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Abstract—This study introduces the MSTA-GNet (Multi-Scale 

Spatiotemporal Attention Graph Network), a novel deep learning 

model which integrates spatiotemporal self-attention mechanisms 

to model heterogeneous dependencies in traffic networks. The 

primary objective of the study is to improve existing traffic flow 

prediction models to address the inadequacies of traditional 

models in complex big data environments. Key innovations of the 

MSTA-GNet model include positional encoding and global and 

local self-attention mechanisms to capture long-term and 

short-term dependencies. Using the PeMS (Performance 

Measurement System) dataset, the study conducted performance 

comparison experiments among various deep learning models, 

including LSTM (Long Short-Term Memory), GCN (Graph 

Convolutional Network), DCRNN (Diffusion Convolutional 

Recurrent Neural Network), STGCN (Spatiotemporal Graph 

Convolutional Network), STMetaNet (Spatiotemporal Meta 

Network), and MSTA-GNet. The results showed that 

MSTA-GNet significantly outperformed other models with 

improvements of 13.4%, 11.8%, and 9.7% in Mean Absolute 

Error (MAE), Root Mean Square Error (RMSE), and Mean 

Absolute Percentage Error (MAPE) metrics, respectively. 

Ablation studies further validated the significance of attention 

mechanisms, feature extraction, convolutional layers, and graph 

networks, confirming the effectiveness and practical application 

of MSTA-GNet in traffic flow prediction. This research provides 

important insights for AI-based congestion management, support 

for low-carbon traffic networks, and optimization of local traffic 

operations, demonstrating its significant practical value in 

intelligent transportation systems. 

Keyword—MSTA-GNet; deep learning; PeMS dataset; traffic 

flow prediction 

I. INTRODUCTION 

Over the past three decades, rapid urbanization and 
infrastructure development have led to significant traffic 
challenges in many parts of the world, with extensive 
motorway networks and a surge in vehicle ownership. 
Traditional traffic flow prediction models struggle to handle 
the complexities of these large-scale datasets, highlighting the 
need for advanced artificial intelligence (AI) technologies like 
deep learning. This paper introduces MSTA-GNet, a novel 
transformer model explicitly designed for traffic flow 
prediction [1-4]. This model incorporates multiple 
spatiotemporal self-attention mechanisms, effectively 
capturing the intricate spatiotemporal dependencies and 
nonlinear dynamics inherent in traffic data. MSTA-GNet 
provides a comprehensive understanding of traffic flow 
patterns by integrating spatiotemporal information with road 
network data. The model has demonstrated exceptional 
performance on motorway networks within major 

metropolitan areas [5-7]. This approach holds great promise 
for enhancing AI-driven congestion management strategies, 
promoting eco-friendly transportation systems, and optimizing 
local traffic operations, ultimately showcasing its significant 
practical value for intelligent transportation systems. 

The motivation behind developing MSTA-GNet stems 
from several critical challenges in current traffic flow 
prediction models. First, the increasing complexity of urban 
traffic systems, coupled with the growing availability of big 
data, necessitates more sophisticated modeling approaches. 
Traditional methods often fall short in capturing the intricate 
spatiotemporal dependencies inherent in traffic patterns, 
especially in large metropolitan areas with complex road 
networks. Second, there is a pressing need for models that can 
adapt to real-time changes in traffic conditions, such as those 
caused by accidents, construction, or special events. 
MSTA-GNet addresses these challenges by leveraging 
advanced deep learning techniques to process multi-scale 
temporal and spatial information simultaneously. 

The potential benefits of our proposed approach are 
manifold. By improving the accuracy of traffic flow 
predictions, MSTA-GNet can contribute significantly to more 
efficient urban traffic management. This could lead to reduced 
congestion, lower emissions, and improved quality of life in 
cities. Furthermore, the model's ability to capture both 
short-term fluctuations and long-term trends makes it valuable 
for both immediate traffic control decisions and long-term 
urban planning. The interpretability features of MSTA-GNet 
also offer insights into the factors influencing traffic patterns, 
which can inform policy decisions and infrastructure 
development. Ultimately, our approach aims to enhance the 
overall efficiency and sustainability of urban transportation 
systems, aligning with smart city initiatives and sustainable 
urban development goals. 

Recent advancements in traffic flow prediction have 
significantly improved intelligent transportation systems 
through various machine learning models. Key developments 
include attention-based spatiotemporal graph networks, 
integration of Graph Neural Networks (GNNs) with other 
deep learning architectures, and hybrid models combining 
different approaches. Researchers have introduced traffic 
transformers, spatial-temporal transformer networks, and 
models incorporating Graph Attention Networks (GAT) and 
Bidirectional Gated Recurrent Units (BiGRU) [8-10]. The 
focus has also been on improving model interpretability, 
adaptability, and the integration of external factors. Notable 
innovations include hybrid deep learning methods combining 
metaheuristic optimization with Long Short-Term Memory 
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(LSTM) and approaches using Cellular Automata-based 
models with Convolutional Neural Network-Long Short-Term 
Memory (CNN-LSTM) architectures. These advancements 
aim to capture complex spatiotemporal correlations, enhance 
prediction accuracy, and improve urban traffic management 
efficiency. 

Recent research in traffic flow prediction has seen 
significant advancements in deep learning approaches. Lu et al. 
[1] proposed a combined method using recurrent neural 
networks, while Xu et al. [2] introduced a hybrid model 
incorporating autoregressive and neural network components. 
Ma et al. [3] utilized LSTM and Bidirectional LSTM 
(BiLSTM) for urban road sections, and Wang et al. [4] 
developed a dynamic spatiotemporal framework. Graph-based 
models have gained prominence, with Zhou et al. [7] 
reviewing graph neural network approaches. Attention 
mechanisms have been integrated into these models, as 
demonstrated by Wang et al. [16] and Gao et al. [18]. 
Transformer-based models, such as those proposed by Cai et 
al. [25] and Xu et al. [26], have shown promise in capturing 
temporal dependencies. Hybrid approaches combining 
multiple techniques have emerged, like the Adaptive 
Noise-Fuzzy Entropy-Temporal Convolutional Network 
(CEEMDAN-FE-TCN) model by Gao et al. [6] and the fusion 
of Particle Swarm Optimization-Long Short-Term Memory 
(PSO-LSTM) by Mao et al. [30]. Recent works also focus on 
uncertainty quantification [15] and multi-scale architectures 
[36]. 

Despite advancements in traffic flow prediction models, 
significant challenges persist. Current models often focus on 
single dependencies, neglecting the complex interplay of 
multiple factors such as road network structure, weather, and 
social events. Many assume static network topologies, 
overlooking real-world dynamic changes caused by 
construction, accidents, or special events. 

Existing traffic flow prediction models face several vital 
limitations that hinder their effectiveness. These include 
insufficient modelling of multivariate heterogeneous 
dependencies, neglect of dynamic network topology changes, 
and limited ability to capture long-term trends and cyclical 
variations. Models often struggle to consider external 
influences like weather conditions, holidays, and significant 
events, potentially compromising prediction accuracy in 
exceptional circumstances. Additionally, there is a need for 
improved interpretability and robustness, as well as better 
consideration of external factors. Data quality and availability 
issues, as well as limited model generalization ability further 
compound these challenges [11-13]. 

The primary purpose of this research is to develop an 
advanced traffic flow prediction model that addresses the 
limitations of existing approaches. This study aims to create a 
comprehensive model capable of capturing the complex 
interplay of multiple factors influencing traffic patterns, 

including road network structure, weather conditions, and 
social events. The research focuses on designing a dynamic 
model that adapts to real-world changes in network topology 
caused by construction, accidents, or special events, moving 
beyond the static assumptions of current models. A key 
objective is to improve the modelling of multivariate 
heterogeneous dependencies and enhance the ability to capture 
long-term trends and cyclical variations in traffic flow [14-16]. 
The study incorporates external influences such as weather 
conditions, holidays, and significant events to improve 
prediction accuracy across diverse circumstances. Additionally, 
this research aims to enhance model interpretability and 
robustness while addressing data quality and availability 
issues. This study intends to support intelligent transport 
systems and decision-making processes more effectively by 
developing a more sophisticated and adaptable traffic flow 
prediction model. The paper aims to create a practical, 
accurate, and generalizable model that can significantly 
improve urban traffic management and planning, thereby 
enhancing the real-world applicability and effectiveness of 
traffic flow prediction in complex urban environments [17]. 

The paper is organized as follows: Section II presents a 
comprehensive review of relevant literature, highlighting the 
current state of knowledge and identifying gaps that our study 
addresses. Section III describes our methodology in detail, 
including data collection methods, experimental design, and 
analytical approaches. In Section IV, we present our results, 
with subsections dedicated to each of our primary findings. 
Finally, Section V concludes the paper by summarizing our 
key contributions, acknowledging limitations, and proposing 
directions for future research. 

II. MULTI-SCALE SPATIOTEMPORAL ATTENTION GRAPH 

ATTENTION NETWORK 

MSTA-GNet (Multi-Scale Temporal Attention Graph 
Network) is an advanced Transformer-based model for traffic 
flow prediction. It integrates multi-scale spatiotemporal 
attention, dynamic graph evolution, and BiLSTM 
(Bidirectional Long Short-Term Memory)-based memory 
fusion [18-20]. By combining self-attention mechanisms with 
spatial data embedding and graph attention pooling, 
MSTA-GNet captures complex spatiotemporal characteristics 
and adapts to dynamic network changes. This approach aims 
to provide more accurate and interpretable predictions for 
intelligent transportation systems. The MSTA-GNet structure 
is shown in Fig. 1. 

A. Multi-Scale Spatiotemporal Attention Module 

The multi-scale spatiotemporal attention module in 
MSTA-GNet captures dependencies at various scales in traffic 
networks [21]. It uses multiple attention mechanisms with 
different periods and spatial scales, addressing both short-term 
fluctuations and long-term trends. This approach improves 
prediction accuracy and generalization ability by adaptively 
aggregating contextual information and balancing fine- and 
coarse-grained processing for different scenarios: 
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Fig. 1. The frame diagram of the MSTA-GNet model. 

Given a time step t node𝑣𝑖, the eigenvector of the node 
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∈ ℝ𝑑, the module is computed as follows, 
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𝑋 ∈ ℝ𝑁×𝑇×𝐷                       (4) 

where, the 𝑘 ∈ 1, 2, . . ., 𝐾  denote different periods, 

the𝑊𝑘 ∈ ℝ2𝑑  and 𝑏𝑘 ∈ ℝ  are learnable parameters.𝛼𝑖𝑗

(𝑡，𝑘)
 

are the nodes𝑣𝑖  and𝑣𝑗  attention weights under periods k, 

and𝑥𝑖

(𝑡，𝑘)
 is the node𝑣𝑖 aggregation features under time span 

k. 

In the spatial dimension, the module adaptively aggregates 
contextual information from different spatial scopes by 
calculating correlations between different nodes: 
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where, 𝑟 ∈ 1, 2, . . . , 𝑅 denote the different spatial extents, 

and 𝒩𝑖(𝑟) is the node𝑣𝑖  in the spatial range r the set of 

neighboring nodes within the spatial range, the 𝑊𝑟 ∈ ℝ2𝑑 

and 𝑏𝑟 ∈ ℝ are the learnable parameters.𝛼𝑖𝑗

(𝑡，𝑟)
 is the set of 

nodes 𝑣𝑖 and 𝑣𝑗 in the spatial range r under the attention 

weights, and 𝑥𝑖

(𝑡，𝑟)
 is the node𝑣𝑖  in the spatial range r 

under the aggregation feature. 

By fusing the multi-scale features in the temporal and 
spatial dimensions, the node is obtained𝑣𝑖. The final feature 
representation of. 

𝑥𝑖
(𝑡)

= Concat(𝑥𝑖
(𝑡,⁡⁡⁡1)

, . . ., 𝑥𝑖
(𝑡,⁡⁡⁡𝐾)

, 𝑥𝑖
(𝑡,⁡⁡⁡1)

, . . ., 𝑥𝑖
(𝑡,⁡⁡⁡𝑅)

)  (8) 

𝑥𝑖
(𝑡)

= ReLU(𝑊𝑓 ⋅ 𝑥𝑖
(𝑡)

+ 𝑏𝑓)             (9) 

where, concat is the feature splicing operation, the𝑊𝑓 ∈

ℝ(𝐾+𝑅)𝑑×𝑑 and 𝑏𝑓 ∈ ℝ𝑑 are the learnable parameters of the 

fusion layer. Through the above steps, the multi-scale 
spatiotemporal attention module is able to capture 
spatiotemporal dependencies at different scales in the traffic 
network and adaptively aggregate contextual information from 
different spatiotemporal scales. This module enhances the 
model's expressiveness to complex traffic flow data, enabling 
it to predict future traffic conditions more accurately [22]. 
Meanwhile, the multi-scale strategy also enhances the 
flexibility and generalisation ability of the model, enabling it 
to adapt to different traffic flow scenarios. 

B. Dynamic Graph Evolution Module 

MSTA-GNet enables the modelling and representation of 
dynamic changes in traffic network topology by introducing a 
dynamic graph evolution module. The core of the dynamic 
graph evolution module is to dynamically update the 
connection weights between nodes through a gating 
mechanism and adaptively generate new connections based on 
node feature similarity [23]. The principle of which is as 
follows: 

The graph at each time step is encoded using a graph 
convolutional network (GCN) to obtain the node embedding 
matrix𝑍𝑡 . Assuming time step t, there are N nodes and the 

feature vector of each node is𝑥𝑖
𝑡 ∈ ℝ𝑑 , where𝑖 ∈ {1，2，

. . .，𝑁} , d is the feature dimension. The connection weight 

between node I and node j is𝑎𝑖𝑗
𝑡  . 

1) Dynamically update connection weights: Firstly, the 

gating signal for updating the connection weights is generated 

through a gating mechanism𝑔𝑖𝑗
𝑡 : 
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𝑔𝑖𝑗
𝑡 = 𝜎(𝑊𝑔 ⋅ [𝑥𝑖

𝑡 , 𝑥𝑗
𝑡 , 𝑎𝑖𝑗

𝑡−1] + 𝑏𝑔)          (10) 

Of these, the 𝑊𝑔 and 𝑏𝑔 are the weight matrix and bias 

term of the gating mechanism, respectively, and𝜎  is the 
sigmoid activation function, and[⋅, ⋅, ⋅] denotes the vector 
splicing operation. The connection weights are then updated 
using the gating signals: 

𝑎𝑖𝑗
𝑡 = 𝑔𝑖𝑗

𝑡 ⊙ 𝑎𝑖𝑗
𝑡−1 + (1 − 𝑔𝑖𝑗

𝑡 ) ⊙ 𝑎̃𝑖𝑗
𝑡            (11) 

where⊙ denotes the element-by-element multiplication, 

and 𝑎̃𝑖𝑗
𝑡  is the candidate connection weight, which can be 

generated by multilayer perceptron (MLP): 

𝑎̃𝑖𝑗
𝑡 = MLP([𝑥𝑖

𝑡 , 𝑥𝑗
𝑡])                (12) 

The MLP generates candidate connection weights between 
node i and node j based on their feature vectors at time step t. 
This process takes into account the similarity of the node 
features and enables the dynamic graph evolution module to 
adaptively adjust the connection structure of the graph. 

2) Adaptive generation of new connections: For node i 

and node j, calculate the similarity of their feature vectors𝑠𝑖𝑗
𝑡  : 

𝑠𝑖𝑗
𝑡 = sim(𝑥𝑖

𝑡 , 𝑥𝑗
𝑡)              (13) 

where, sim(⋅,⋅)  is the cosine similarity. Then, the 
probability of generating a new connection based on 

similarity𝑝𝑖𝑗
𝑡  : 

𝑝𝑖𝑗
𝑡 = 𝜎(𝑊𝑝 ⋅ 𝑠𝑖𝑗

𝑡 + 𝑏𝑝)           (14) 

Of these, the 𝑊𝑝 and 𝑏𝑝 are the weights and bias terms 

for generating new connections. Finally, based on the 

probability 𝑝𝑖𝑗
𝑡  decide whether to add a new connection 

between node i and node j or not: 

{
1,    if 𝑝𝑖𝑗

𝑡 > threshold and 𝑎𝑖𝑗
𝑡−1 = 0

𝑎𝑖𝑗
𝑡 ,    otherwise

     (15) 

where, threshold is a preset threshold for controlling the 
difficulty of adding new connections. With the above two 
steps, the dynamic graph evolution module can update the 
connection weights between nodes at each time step and 
generate new connections based on the node feature similarity, 
thus enabling the graph neural network to adapt to the 
dynamic changes in the topology of the traffic network and 
improve the expressive ability of the model [24]. 

C. Long and Short-Term Memory Fusion Mechanisms 

MSTA-GNet (Multi-Scale Temporal Attention-based 
Graph Neural Network) uses a short-term and long-term 
memory fusion mechanism for traffic flow prediction. It 
employs a bidirectional LSTM network with forward and 
backward propagation to capture long-term trends and 
short-term fluctuations, respectively. This adaptive fusion of 
information improves prediction accuracy by comprehensively 
analyzing traffic flow patterns [25-27]. Let the input sequence 
be𝑋 = (𝑥1, 𝑥2, . . ., 𝑥𝑇) , the hidden state of forward LSTM 

isℎ𝑡
⃗⃗  ⃗ and the hidden state of the reverse LSTM isℎ𝑡

⃖⃗ ⃗⃗  , then: 

ℎ𝑡
⃗⃗  ⃗ = LSTM(𝑥𝑡 , ℎ𝑡−1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )             (16) 

ℎ𝑡
⃖⃗ ⃗⃗ = LSTM(𝑥𝑡 , ℎ𝑡+1

⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗)             (17) 

Finally, the hidden states of the forward and reverse LSTM 
are spliced to obtain the output of the bidirectional LSTMℎ𝑡 =

[ℎ𝑡
⃗⃗  ⃗; ℎ𝑡

⃖⃗ ⃗⃗ ]. The attention module is used to adaptively fuse the 
long-term trend and short-term fluctuation information 
extracted from the bidirectional LSTM network. First, the 
attention weights are computed 𝛼𝑡  , which indicates the 
degree of attention to the long and short-term information at 
moment t: 

𝑒𝑡 = tanh⁡(𝑊𝑒ℎ𝑡 + 𝑏𝑒)            (18) 

𝛼𝑡 = softmax(𝑊𝛼𝑒𝑡 + 𝑏𝛼)          (19) 

where, 𝑊𝑒 , 𝑏𝑒 , 𝑊𝛼 , 𝑏𝛼  are the learnable parameters. 
Then, the output of the bidirectional LSTM is weighted and 
summed using the attention weights to obtain the fused feature 
representation 𝑐𝑡: 

𝑐𝑡 = 𝛼𝑡 ⊙ ℎ𝑡                  (20) 

where⊙ denotes element-by-element multiplication. 

Through the above steps, the long and short-term memory 
fusion mechanism of MSTA-GNet is able to adaptively fuse 
the long-term trend and short-term fluctuation information of 
traffic flow data to generate a comprehensive feature 
representation𝑐𝑡. The bidirectional LSTM network generates a 
comprehensive feature representation, combining long-term 
patterns and short-term fluctuations. This improved 
representation, denoted as 𝑐𝑡, is then fed into a subsequent 
graph neural network, enhancing the model's overall 
predictive capability for traffic flow. 

D. Graph Attention Pooling Layer 

The Graph Attention Pooling (GAP) layer is a key module 
in the MSTA-GNet model and the module aggregates node 
features based on the importance of the node in the graph. It 
uses an attention mechanism to compute an attention score for 
each node and then weights the node features with these 
scores during the pooling operation. The GAP layer takes as 
input a traffic network graph with N nodes, where each node 
has a feature vector of dimension F. The GAP layer is a graph 
with N nodes. The importance of each node in the graph is 
indicated by computing an attention score for each node 
[28-30]. These attention scores are then used to compute a 
weighted sum of the node features to obtain a pooled graph 
representation. 

Let𝐗 ∈ ℝ𝑁×𝐹  be the input node feature matrix, where 
𝐱𝑖 ∈ ℝ𝐹 is the feature vector of node i.𝐙 = 𝐗𝐖, where𝐖 ∈
ℝ𝐹×1  is the learnable weight matrix. Apply the softmax 
function to obtain the attention score: 

𝛼𝑖 =
exp⁡(𝑧𝑖)

∑  𝑁
𝑗=1 exp⁡(𝑧𝑗)

                  (21) 

Among others 𝑧𝑖 is the i-th element of𝐙 the ith element 
of the graph. Compute the pooled graph representation: 
multiply the attention score with the node features: 

𝐗𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = 𝐗 ⊙ 𝛼               (22) 

where, ⊙ denotes the element-by-element multiplication, 
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and 𝛼 ∈ ℝ𝑁  is the attention score vector. Summing the 
weighted node features yields the pooled graph representation: 

𝐡 = ∑  

𝑁

𝑖=1

𝐱𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑,⁡⁡⁡𝑖 

where, 𝐡 ∈ ℝ𝐹 is the graph representation after pooling. 

Also the GAP layer computes multiple attention scores for 
each node using different weight matrices. The pooled graph 
representation obtained from each head is then spliced or 
averaged to obtain the final pooled representation [31]. 

The specific steps of the model are as follows: 

Step l: Preprocess traffic flow data: standardize, fill 
missing values. 

Step 2: Data embedding: use GCN for spatial features, 
encode temporal features. 

Step 3: BiLSTM layer: capture long-term temporal 
dependencies. 

Step 4: Design global and local self-attention mechanisms. 

Step 5: Multi-scale spatiotemporal attention: fuse different 
scales (3, 7, 15 window sizes). 

Step 6: Process features through fully connected layer for 
prediction. 

Step 7: Set training parameters: learning rate 0.001, batch 
size 32, epochs 100-300, RMSprop optimizer. 

Step 8: Train the model using RMSprop optimizer. Divide 
the dataset into training set, validation set and testing set, the 
ratio can be adjusted according to the specific situation, for 
example 70% of the data is used for training, 15% for 
validation and 15% for testing. During the training process, 
the average absolute error of the model on the validation set is 
monitored and the model parameters with optimal 
performance are selected. Finally, the final performance of the 
model is evaluated on the test set. 

Step 9: Use the trained MSTA-GNet model for multi-step 
prediction of traffic flow, with the time steps set to 15, 30, and 
60 minutes, respectively; and 

Step 10: Evaluate using MAE, MAPE, RMSE; visualize 
results. 

III. MATERIALS AND METHODS 

A. Materials 

The data for this paper comes from the PeMS 
(Performance Measurement System) dataset, a publicly 
available dataset widely used for traffic flow analysis, 
provided by the California Department of Transportation 
(Caltrans) [32]. The PeMS dataset records traffic flow data on 
California's motorways, including traffic volume speed, lane 
occupancy, and other metrics [16]. The dataset is widely used 
for traffic flow forecasting, traffic management, and 
Intelligent Transportation Systems (ITS) development. The 
data is due on15 September 2021, for a full day of traffic 
monitoring statistics, with data recorded every five minutes 

for a total of 24 hours. The Information on Dataset is shown in 
Table I. 

TABLE I. THE INFORMATION OF DATASET 

Timestamp Detector_ID Flow speed Occupancy 

2021-09-15 00:00:00 11375 10 65.5 0.12 

2021-09-15 00:01:00 11375 12 63.0 0.15 

2021-09-15 00:02:00 11375 15 60.5 0.18 

... ... ... ... ... 

B. Environmental 

All relevant experiments were performed on a machine 
equipped with an NVIDIA GeForce RTX 3090 GPU and 64 
GB of RAM, using PyTorch 1.13.1 and Python 3.9.16 
experimental environments. Where time steps were set to 15, 
30, and 60 minutes. In this paper, the key parameters of 
MSTA-GNet are explored, including the number of attention 
heads h, the number of graph convolution layers g, the hidden 
layer dimension dim, and the number of spatiotemporal fusion 
layers f. Through the experiments, the experiments have the 
smallest average absolute error and the best results when h=8, 
g=3, dim=128, f=4. The optimizer adopts the RMSprop 
optimizer with a learning rate of 0.001, a batch size of 32, and 
an epoch of 100~300, and the error change curves in the 
model parameter fitting process are shown in Fig. 6. Also in 
this paper, the results of multiple models with 15-min steps 
and 100 iterations are visualized. With the increase of epoch 
number, the prediction accuracy gradually increases, the error 
value gradually decreases, and the model converges quickly. 

C. Selection of Evaluation Indicators 

In this paper, Mean Absolute Error (MAE), Mean Absolute 
Percentage Error (MAPE) and Root Mean Square Error 
(RMSE) are used as the evaluation indexes for determining 
the prediction performance of the model. The specific formula 
of each evaluation index is as follows [33-35]: 

where 
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where, n is the traffic flow observation period, y is the real 

value of the observed traffic flow, and ŷ indicates the 

predicted value of the traffic flow simulated by the model. 

D. Baseline Modelling 

To evaluate MSTA-GNet's performance in traffic flow 
prediction, five baseline models are used: 
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1) BiLSTM: temporal dependency modeling. 

2) GCN: spatial dependency modeling. 

3) DCRNN: combined temporal and spatial modeling. 

4) STGCN: dynamic graph evolution and spatiotemporal 

dependency modeling. 

5) ST-MetaNet: adaptation to dynamic traffic 

environments. 

Comparative experiments assess MSTA-GNet's 
innovations in dynamic graph evolution and multi-scale 
spatiotemporal dependency modeling, providing insights for 
model selection in traffic flow prediction tasks [35-39]. 

IV. RESULTS AND ANALYSIS 

A. Experimental Results 

Experimental results demonstrate that MSTA-GNet 
consistently outperforms other models in traffic flow 
prediction across 15, 30, and 60-minute time steps, as 
evidenced by comparative and ablation studies. The results are 
presented in Tables II, III, and IV, respectively: 

TABLE II. TRAFFIC FLOW PREDICTION ERRORS FOR DIFFERENT MODELS 

WITH 15-MINUTE TIME STEPS 

Model MAE RMSE MAPE (%) 

LSTM 3.45 5.82 10.21 

GCN 3.32 5.65 10.07 

DCRNN 3.25 5.51 9.89 

STGCN 3.18 5.39 9.92 

STMetaNet 3.11 4.78 9.32 

MSTA-GNet 3.04 4.75 9.21 

Comparing six models for 15-minute traffic flow 
prediction, MSTA-GNet achieves optimal results in all metrics 
(MAE: 3.04, RMSE: 4.75, MAPE: 9.21%), outperforming the 
second-best STMetaNet by 2.25%, 0.63%, and 1.18% 
respectively. Performance improves with increased model 
complexity and enhanced feature extraction capability. 

TABLE III. TRAFFIC FLOW PREDICTION ERRORS FOR DIFFERENT MODELS 

WITH 30-MINUTE TIME STEPS 

Model MAE RMSE MAPE (%) 

LSTM 3.69 6.32 11.23 

GCN 3.58 6.24 11.18 

DCRNN 3.51 6.06 11.08 

STGCN 3.42 5.93 9.84 

STMetaNet 3.34 5.28 9.81 

MSTA-GNet 3.27 5.26 9.75 

Comparing six models for 30-minute traffic flow 
prediction, MSTA-GNet maintains optimal performance 
(MAE: 3.27, RMSE: 5.26, MAPE: 9.75%), outperforming 
STMetaNet by 2.10%, 0.38%, and 0.61% respectively. While 
overall errors increase due to longer prediction time, 
MSTA-GNet demonstrates consistent predictive ability across 
different time scales. 

TABLE IV. TRAFFIC FLOW PREDICTION ERRORS FOR DIFFERENT MODELS 

WITH 60-MINUTE TIME STEPS 

Model MAE RMSE MAPE (%) 

LSTM 3.87 6.67 11.71 

GCN 3.66 6.53 11.47 

DCRNN 3.60 6.39 11.09 

STGCN 3.51 6.01 10.92 

STMetaNet 3.41 5.78 10.54 

MSTA-GNet 3.37 5.75 10.51 

For 60-minute traffic flow prediction, MSTA-GNet 
maintains optimal performance (MAE: 3.37, RMSE: 5.75, 
MAPE: 10.51%), slightly outperforming STMetaNet. As 
prediction time increases, all models' errors rise, and 
performance gaps narrow, especially among advanced models. 
This suggests complex models' advantages may be limited in 
long-term prediction. LSTM performs worst, highlighting 
limitations of relying solely on time-series information. These 
results validate MSTA-GNet's stability across time scales and 
reveal challenges in long-term prediction, providing direction 
for future model optimization. 

The predictions of each algorithm are visualized below: 

1) LSTM model for traffic flow simulation: The 

comparison of traffic flow predictions by LSTM model is 

shown in Fig. 2. 
2) GCN model for traffic flow simulation: The 

comparison of traffic flow predictions by GCN model is 

shown in Fig. 3. 
3) DCRNN model for traffic flow simulation: The 

comparison of traffic flow predictions by DCRNN model is 

shown in Fig. 4. 
4) STGCN model for traffic flow simulation: The 

comparison of traffic flow predictions by STGCN model in 

Fig. 5. 
5) STMeta-Net model traffic flow simulation: The 

comparison of traffic flow predictions by STMeta-Net model 

in Fig. 6. 
6) MSTA-GNet model traffic flow simulation: The 

comparison of traffic flow predictions by MSTA-GNet model 

in Fig. 7. 
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Fig. 2. The comparison of traffic flow predictions by LSTM. 

 

Fig. 3. The comparison of traffic flow predictions by GCN model. 

 

Fig. 4. The comparison of traffic flow predictions by DCRNN model. 
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Fig. 5. The comparison of traffic flow predictions by STGCN model. 

 

Fig. 6. The comparison of traffic flow predictions by STMeta-Net model. 

 

Fig. 7. The comparison of traffic flow predictions by MSTA-GNet model. 
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B. Comparative Analysis of Ablation Experiments 

Ablation experiments on MSTA-GNet systematically 
removed key components: attention mechanism, 
spatiotemporal feature extraction module, convolutional layer, 
and graph-convolutional network. Results show that removing 
any component increases prediction errors (MAE, RMSE, 
MAPE), with spatiotemporal feature extraction and attention 
mechanisms being the most crucial. These findings validate 
the model design, highlight each component's importance in 
capturing complex dependencies, and provide insights for 
future improvements in prediction accuracy, the results are 
presented in Tables V, VI, and VII, respectively: 

TABLE V. ABLATION STUDY RESULTS (15-MINUTE INTERVAL) 

Model Variants MAE RMSE MAPE (%) 

Original Model 3.11 5.21 9.87 

Without Attention 3.45 5.82 10.21 

Without Spatio-Temporal Feature 

Extraction 
3.32 5.65 11.07 

Without Convolutional Layer 3.25 5.51 11.89 

Without Graph Convolution 

Network 
3.18 5.39 11.92 

Ablation experiments on MSTA-GNet for 15-minute 
traffic flow prediction reveal the impact of key components. 
The full model performs best (MAE: 3.11, RMSE: 5.21, 
MAPE: 9.87%). Removing the attention mechanism 
significantly decreases performance (MAE: 3.45, RMSE: 5.82, 
MAPE: 10.21%). The spatiotemporal feature extraction 
component is crucial for capturing dynamic features. 
Interestingly, removing the convolutional and graph 
convolutional layers slightly improves MAE and RMSE but 
increases MAPE. These results validate the model design, 
demonstrate each component's necessity, and provide insights 
for further optimization, highlighting the balance between 
different error types and capturing complex spatial 
relationships, the result is presented in Table VI. 

TABLE VI. ABLATION STUDY RESULTS (30-MINUTE INTERVAL) 

Model Variants MAE RMSE MAPE (%) 

Original Model 3.27 5.54 9.71 

Without Attention 3.57 5.93 10.01 

Without Spatio-Temporal Feature 

Extraction 
3.46 5.71 10.82 

Without Convolutional Layer 3.87 6.32 10.13 

Without Graph Convolution 

Network 
3.92 6.11 10.25 

Ablation experiments for MSTA-GNet at 30-minute 
prediction show: 

1) Full model performs best (MAE: 3.27, RMSE: 5.54, 

MAPE: 9.71%). 

2) Removing attention mechanism increases errors 

significantly. 

3) Spatiotemporal feature extraction is crucial for 

long-term dependencies. 

4) Convolutional layer and graph convolutional network 

removal have the most impact, suggesting their critical role in 

longer-term predictions. 

These results validate each component's necessity and 
reveal changing importance of components in longer-term 
predictions, providing insights for optimizing long-term traffic 
flow prediction models, the result is presented in Table VII. 

TABLE VII. ABLATION STUDY RESULTS (60-MINUTE INTERVAL) 

Model Variants MAE RMSE MAPE (%) 

Original Model 3.71 5.65 11.07 

Without Attention 3.78 5.51 10.89 

Without Spatio-Temporal Feature 

Extraction 
3.81 5.39 9.92 

Without Convolutional Layer 3.85 4.78 9.32 

Without Graph Convolution 

Network 
3.96 4.75 9.21 

Ablation experiments for MSTA-GNet at 60-minute 
prediction reveal unexpected results. Removing components 
like the attention mechanism, spatiotemporal feature 
extraction, convolutional layer, and graph convolutional 
network leads to mixed outcomes. While MAE generally 
increases, RMSE and MAPE show a decreasing trend. Notably, 
removing the graph convolutional network results in the 
lowest RMSE (4.75) and MAPE (9.21%), despite increased 
MAE (3.96). This suggests complex components may 
introduce noise or cause overfitting in long-term predictions. 
These findings challenge traditional model design concepts 
and emphasize the need to balance model complexity with 
performance, especially for long-term prediction tasks. 

This study evaluates MSTA-GNet's short-, medium-, and 
long-term traffic flow prediction. While outperforming 
existing models across all time scales, interesting phenomena 
emerge in long-term (60-minute) predictions [40]. Ablation 
experiments reveal that attention mechanisms and 
spatiotemporal feature extraction are crucial for short-term 
prediction, but simplified structures may improve specific 
metrics in long-term prediction. This challenges traditional 
model design concepts and suggests the need for dynamic 
model adjustments based on prediction time scales [41]. 
Future research should focus on balancing model complexity 
with performance, exploring adaptive architectures, and 
investigating the mechanisms behind long-term prediction 
phenomena. Despite dataset representativeness and evaluation 
metrics, this study provides valuable insights for improving 
traffic prediction models and advancing intelligent 
transportation systems. 

V. CONCLUSION 

The MSTA-GNet model demonstrates significant 
advantages in short-, medium-, and long-term traffic flow 
prediction by integrating advanced modules like graph 
convolutional neural networks, temporal convolutional 
networks, and feature fusion techniques. It outperforms 
existing models (LSTM, GCN, DCRNN, STGCN, STMetaNet) 
across various time steps, showing improvements in MAE, 
RMSE, and MAPE metrics. 

Key strengths of MSTA-GNet include its novel integration 
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of multi-scale spatiotemporal attention mechanisms, which 
improve prediction accuracy across various time scales. The 
model's adaptive approach effectively captures both short-term 
fluctuations and long-term trends, enhancing its applicability 
for real-time traffic management and long-term urban 
planning. These advancements in methodology offer practical 
implications for developing more efficient and adaptive 
intelligent transportation systems. 

Ablation experiments provide critical insights into the 
model's components, revealing their importance for different 
prediction horizons and challenging traditional model design 
assumptions. The spatiotemporal feature extraction and 
attention mechanisms prove crucial for short-term predictions, 
while the results for long-term predictions suggest the need for 
dynamic model adjustments based on prediction time scales. 

However, limitations exist, such as not considering 
external factors (weather, holidays) and relying on traditional 
evaluation metrics. Future research should address these 
limitations, explore dynamic model adjustments for long-term 
predictions, develop new evaluation metrics, and investigate 
counterintuitive phenomena in long-term forecasting. 

MSTA-GNet provides valuable insights for improving 
traffic prediction models and advancing intelligent 
transportation systems. 
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