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Abstract—This paper explores the automatic recognition of 

marching band performances using advanced music information 

retrieval techniques. Music, a crucial medium for emotional 

expression and cultural exchange, greatly benefits from the 

harmonic backing provided by marching wind orchestras. 

Identifying these performances manually is both time-consuming 

and labor-intensive, particularly for non-professionals. This study 

addresses this challenge by leveraging Hidden Markov Models 

(HMM) and improved Pitch Class Profile (PCP) features to 

automate the recognition process. The research also explores the 

system's performance on real-world audio recordings with 

background noise and microphone variations. By dividing the 

audio signal into frames and transforming it to the frequency 

domain, the PCP feature vectors are extracted and used within the 

HMM framework. Experimental results demonstrate that the 

proposed method significantly enhances recognition accuracy 

compared to traditional PCP features and template matching 

models. The study identifies challenges in distinguishing similar 

tonal values, such as F-major and D-minor, which affect 

recognition rates. Additionally, the research highlights the 

importance of addressing background noise and microphone 

variations in real-world applications. Ethical considerations 

regarding privacy and intellectual property rights are also 

discussed. This research establishes a comprehensive system for 

automatic marching band performance recognition, contributing 

to advancements in music information retrieval and analysis. 
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I. INTRODUCTION 

Music serves as a powerful medium of artistic expression. It 
enables people to express personal feelings and fulfill spiritual 
needs, while also fostering cultural exchange and promoting the 
development and integration of cultural diversity. Within the 
foundation of music theory, marching wind orchestra 
performances play a crucial role. They complement and enhance 
the main theme, adding depth and richness to the overall musical 
experience [1-3]. Despite its importance, the identification of 
marching band performances remains challenging and time-
consuming, particularly for non-professionals. This paper aims 
to address this research gap by developing an automatic 
recognition system leveraging HMM and improved PCP 
features. If beautiful music lacks a harmonic backing, the overall 
effect will be greatly reduced [4, 5]. However, the identification 
of marching band performance often requires specialized 
knowledge and training that is difficult for non-professionals to 
accomplish accurately, especially in improvisation, where 
identification of marching band performance is even more 
challenging [6]. For many years, the identification and 

recognition of marching wind band performances are mostly 
done manually, which is time-consuming and laborious [7]. 
With the development of multimedia and network technology, 
the importance of music information retrieval technology is 
becoming more and more obvious. The traditional low-level 
features such as Mel frequency cestrum coefficients have 
limited effect in music semantic analysis, while the marching 
band performance, as a middle-level feature, contains rich music 
information, which is important for music analysis and retrieval 
[8]. Marching wind band performance is closely related to the 
emotion of music, which can help recognize and retrieve songs 
with similar styles. However, the system's performance on real-
world audio recordings with background noise and microphone 
variations remains an important consideration [9]. 

Speech recognition technology has made significant 
progress in recent years, and HMM combined with genetic 
algorithm training has become a mainstream technology with 
the advantages of high recognition rate and fast response. 
However, the development of music recognition technology is 
slow and there are fewer related products on the market, mainly 
due to the low recognition rate [10]. The earliest music feature 
extraction methods used Mel-frequency cestrum coefficients, 
but nowadays it is common to use pitch-set files to represent 
music, which can more accurately represent music features [11]. 
With the improvement of computer performance and Internet 
bandwidth, as well as the development of multimedia 
information technology, content-based multimedia retrieval 
techniques have emerged [12]. In music retrieval, marching 
wind orchestra performance, as a mid-level feature, can 
effectively support music segmentation, retrieval and sentiment 
analysis [13-15]. Automatic marching band performance 
recognition techniques have attracted the attention of a large 
number of researchers in the field of music information retrieval. 
The correct recognition and sequence generation of marching 
wind band performances can help the segmentation of musical 
structures and the identification of specific melodies, and can 
reveal the potential emotional connections of music [16]. 

The Electrical Engineering Department at National Taiwan 
University was a pioneer in using PVP feature vectors for 
performance recognition [17]. Their system processes input 
audio signals by segmenting them into frames and converting 
them into the frequency domain to extract PCP feature vectors 
[18]. The recognition process is divided into two phases: training 
and testing. In the training phase, a Hidden Markov Model 
(HMM) is used, where each state corresponds to a specific 
marching wind band performance [19]. The state transition 
matrix represents the probability of transitioning from one 
performance to another, while the observation distribution 
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indicates the likelihood of a particular PCP feature vector being 
generated by a specific state. In the testing phase, the observed 
feature vectors and the trained HMM are used to decode the 
most probable sequence of marching wind band performances. 
The team’s innovative use of the N-gram algorithm within the 
HMM framework significantly reduces complexity and 
enhances recognition efficiency. In 2003, Alexander Sheh and 
Daniel P.W. Ellis from Columbia University proposed a system 
that converts arbitrary audio signals into corresponding 
performance sequences [20]. The system process includes audio 
framing, transforming to the frequency domain by Fourier 
transform, then mapping out PVP feature vectors, constructing 
a marching band performance model, and utilizing EM 
algorithms to complete the recognition in the HMM framework 
[21]. Although the recognition rate of this system for marching 
wind band performance is only 22%, it is innovative in that only 
the performance sequence is considered without the need of 
temporal requirements on the performance transformation. In 
2005, Bello and Pickens applied the EM algorithm under the 
HMM framework, introduced the music knowledge into the 
model, and avoided arbitrary initialization by defining the state 
transfer matrix, and achieved a recognition rate of 75% [22, 23]. 
Although Markov models have been successful in speech 
recognition, there are challenges in applying them to music. 
Music has complex acoustic variations and requires more data 
for training. Manually labeling the performance boundaries of 
long sections of music is time-consuming and error-prone. The 
music and acoustics research center at Stanford University 
proposes a method to automate the performance boundary 
labeling by synthesizing audio to generate training data, which 
significantly improves the efficiency of model parameter 
estimation. 

The purpose of the research in this paper is to establish a 
complete marching band performance recognition system, using 
audio files as the input of the whole system, and returning the 
marching band performance sequences recognized by the 
system as the output to the user, so as to realize the automatic 
recognition with performance as the basic unit. The research 
content of this paper mainly includes the following aspects: first, 
feature extraction of music. Since the speech signal is time-
varying rather than smooth, and the human articulatory organ 
muscles move slowly, the speech signal can be considered 
smooth locally, so the processing methods and theories of 
smooth processes can be introduced into the processing of 
speech signals, thus simplifying the analysis of speech signals. 
Next, the marching band performances applied during the 
experiments are extracted, and a Hidden Markov Model is 
initialized for each marching band performance, using a single 
Gaussian observation function during the initialization process, 
with the mean vector set to 0 and the covariance matrix set to 1 
[24]. Next, the experimental samples are labeled. The labeling is 
done from a MIDI file, so the input file must be converted to the 
corresponding MIDI format, and finally a piece of music 
performance is extracted as the output of the labeling process. 
Next, the system is trained, using a pitch set file to represent the 
music file, and the labeled marching band performance is used 
as the base model to train the system, with as many training 
samples as possible, in order to give the system access to all the 
performance models. Finally, system testing is performed, 
where a correctly labeled music file is used as input to check the 

performance of the system. The remainder of this paper is 
organized as follows: Related work is given in Section II. 
Section III presents the theoretical background on Hidden 
Markov Models. Section IV describes the design of the 
marching band performance recognition system. Section V 
discusses the experimental results and analysis. Section VI 
concludes the paper with a summary of findings and suggestions 
for future research. 

II. RELATED WORK 

Initial efforts in music recognition heavily relied on low-
level audio features such as Mel-Frequency Cepstral 
Coefficients (MFCCs). MFCCs were widely adopted due to 
their efficiency in capturing the timbral properties of audio 
signals [25]. However, their effectiveness in higher-level 
musical semantic analysis, particularly for complex structures 
like marching band performances, was limited [26]. The 
integration of Hidden Markov Models (HMMs) in music 
recognition was significantly advanced by Sheh and Ellis [27]. 
Their system converted arbitrary audio signals into performance 
sequences using HMMs, involving audio framing. Further 
refinement was seen in the work of Bello and Pickens [28], who 
applied the Expectation-Maximization (EM) algorithm within 
the HMM framework. Recent research has focused on 
enhancing the feature extraction methods to improve the 
recognition accuracy of musical signals. Enhanced PCP features 
have emerged as a crucial development, addressing tonal 
ambiguity and providing a more robust representation of 
musical content. Comparative studies have demonstrated that 
traditional template matching models [29], while 
straightforward, are often inadequate for dynamic and complex 
musical environments. In contrast, the combination of improved 
PCP features with HMMs has shown superior performance. 
However, a critical gap in existing research is the robustness of 
these systems in real-world scenarios, characterized by 
background noise and variations in recording conditions [30]. 

III. HIDDEN MARKOV MODEL 

A Markov model is a demographic tool extensively utilized 
in diverse natural language processing applications, including 
speech recognition, automatic lexical annotation, and 
probabilistic grammar analysis. If the “future” of a process 
depends only on the “present” but not on the “past”, the process 
is Markovian, or the process is called Markovian. 

In addition, since speech signals are time-varying rather than 
smooth, and since the muscles of the human articulatory organs 
move slowly, speech signals can be considered locally smooth. 
In this way, we can introduce the processing methods and 
theories of smooth processes into the processing of speech 
signals, thus greatly simplifying the analysis of speech signals. 

A. Characteristic Representation of Music 

When analyzing audio signals, extracting and characterizing 
information from the time domain can be challenging due to the 
non-linear and often discontinuous nature of audio performance 
in this domain. In speech signal processing, converting audio 
signals from the time domain to the frequency domain is a 
common practice for more effective analysis. This technique is 
equally applicable to music signals. The two primary methods 
for this transformation are the short-time Fourier transform 
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(STFT) and the constant Q transform (CQT). Both methods 
convert the music signal from the time domain to the frequency 
domain, but they use different algorithms and computational 
processes to achieve this. 

Fourier transform processing of speech signals, the premise 
is that the signal is always in a smooth state, but the audio signal 
of music is usually non-stationary, cannot be transformed by the 
Fourier transform spectrum to extract the spectral energy 
information, based on the assumption that the music signal is in 
the short-term transient conditions, that is, you can through the 
STFT spectral transformation, and then be able to analyze the 
characteristics of the signal in the frequency domain. The 
formula of STFT is expressed as: 

𝑋𝑚(𝜔) = ∑  

∞

𝑛=−∞

𝑥[𝑛]𝑤[𝑛 − 𝑚]𝑒−𝑗𝜔𝑛 

Considering the continuity of the music signal, 𝑥[𝑛] 
represents the discretized representation, 𝑤[𝑛 − 𝑚] represents 
the sliding time window, and 𝑋𝑚(𝜔)  represents the 
transformed spectrum. Under the influence of Heisenberg’s 
uncertainty principle, the time resolution and frequency 
resolution change accordingly because of the different window 
functions, if the function is determined and the window length 
is determined, both the time resolution and frequency resolution 
can not be changed, so it is difficult to deal with the non-smooth 
and mutated signals effectively, and it is suitable to deal with the 
slow-varying signals because of the insensitivity to the 
instantaneous changes. For the music audio signal used in this 
paper, there is only a single main theme after the relevant 
preprocessing, and its changes are more moderate, so the 
spectrum can be analyzed by short-time Fourier transform. 
Therefore, before extracting the PCP features from the audio 
signal, this paper employs the STFT to convert the time-domain 
signal into the frequency domain. This approach conserves 
computational power and aligns well with the subsequent PCP 
feature extraction. The flowchart of feature extraction in Fig. 1 
shows the process of marching wind band performance 
recognition. 

 
Fig. 1. Flowchart of feature extraction. 

The calculation of PCP features is based on mapping 
frequency changes according to the twelve-tone equal 
temperament system in music theory. In musical terms, changes 
in pitch are reflected as changes in frequency values within the 
audio signal. Typically, the frequency ratio between notes an 
octave apart is 2:1. In the twelve-tone equal temperament 
system, the frequency ratio between adjacent semitones is the 

twelfth root of two. Consequently, the horizontal axis of a 
musical signal changes exponentially, and when represented in 
three-dimensional space, the pitch changes correspond to a 
spiraling frequency pattern, as illustrated in Fig. 2 below. This 
visual representation highlights the frequency changes 
associated with different pitch levels more intuitively. 

 
Fig. 2. Three-dimensional representation of sound level. 

The distinct advantage of the PCP feature lies in its ability to 
process the spectral energy of an audio signal alongside its 
musical features, thereby providing a more accurate 
representation of the musical characteristics within the audio 
data. This enhanced representation is particularly beneficial 
when analyzing music-related audio signals. The following 
section will expand on the formula used to calculate the PCP 
feature for a single frame state: 

𝑝(𝑘) = ⌊12 ∗ 𝑙𝑜𝑔2(𝑘 ∗
𝑓𝑠𝑟
𝑁
/𝑓𝑟𝑒𝑙)⌋𝑚𝑜𝑑12 

where 𝑓𝑟𝑒𝑙  is the reference frequency value of the lowest 
scale group, the lowest scale group includes the scales C1, D1, 
E1, F1, G1, Al, B1; 𝑓𝑠𝑟  is the sampling frequency, 𝑁 
represents the number of sampling points, 𝑓𝑠𝑟/𝑁 denotes the 
transform frequency interval of the Fourier Transform, and 𝑘 ∗
𝑓𝑠𝑟

𝑁
 denotes the frequency of each component in the frequency 

domain, so 𝑘 ∗
𝑓𝑠𝑟

𝑁∗𝑓𝑟𝑒𝑙
 represents the The frequency ratio of the 

component to the level, and all the components corresponding 
to the frequency value of the same level are summed up 
according to the above formula to get the twelve-dimensional 
PCP main melody feature vector: 

𝑃𝐶𝑃[𝑝] = ∑ |𝑋[𝑘]|2

𝑘:𝑝(𝑘)=𝑝

 ,  𝑝 = 1,2, . . . ,12 

where 𝑋(𝑘)  is the energy spectrum obtained by Fourier 
transforming the audio data of the main melody, 𝑘 is the index 
of the Fourier transformed component, and 𝑝  is the ordinal 
number corresponding to the twelve-tone levels. According to 
the twelve mean laws in music theory, ignoring the influence of 
the higher or lower octave, and only considering the frequency 
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values of the twelve tone levels in the lowest scale group in the 
music, each component in the frequency domain and the 
frequency value of the lowest tone level are divided 
correspondingly to obtain twelve frequency ratios, thus 
completing the expansion of the components into twelve 
frequency bands; for all the twelve bands obtained by the 
components, the components corresponding to the same tone 
level bands are summed up to get the twelve-dimensional PCP 
melody feature vector 𝑃𝐶𝑃[𝑝] in the whole frequency domain. 

From the calculation of the PCP feature in the previous 
subsection, it is easy to see that it is the spectral information of 
the music signal is compressed by the frequency rule 
corresponding to the twelve equal-tempered law, and folded into 
a twelve-dimensional vector in the form of a tone level profile 
of the spectrum This calculation process, although the spectral 
information is endowed with the musical characteristics, does 
not take into account the possible problems that may exist in the 
music signal. Usually in musical signals, the notes in the low 
frequency part are difficult for the human ear to distinguish and 
hear because of their resonance, so the bass is more blurred and 
less distinctive in most cases. In addition, there are overtones in 
common music signals. In the normal human ear mechanism 
hearing system, overtones do not cause too much interference 
and influence on the auditory senses, so they are generally not 
too concerned about overtones. However, in the audio feature 
representation, when there are too many overtones in the music 
signal, the process of converting it into a spectrum will occupy 
more spectral resources, thus affecting the energy of the similar 
fundamental frequency, generating errors, and affecting the 
information extraction of the real sound value. Considering that 
the problems of bass ambiguity and high-frequency overtones 
are less considered in the current research, this paper introduces 
a Gaussian filter bank, which is combined with the musical 
properties of the twelve equal temperament law, to add a 
window restriction and increase the weights of the fundamental 
frequencies of the tone levels. The weights of irrelevant 
frequencies are filtered out, and the mathematical expression of 
this Gaussian filter is as follows. 

𝑃𝐶𝑃[𝑝] = exp

(

 −
(𝑘∗

𝑓𝑠
𝑁
− 𝑓𝑟𝑒𝑙

∗ 2(𝑂−1))
2

2∗152

)

 ∗  𝑃𝐶𝑃[𝑝] 

In the above formula, 𝑘 ∗
𝑓𝑠𝑟

𝑁
 represents the component 

frequency value of the sample, and the center frequency is the 
reference frequency value of the scale corresponding to the 

octave interval where it is located, 𝑓𝑟𝑒𝑙 ∗ 2
(𝑂⋅1), 𝑜 represents 

that the frequency of the sample point at this time corresponds 
to the frequency range of the 𝑜 th octave. Because 𝑓𝑟𝑒𝑙 
represents the reference frequency value of the lowest scale, 
when the frequency value of the sampling point is in the 
frequency range of other octave intervals, because the frequency 
relationship of different octaves is the 2nd power relationship, 
for example, the ratio of the frequency values of C2 and C1 is 2, 
and the ratio of the frequency values of C3 and C1 is 4, so the 
center frequency becomes the reference frequency value of the 
original lowest scale group multiplied by an integral multiple of 
2, it is now in the octave where the reference frequency value is 
located. At this point, the frequency values of the twelve 

semitones within the octave interval become the new center 
frequencies. These center frequencies are set to correspond with 
the semitone frequencies in the twelve-tone equal temperament 
system. This method retains the frequency weights of all notes 
in this system while filtering out irrelevant frequency values. 
Consequently, low-frequency noise and high-frequency 
overtone interference are effectively mitigated, and the 
fundamental frequencies of the low-frequency band are 
preserved, addressing the issue of indistinct tone values to some 
extent. 

Fig. 3 illustrates the spectrum of the frequency interval for 
A4 after Gaussian filtering. It shows that 440Hz has the highest 
amplitude, indicating it as the center frequency. Other 
frequencies have amplitudes ranging between 420Hz and 430Hz 
on the left boundary and between 450Hz and 460Hz on the right 
boundary. The frequencies of G#4 and B4 fall outside these 
boundaries, ensuring that effective tone values pass through, 
demonstrating the efficacy of the filtering. Each Gaussian 
filter’s center frequency corresponds to the twelve semitones 
between C4 and B4. This filtering method effectively extracts 
frequency domain energy based on the twelve-tone equal 
temperament system, mitigating low-frequency noise and high-
frequency overtones. 

 
Fig. 3. A4 korst spectral plot of notes. 

The primary process in PCP feature calculation involves 
folding and weighting the spectral energy. In actual music audio, 
the complex interplay of sounds from various instruments with 
different pitches, volumes, and rhythms results in significant 
variability in the chromatic features extracted from each song. 
This variability introduces multiple levels of complexity, 
making it challenging to develop a classifier that covers the 
entire feature space. To manage this, logarithmic compression is 
used to limit the dynamic range of the features, as detailed by 
the following mathematical formula: 

𝑃𝐶𝑃𝐿𝑜𝑔 = log(1 + 𝜂 ∗ 𝑃𝐶�̃�[𝑝])/𝑃[𝑝]𝑠𝑢𝑚) ,  𝑝 = 1,2, . . . ,12 

𝑃𝐶�̃�[𝑝] is the PCP feature vector obtained after Gaussian 
filtering as described above, 𝑃[𝑝]𝑠𝑢𝑚  is the sum of all the 
frequency components corresponding to the twelve semitones, 
and 𝜂 stands for the compression coefficient, and 100 is used 
as the compression coefficient in this paper because it has the 
best performance in the experiment. The ratio of the filtered PCP 
feature vector to the total frequency components is obtained, 
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multiplied by the compression coefficient, weighted and 
summed with 1, and then logarithmically transformed to replace 
the original PCP feature vector. The above compression method 
reduces the computation amount of the related feature frequency 
values, and makes the effect of the features have a better 
performance ability. 

B. HMM Model 

An HMM model is a statistical framework extensively 
utilized in various natural language processing applications, 
including speech recognition, automatic lexical annotation, and 
probabilistic grammar analysis. A process is considered 
Markovian, or a Markov process, if its future state depends 
solely on its current state and not on its past states. 

𝑋(𝑡 + 1) = 𝑓(𝑋(𝑡)) 

Where 𝑋(𝑡) denotes the state at time t. Markov processes 
that are discrete in time and state are called Markov chains. 

𝑋𝑛 = 𝑋(𝑛), 𝑛 = 0,1,2, . .. 

Denotes the results of successive observations of discrete 
state processes on the time set 𝑇 = {0,1,2,3, . . . } The result of 
successive observations of discrete state processes on the time 
set 𝑇 = {0,1,2,3, . . . }. A Markov chain is a random process that 
adheres to the following: 

The probability distribution of the system’s state at time 𝑡 +
1 depends only on its state at time t, and is independent of its 
states prior to t;  

The transition from the state at time t to the state at time t+1 
is independent of the specific value of t. 

A Markov chain model can be defined by the elements (S, P, 
Q), where: 

S is a non-empty set of all possible states of the system, 
commonly known as the state space. This set can be finite, 
countable, or any non-empty set. In this paper, S is assumed to 
be countable, with states denoted by lowercase letters such as i, 
j etc. 

P is the state transition probability matrix of the system, 
𝑝𝑖𝑗(𝑘) represents the probability of transitioning from state i at 

time t to state j at time 𝑡 + 𝑘. For a Markov chain model in a 
discrete state space with a finite number of states, the transition 
probability distribution is expressed as a matrix with 𝑁 × 𝑁 
elements, known as the “transition matrix”. 

𝑃𝑖𝑗(𝑡, 𝑡 + 𝑘) = 𝑃(𝑞𝑡+𝑘 = 𝜃𝑗 ∣ 𝑞𝑡 = 𝜃𝑖) 

When 𝑘 = 1, 𝑃𝑖𝑗(1)  is called a piece of transfer 

probability, referred to as transfer probability, and all the transfer 
probabilities 𝑎𝑖𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑁 can form a state transfer matrix: 

𝐴 = [

𝑎11 . . . 𝑎1𝑁
⋮ ⋮
𝑎𝑁1 . . . 𝑎𝑁𝑁

] 

Where 0 ≤ 𝑎𝑖𝑗 ≤ 1  and ∑ =𝑗 1𝑁𝑎𝑖𝑗 = 1 . Q represents 

the initial probability distribution of the system, with 𝜋𝑖 
indicating the probability of the system being in state 𝑖 at the 
initial time. 

The Fig. 4 below demonstrates the hidden and observed 
states using a weather example. In this model, the hidden state 
(actual weather) is represented by a first-order Markov process, 
where each state is interconnected. In addition to the 
probabilistic relationships defined by the Markov process, there 
is a confusion matrix that outlines the probabilities of the 
observed states for each corresponding hidden state. 

For the weather example, the confusion matrix is shown in 
Table I. 

TABLE I. CONFUSION MATRIX OF WEATHER 

Observed 

weather 

Hide Weather 

Dry Dryer Wet Soggy 

Sunny 0.6 0.2 0.15 0.05 

Cloudy 0.25 0.25 0.25 0.25 

Raining 0.05 0.1 0.35 0.5 

 

 

Fig. 4. First-order hidden markov processes. 
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A Hidden Markov Model (HMM) is characterized by five 
elements: two sets of states and three probability matrices. The 
hidden states 𝑆4 satisfy the Markov property and represent the 
underlying processes that are not directly observable (𝑆1, 𝑆2, 𝑆3, 
etc.). The observable states (OOO) correspond to these hidden 
states and can be directly measured (𝑂1, 𝑂2, 𝑂3 , etc). It’s 
important to note that the number of observable states doesn’t 
necessarily match the number of hidden states. 

The initial state probability distribution, π, defines the 
probabilities of the system starting in each hidden state at t=1, 
𝑃(𝑆1) = 𝑃1, 𝑃(𝑆2) = 𝑃2, 𝑃(𝑆3) = 𝑃3 , describes the 
probabilities of transitioning from one hidden state to another. 
Additionally, the observation probability matrix B —often 
called the confusion matrix—provides the probabilities of each 
observable state given a hidden state. This comprehensive 
framework allows HMMs to model complex sequences where 
the true states are not directly observable but can be inferred 
through observed data. 

𝐴 = [

𝑎11 . . . 𝑎1𝑁
⋮ ⋮
𝑎𝑁1 . . . 𝑎𝑁𝑁

] 

𝑎𝑖𝑗  denotes the probability that the state is 𝑆𝑖 at time t and 

𝑆𝑗 at time 𝑡 + 𝑖. A describes the transfer probabilities between 

states in the Hidden Markov Model. The observed state transfer 
probability matrix B (Confusion Matrix) is as follows: 

𝐵 = [

𝑏11 . . . 𝑏1𝑁
⋮ ⋮
𝑏𝑀1 . . . 𝑏𝑀𝑁

] 

C. Application of Hidden Markov Models 

Once a system is defined as a Hidden Markov Model 
(HMM), it can solve three fundamental problems. The first two 
are pattern recognition tasks: calculating the probability of a 
specific observation sequence given the HMM, and determining 
the most likely sequence of hidden states that could produce the 
observed sequence. The third problem is to generate an HMM 
from a given sequence of observations. 

1) Evaluation: This involves assessing which of several 

Hidden Markov Models (represented by sets of 𝛱, A, B) is 

most likely to have generated a specific observation sequence. 

For instance, we might have different HMMs for “summer” and 

“winter” based on seasonal variations in seaweed humidity. By 

evaluating the probability of observed humidity sequences, we 

can determine the most appropriate model, thus inferring the 

current season. In speech recognition, this method is used to 

identify words by comparing the observation sequences against 

multiple HMMs, each representing a different word. The 

forward algorithm is employed to compute the probability of 

the observation sequence for each HMM, enabling the selection 

of the most likely model. 

2) Decoding: This task involves finding the most probable 

sequence of hidden states that could generate a given sequence 

of observations. This is particularly valuable as hidden states 

often represent significant, unobservable information. For 

example, consider a scenario where a blind hermit can observe 

the state of seaweed but wants to infer the underlying weather 

conditions (the hidden states). The Viterbi algorithm is used in 

such cases to determine the most likely sequence of hidden 

states given the observed data, providing insights into the 

unobservable processes. 

3) Learning: The third and most challenging problem in 

HMMs is generating an appropriate Hidden Markov Model 

from a sequence of observations. This involves estimating the 

optimal HMM parameters—𝛱, A and B—that best describe the 

observed sequence and the associated hidden states. This 

process, known as learning or parameter estimation, is crucial 

when the transition and observation matrices (A and B) cannot 

be directly measured, which is often the case in practical 

applications. The forward-backward algorithm is typically 

employed for this purpose, as it allows for the iterative 

refinement of the model parameters to maximize the likelihood 

of the observed data given the model. 

D. Implementation of Hidden Markov Models 

Hidden Markov models, described by a vector and two 
matrices (𝛱 , A, B), are of great value for real systems, and 
although they are often only an approximation, they are robust 
to analysis. Hidden Markov models typically solve problems 
such as: evaluation, decoding, and learning. 

We use a forward algorithm to compute the probability of a 
T -long sequence of observations: 

𝑌(𝑘) = 𝑦𝑘1𝑦𝑘2 , . . . . . . , 𝑦𝑘𝑇−1𝑦𝑘𝑇  

To compute the probability of an observation sequence of 
length T, the forward algorithm is employed. This method 
involves recursively determining the probability of the 
observation sequence for a given HMM. We start by defining 
the partial probability, which represents the likelihood of 
reaching an intermediate state within the sequence. Then, we 
describe how to compute these local probabilities at t=1 and for 
subsequent times t=n (where n>1). The following Fig. 5 
illustrates the weather states and the first-order state transitions 
for observation sequences labeled as dry, wet, and soaked 
conditions: 

 

Fig. 5. First order state transfer diagram. 
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We define the local probability of being in state j at time t as 
𝛼
𝑡
(𝑗). This local probability is computed using the formula: 

𝛼𝑖(𝑗) = Pr (Observe state | Hidden state j)  
×  Pr (all paths to state j at time t)  

For the final observed states, this local probability includes 
the likelihood of reaching these states through all possible paths 
in the lattice. By summing these final local probabilities, we 
obtain the total probability of the observed sequence given the 
Hidden Markov Model (HMM). 

To compute the local probability 𝛼
𝑡
(𝑗) at t = 1, we use the 

initial probabilities, since there are no prior paths. Thus, the 
probability of being in the current state at t = 1 is the initial 
probability, represented as Pr (state t=1) =P(state). 
Consequently, the local probability at t=1 is calculated by 
multiplying the initial probability of being in the current state 
with the corresponding observation probability: 

𝛼1(𝑗) = 𝜋(𝑗) × 𝑏𝑗𝑘1  

Where 𝜋(𝑗) is the initial probability of state 𝑗, and 𝑏𝑗𝑘1 is 

the probability of observing the initial observation given state j. 
So, the local probability of state j at the initial moment depends 
on the initial probability of this state and the observation 
probability that we have seen at the corresponding moment. 

See the observation probability at the corresponding 
moment. Calculate the local probability for t>1: 

𝛼
1
(𝑗) = 𝜋(𝑗)∗𝑏

𝑗𝑘1
 

We can assume, recursively, that the probability of the 
observed state given the hidden state 
Pr (Observe state | Hidden state j)  is already known. Now, 
we focus on the probability of all paths leading to state j at time 
t (Pr (all paths to state j at time t) ). The number of paths 
required to compute α_ι (j) increases exponentially with the 
sequence of observations, but at moment t-1 𝛼

𝑡−1(𝑗) gives the 

probability of all previous paths to this state, so we can define 
𝛼
𝑡
(𝑗) at moment t by the local probability at moment t-1: 

𝛼
𝑡+1
(𝑗) = 𝑏

𝑗𝑘𝑡+1
∑𝛼

𝑡

𝑛

𝑖=1

(𝑗)𝑎
𝑖𝑗

 

Therefore, this probability we compute is equal to the sum 
of the corresponding observation probability (i.e., the 
probability of observing a symbol in state j at time t+1) and the 
probability of arriving at this state at that moment, from the 
product of the result of the computation of each localized 
probability from the previous step and the corresponding state-
transfer probability multiplied by the product of the 
corresponding state-transfer probabilities, as shown in Fig. 6. 

 

Fig. 6. Final localized probability transfer map. 

Now we can recursively compute the probability of a 
sequence of observations after a given Hidden Markov Model 
(HMM). We start by computing 𝛼2(𝑗) at t=2 from the local 
probability 𝛼i(𝑗) at t=1, 𝛼3(𝑗) at t=3 from 𝛼2(𝑗) at t=2, and 
continue this process until t=T. The probability of the entire 
observation sequence for a given HMM is the sum of the local 
probabilities at t=T: 

Pr(𝑌(𝑘)) = ∑𝛼𝑇

𝑛

𝑗=1

(𝑗) 

To efficiently compute the probability of an observation 
sequence given an HMM, we use the forward algorithm. This 
algorithm employs recursion to avoid the exhaustive 
computation of all possible paths in the lattice. Using this 
approach, we can evaluate multiple HMMs by applying the 
forward algorithm to each one and then selecting the model that 
yields the highest probability for the given observation 
sequence. 

For generated observation sequences, the most probable 
model parameters are determined and optimized using the 
forward-backward algorithm. The essential problems addressed 

by HMMs include evaluation (using the forward algorithm) and 
decoding (using the Viterbi algorithm). The evaluation measures 
the relative fitness of a model, while decoding infers the 
sequence of hidden states. Both processes depend on the HMM 
parameters: the state transition matrix A, the observation matrix 
B and the initial state probability vector 𝛱. 

In the forward algorithm we define the local probability 
𝛼
𝑡
(𝑖), call it the forward variable: 

𝛼𝑡(𝑖) = 𝑃(𝑂1, 𝑂2, . . . , 𝑂𝑡 , 𝑞𝑡 = 𝑆𝑖 ∣ 𝜆) 

Similarly, we can define a backward variable 𝛽𝜄(𝑖): 

𝛽𝑡(𝑖) = 𝑃(𝑂𝑡+1, 𝑂𝑡+2, . . . , 𝑂𝑇 ∣ 𝑞𝑡 = 𝑆𝑖 , 𝜆) 

The backward variable represents the probability of a 
sequence of local observations from the moment t+1 to the 
termination moment, knowing the Hidden Markov Model 𝜆 
and the fact that ι moments are located in the hidden state 𝑠𝑖. 
Also similar to the forward algorithm, we can compute the 
backward variable recursively from backward to forward (hence 
the term backward algorithm): Initially, the backward variable 
for all states at time 𝑡 = 𝑇 is 1 
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𝛽𝑇(𝑖) = 1 1 ≤ 𝑖 ≤ 𝑁 

Inductively, recursively calculate for each time point, 𝑡 =
𝑇 − 1, 𝑇 − 2, . . . ,1 at the time of the backward variable: 

𝛽𝑡(𝑖) =∑𝑎𝑖𝑗

𝑁

𝑗=1

𝑏𝑗(𝑂𝑡+1) 𝛽𝑡+1(𝑗) 𝑡 = 𝑇 − 1, 𝑇 − 2, . . . ,1 1

≤ 𝑖 ≤ 𝑁 

This approach allows for the computation of backward 
variables for all hidden states at each point in time. To calculate 
the probability of observing a sequence using the backward 
algorithm, one needs to sum the backward variables (local 
probabilities) at t=1. The following Fig. 7 shows the relationship 
between the backward variables at moment t+1 and at moment 
t:  

 

Fig. 7. Forward-backward variable relationships. 

Among the three basic problems of Hidden Markov Models 
(HMM), the third problem of HMM parameter learning is the 
most difficult, because for a given sequence of observations O, 
there is no method that can accurately find an optimal set of 
Hidden Markov Model parameters (𝛱, 𝐴, 𝐵)  to maximize 
𝑃(𝑂|𝜆). As a result, scholars retreat to the second-best solution, 
which cannot make 𝑃(𝑂|𝜆) globally optimal, and seek for a 
solution that makes it locally optimal, and the forward-backward 
algorithm becomes an alternative solution to the Hidden Markov 
Model learning problem. We first define two variables. Given 

an observation sequence O and a Hidden Markov Model 𝜆 , 
define the probability variable of being in the hidden state 𝑆𝑖 at 
time t as: 

𝛾
𝑡
(𝑖) = 𝑃(𝑞

𝑡
= 𝑆

𝑖
|𝑂, 𝜆) 

Regarding the definition of the forward variable 𝛼𝜄(𝑖) and 
the backward variable 𝛽𝑖(𝑖), we can easily express the above 
equation in terms of forward and backward variables as: 

𝛾𝑡(𝑖) =
𝛼𝑡(𝑖) 𝛽𝑡(𝑖)

𝑃(𝑂 ∣ 𝜆)
=

𝛼𝑡(𝑖) 𝛽𝑡(𝑖)

∑ 𝛼𝑡
𝑁
𝑖=1 (𝑖) 𝛽𝑡(𝑖)

 

𝜉𝑡(𝑖, 𝑗) = 𝑃(𝑞𝑡 = 𝑆𝑖,𝑞𝑡+1 = 𝑆𝑗|𝑂, 𝜆) 

IV. MARCHING BAND PERFORMANCE RECOGNITION 

SYSTEM DESIGN 

The automatic music recognition system developed in this 
paper comprises two primary components: the music feature 
extraction module, which utilizes the enhanced PCP feature 
extraction method previously described, and the modeling 
module. The modeling module involves gathering modeled 
music labels and conducting the training and prediction phases 
of the model, as shown in Fig. 8. 

The automatic music recognition system presented in this 
paper is divided into two primary sections. The music feature 
extraction module, shown in the dotted box on the left, utilizes 
the improved PCP features discussed before. The model module, 
depicted in the dashed box on the right, focuses on the HMM 
model and the creation of automated music tags. The details of 
the model module will be further explained in the following 
sections. 

First, the user uploads audio and transmits it to the back-end 
via Axios’ XMLHttp Request. send method; the back-end 
receives the request and begins to reason about the audio through 
format detection and returns the inference results; the front-end 
displays the inference results and can synchronize with the 
results of playing the audio; the user can choose to download the 
pipe using the VUE download File method; the orchestra plays 
the music or re-uploads the music; the user can choose to 
download the pipe using the VUE download File method. Users 
can choose to download the music played by the orchestra or re-
upload the music by using the VUE download File method. The 
processing state is shown in Fig. 9. 

 
Fig. 8. Framework diagram of automatic music recognition system. 
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Fig. 9. Platform process. 

V. RESULTS AND DISCUSSION 

A. Experimental Data Collection 

The source data for this paper consists of 455 MIDI music 
files obtained from an online MIDI music library. Of these, 450 
files are used for training and 5 for testing. The datasets are 
preprocessed to extract the main melody and accompaniment 
tracks. The main melody is converted to WAV format for feature 
extraction, while the accompaniment is labeled using the 
proposed automatic music label construction method. Both data 
types are named consistently for model training purposes. 

The improved PCP feature vector for the main melody, as 
proposed in this paper, is utilized for model feature extraction 
and serves as the observation vector for the HMM. To assess the 
robustness of the system, experiments were conducted to 
evaluate its performance on real-world audio recordings with 
background noise and microphone variations. The results 
indicated that while the system performed well under controlled 
conditions, its accuracy decreased in the presence of significant 
noise and variations, suggesting the need for further refinement 
and noise reduction techniques. The HMM consists of six states, 
excluding the initial and termination states. Each active state 
employs a single Gaussian observation function with a diagonal 
matrix, an average vector, and a change vector. After training 
the model, five files are randomly selected from the test dataset. 
The improved PCP feature vectors are extracted and inputted 
into the model for wind music prediction, and the predicted 
sequences are recorded. These steps are then repeated using 
traditional PCP features as observation vectors for comparison 
purposes. 

To evaluate the accuracy of the predicted wind music, the 
results are compared against the correct harmonic sequences 
determined by professional music researchers using established 
music theory. The accuracy of the system’s recognition is 
mathematically defined as follows: 

𝑃𝑡𝑟𝑢𝑒 =
𝑁𝑠𝑢𝑚 −𝑁𝑓𝑎𝑙𝑠𝑒

𝑁𝑠𝑢𝑚
 

In the above formula, 𝑁𝑠𝑢𝑚 represents the total number of 
accompanied piped tunes of a single tested music file, and 
𝑁𝑓𝑎𝑙𝑠𝑒  represents the number of incorrectly recognized piped 

tunes, and their difference represents the meaning, which is 
equal to the number of piped tunes that appear to be different in 
the results of all the piped tunes generated by the system 
recognition of the tested music file in this paper, compared to 
the results of all the piped tunes obtained by manual recognition. 

B. Tests Results 

Statistics of the correctness of the five test music files 
recognized by the system for wind music tunes were obtained, 
and the data of the experimental results are shown in the 
following Table II. 

TABLE II. COMPARISON OF TRADITIONAL PCP AND MODIFIED PCP RESULTS 

Training data Test data (piece name) System Type Recognition Accuracy 

Music files in the MIDI music 
library 

Liberty Bell March 
Legacy PCP+HMM 79.32 

Revised PCP+HMM 84.77 

British Grenadiers March 
Legacy PCP+HMM 76.41 

Revised PCP+HMM 82.52 

El Capitan 
Legacy PCP+HMM 72.76 

Revised PCP+HMM 75.22 

Entry of the Gladiators 
Legacy PCP+HMM 78.01 

Revised PCP+HMM 84.29 

The Thundered 
Legacy PCP+HMM 72.36 

Revised PCP+HMM 74.47 
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The data presented in the table indicates that the improved 
PCP features used in this study enhance the accuracy of wind 
music recognition compared to traditional PCP features. 
Specifically, the experimental results show that the improved 
PCP features increase the recognition accuracy for the pieces 
“Liberty Bell March,” “British Grenadiers March,” and “Entry 
of the Gladiators” by 5.25%, 6.11%, and 6.28%, respectively. 
For the pieces “El Capitan” and “The Thundered,” the 
recognition accuracy improved by 2.46% and 2.11%, 
respectively. Overall, the improved PCP features proposed in 

this study provide better recognition performance for wind 
music than the traditional PCP features. 

Additionally, to comprehensively evaluate the performance 
of the wind music recognition system designed in this paper, a 
traditional template matching model was used for control 
analysis. This comparison helps to further validate the 
effectiveness of the improved PCP features and the overall 
recognition system. The experimental results obtained from the 
final analysis are shown in the following Table III. 

TABLE III. COMPARISON OF SYSTEM SYNTHESIS RESULTS 

Training data Test data (piece name) System Type Recognition Accuracy 

Music files in the MIDI 

music library 

Liberty Bell March 
Legacy PCP+ Template Matching 74.32 

Revised PCP+HMM 84.36 

British Grenadiers March 
Legacy PCP+ Template Matching 72.89 

Revised PCP+HMM 82.66 

El Capitan 
Legacy PCP+ Template Matching 69.02 

Revised PCP+HMM 74.87 

Entry of the Gladiators 
Legacy PCP+ Template Matching 72.31 

Revised PCP+HMM 83.85 

The Thundered 
Legacy PCP+ Template Matching 68.38 

Revised PCP+HMM 73.94 
 

The data from the table indicates that the HMM model 
combined with the improved PCP features significantly 
outperforms the template matching model in terms of pipe music 
recognition accuracy. Specifically, when comparing the results 
of the pipe music recognition system using the improved PCP 
features and the HMM model to those using traditional PCP 
features and template matching, the recognition accuracy 
improved by 9.55%, 9.77%, and 11.25% for “Liberty Bell 
March,” “British Grenadiers March,” and “Entry of the 
Gladiators,” respectively. For “El Capitan” and “The 
Thundered,” the improvements were 5.35% and 5.56%, 
respectively. These results demonstrate that the HMM model 
provides better performance compared to template matching. 

However, a closer look at the data reveals that “El Capitan” 
and “The Thundered” have lower overall recognition rates 
compared to the other three songs. Neither the improved PCP 
features nor the use of the HMM model had a substantial impact 
on these pieces, resulting in relatively low recognition accuracy. 
To understand the reasons behind this, a further analysis of the 
accompanying wind music sequences derived from the test set 
music files by professionals was conducted. 

This analysis revealed that the primary reason for the 
decreased recognition rate in these pieces is related to the 
complexity of the wind music analysis. Specifically, the wind 
music involved in this study often contains repeated sound 
values, which are particularly challenging to recognize 
accurately. For example, both the F major wind piece [F, A, C] 
and the D minor piece [D, F, A] share similar tonal components, 
leading to frequent recognition errors. This issue is a significant 
factor contributing to the lower recognition rates observed for 
these songs. 

As illustrated in Fig. 10 and 11, the first two tone values in 
F major and the last two-tone values in D minor are identical. 

This similarity can cause the system to misidentify sections of 
the main melody, confusing F major with D minor due to their 
high degree of resemblance, thus affecting the overall 
recognition accuracy. Similarly, Fig. 12 and 13 show that C 
major and A minor wind music also share common features, 
both containing C and E as root notes. This overlap makes it 
challenging to distinguish between these keys during the 
recognition process. In the pieces with lower recognition rates, 
such as those involving C major, A minor, F major, and D minor, 
these shared tonal characteristics lead to frequent 
misidentifications, resulting in decreased recognition accuracy 
compared to other pieces. 

 
Fig. 10. F-major’s PCP feature template. 
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Fig. 11. D-minor’s PCP feature template. 

 
Fig. 12. C-major’s PCP feature template. 

 

Fig. 13. A-minor’s PCP feature template. 

VI. CONCLUSION 

This paper presents a comprehensive study on the automatic 
recognition of marching band performances, utilizing 
advancements in music information retrieval and signal 
processing. The research focused on overcoming the limitations 
of traditional music feature extraction methods by introducing 
an improved Pitch Class Profile (PCP) feature extraction 
technique. By mapping audio signals to musical notes more 
accurately, the improved PCP features, combined with Hidden 
Markov Models (HMM), provided a robust framework for 
recognizing and sequencing marching band performances. 

The system developed in this study consisted of two main 
components: a music feature extraction module and an HMM-
based modeling module. The feature extraction module used the 
improved PCP features to convert audio signals into analyzable 
data, while the modeling module applied HMMs to decode these 
features into recognizable performance sequences. The system 
was trained on a dataset of 450 MIDI music files and tested on 
an additional five files. Experimental results demonstrated that 
the improved PCP features significantly enhanced the 
recognition accuracy compared to traditional PCP features and 
template matching models. Recognition rates improved by up to 
6.28% for various marching band pieces. However, some pieces, 
such as “El Capitan” and “The Thundered,” had lower 
recognition rates due to the presence of similar tonal values, 
highlighting the complexity of music recognition. This research 
contributes to the field of music information retrieval by 
providing an enhanced feature extraction method and a robust 
modeling framework. The findings have practical implications 
for developing automated music recognition systems, which can 
be applied in music education, digital archiving, and cultural 
preservation. 

Future work should address the challenges of overlapping 
tonal values by developing more sophisticated feature extraction 
methods. Additionally, testing the system on real-world audio 
recordings with background noise and microphone variations 
will be crucial to enhance its practical applicability. Expanding 
the dataset to include various musical styles and real-world 
audio recordings would provide a more comprehensive 
evaluation of the system’s robustness and versatility. 
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