. 
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