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Abstract—Small proteins encoded by small open reading 

frames (sORFs) exhibit significant biological activity in crucial 

biological processes such as embryonic development and 

metabolism. Accurately predicting whether sORFs encode small 

proteins is a key challenge in current research. To address this 

challenge, many methods have been proposed, however, existing 

methods rely solely on biological features as the sequence encoding 

scheme, which results in high feature extraction complexity and 

limited applicability across species. To tackle this issue, we 

proposed a deep learning architecture UAsORFs based on hybrid 

coding of sORFs sequences. In contrast to mainstream prediction 

methods, this framework processes sORF sequences using a mixed 

encoding approach, including both one-hot and gapped k-mer 

encodings, which effectively captures global and local sequence 

information. Additionally, it autonomously learns to extract 

features of sORFs and captures both long-range and short-range 

interactions between sequences through U-Net and coordinate 

attention mechanisms. Our research demonstrates significant 

progress in predicting encoded peptides from eukaryotic and 

prokaryotic sORFs, particularly in improving the cross-species 

predictive MCC index on the eukaryotic dataset. 

Keywords—Small open reading frames; deep learning; hybrid 
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I. INTRODUCTION 

With the rapid development of transcriptomic and proteomic 
technologies, researchers have come to better understand the 
potential coding regions of the genome [1]. Open reading frames 
(ORFs) are widely recognized as important sequence regions for 
protein coding [2], but short open reading frames (sORFs), as a 
group of ORFs up to 300 nucleotides in length, which were 
previously considered unlikely to code due to their short length 
[3, 4]. However, recent studies have shown that sORFs have a 
wide range of biological functions and can be directly 
transcribed and translated into biologically active small proteins 
[5-8]. These small proteins are involved in a variety of biological 
processes, including embryonic development [9], muscle 
function [5, 10-12], the regulation of cell growth and 
development [13-16], and the control of metabolic pathways 
[17]. Researchers have identified several sORFs with ribosomal 
activity by using versatile histological sequencing techniques, 
such as mass spectrometry and ribosome profiling [7, 18-20]. 

A prerequisite for the search for new protein-coding sORFs 
is their correct identification. Due to the short length, low 
expression levels, and lack of experimental validation for their 
functionality, sORFs have long been insufficiently annotated 
and studied. Investigating the coding potential of sORFs for 
small proteins is complex. Therefore, there is an urgent need for 

accurate and rapid methods to predict the coding ability of 
sORFs. 

One of the main problems in predicting the microproteins-
coding sORFs is to design an effective biological sequences 
coding scheme. The coding features are also crucial for 
distinguishing between coding and non-coding sORFs. 
Biological sequence coding schemes can be mainly divided into 
two types: sequential models and discrete models. Sequential 
models assign numerical values to each nucleotide in the 
biological sequence while preserving the order of the bases [1]. 
A prominent example of this is one-hot encoding (also known 
as C4 coding) [21], where each of the four nucleotides is 
represented by a unique four-bit binary vector (A-[1,0,0,0], C-
[0,1,0,0], etc.). Each nucleotide's binary number is orthogonal to 
each other and has the same Hamming distance. In contrast, 
discrete models aim to design a set of features based on 
knowledge from the biological sequence. Some commonly used 
biological features include the codons usage [22], codon 
prototype [23], hexamer usage [24] and Z curves [25]. 

The sequential and discrete encoding models each present 
distinct advantages and limitations. While the sequential model 
preserves the global sequences order information [26], but this 
approach cannot fully capture biological features. Neural 
networks are not easily able to learn higher-order correlations 
from very low-level input [27]. Additionally, one-hot coding is 
unable capture frequency domain features such as k-mer [28]. 
On the other hand, taking 3-mer as an example, it is a discrete 
model of biological sequences and has become one of the 
features used to distinguish small proteins from non-encoding 
ones. Although the 3-mer is effective, it can only incorporate the 
local sequences order information between neighboring 
nucleotides and cannot reflect the global sequences order 
information [26]. 

Therefore, we designed a coding-protein prediction tool, 
named UAsORFs, utilizing a hybrid encoding strategy. This tool 
incorporates U-Net and Coordinate Attention (CA) mechanisms 
within its deep learning framework. This method effectively 
utilizes global sequence information, non-overlapping gapped 
k-mers and deep learning to autonomously learn sORF sequence 
features. By employing hybrid encoding, the method effectively 
extracts global and local sequence information of sORFs. 
Additionally, neural networks are employed to automatically 
differentiate between encoding and non-encoding sORFs. 

The main contributions of this article are summarized as 
follows: 
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 A hybrid coding scheme combining sequence model and 
discrete model is designed. Unlike previous prediction 
tools that only use discrete models to extract sequence 
features, UAsORFs introduces sequence coding, 
effectively capturing global sequence information with 
one-hot coding, thereby enriching the encoding scheme 
and expression level. 

 By exclusively using gkm as the discrete biological 
feature, excessive manual feature extraction is reduced, 
and gkm features significantly improve predictive 
performance on prokaryotic datasets. 

 U-Net is used for the first time in the prediction of 
coding-protein sORF, facilitating the extraction of multi-
scale, long-range and short-range interaction features of 
sORF sequences. A combined model (UCA) of U-Net 
and CA is constructed, leading to improved cross-species 
prediction results. 

II. RELATED WORK 

In numerous biological prediction tasks, combining 
sequence information with biological features can lead to 
significant performance enhancements in specific applications. 
For instance, iTIS-PseTNC [26] introduced a sequence-based 
predictor for identifying translation initiation sites in human 
genes and claims that using k-mer representation in DNA 
sequences only reflects local sequence order information while 
losing global sequence order information. To overcome this 
limitation, the approach leveraged collaborative representations 
known as pseudo trinucleotide assemblies, integrating 
physicochemical properties into DNA sequences alongside k-
mer features [26]. MHCDG [29] is a hybrid sequence-based 
deep learning model that integrates MeDIP-seq data with 
histone information to predict DNA methylation CpG status. By 
incorporating multiple biologically relevant features and 
sequence information, it outperformed other methods achieves 
more satisfactory promoter prediction performance. These 
works demonstrate the importance of hybrid coding. 

In the prediction work of protein-coding sORFs, many 
prediction tools solely utilize various biological features for 
coding schemes. Among them, MiPepid [30] identified protein-
coding sORFs using a logistic regression model and tetramer (4-
mer) features from sequences. CPPred [31] is an SVM-base 
classifier that uses 38-dimensional biological features such as 
ORF coverage, Fickett score and CTD, etc., to predict the coding 
potential in both regular ORFs and sORFs. CPPred-sORF [32], 
based on CPPred coding, incorporates additional features such 
as GC count and mRNN-11 codons, and evaluates sORFs using 
non-AUG start codons. PsORFs [33] predict protein-coding 
sORFs in other species using 64 codon frequencies based on a 
random forest model trained on sORFs from prokaryotes. 
CodingCapacity [34] predicts the coding potential of sORFs 
using the Z-curve, codon frequencies, k-mer, and all features 
included in CPPred-sORF. DeepCPP [35] use a 589-
dimensional feature set composed of nucleotide bias information 
and minimal distribution similarity. Notably, DeepCPP employs 
a convolutional neural network based on deep learning for 
prediction. 

All the aforementioned work gives us a strong intuition that 
combining global sequence order information with biological 
features (such as gkm [36]) can enhance the prediction of 
protein-coding sORFs. 

III. MATERIALS AND METHODS 

The prediction problem of protein-coding sORFs aims to 
determine whether an sORF has the ability to be transcribed and 
translated into a small protein. Given an sORF sequence 

1 2... ns s s s , the label of the sequence is  , 1,0y i i  , i  

represents coding (1) or noncoding (0). Our goal is to convert 
the original sequences into a computer-recognizable format and 
predict it as either coding or noncoding sORFs using a deep 
learning framework. 

A. Data Description 

Our study aimed to establish a model for predicting the 
coding potential of sORFs in multiple species, covering both 
prokaryotes and eukaryotes. We utilized the standard dataset 
from PsORFs, which was generated based on a random order 
strategy. The same prokaryotic training dataset Pro-1282 and 
five test datasets (Hum-7111, Mou-7385, Ara-2125, Pro-6318 
and Bac-150) from PsORFs were employed. Prokaryotic sORFs 
were selected from the Ref-Seq database [37]. Whereas human 
and mouse sORFs were downloaded from the sORFs.org 
database [38], while Arabidopsis thaliana sORFs were obtained 
from the TAIR database [39]. An experimental validation 
dataset (Bac-150) published by Hemm et al [40], included 150 
positive sORFs and 53 negative sORFs detected from the E. coli 
genome. The detailed information of the datasets is presented in 
Table Ⅰ, where coding sORFs refer to sequences capable of being 
translated into small proteins. 

TABLE I.  NUMBER OF DATASETS FOR EACH SPECIES 

Dataset Species 

Number of 

coding 

sORFs 

Number of 

non-coding 

sORFs 

Number of 

sORFs 

Hum-
7111 

Prokaryotic 
genomes 

7111 7111 14222 

Mou-

7385 
Mouse 7385 7385 14770 

Ara-2125 
Arabidopsis 

thalian 
2125 2125 4150 

Pro-6318 
Prokaryotic 

genomes 
6318 6318 12645 

Pro-1228 
Prokaryotic 
genomes 

1228 1327 2556 

Bac-150 E.coli genome 150 53 203 

The length distributions of sORFs across six datasets are 
illustrated in Fig. 1. The length distributions of sORFs in the 
Hum-7111 and Mou-7385 dataset are very similar, 
predominantly concentrated within the range of 60 to 140 
nucleotides. In contrast to mammals, Arabidopsis, which is also 
a eukaryotic organism, exhibits a different distribution, with 
sORF lengths mainly distributed between 200 and 300 
nucleotides. The length distributions of sORFs in the 
prokaryotic datasets Pro-6318 and Pro-1282 was similar, 
primarily concentrated between 150 and 300 nucleotides. Thus, 
it is evident that there are significant differences in sORF lengths 
among different species. 
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Fig. 1. Distribution of sORFs length of six datasets. 

The differences in sORFs lengths among different species 
may pose challenges in predicting protein-coding sORFs in 
multiple species. sORFs with short lengths may be overlooked 
or misinterpreted as noise in certain species, thereby increasing 
the difficulty of prediction. Additionally, significant differences 
may exist in the sequence characteristics and preferences of 
sORFs across different species, making it challenging to identify 
universal features and patterns for predicting protein-coding 
sORFs across species. To address these challenges, the 
consideration of deep learning models is warranted, as deep 
learning offers advantages such as automatic feature learning, 
strong generalization capabilities, and flexibility. 

B. Overview of the Designed Framework 

As illustrated in Fig. 2, the overall workflow of UAsORFs 
comprises three stages. Firstly, the sORF sequences in the fasta 
file are preprocessed and encoded into one-hot and gkm coding 
formats. Subsequently, the one-hot coding is fed into the neural 
network UCA, which is composed of a U-Net and CA that can 
learn the importance of each nucleotide in the sequence. The 
resulting one-hot coding processed by the UCA model is 
concatenated with gkm coding to form a hybrid encoding 
representation. Finally, the hybrid encoding undergoes 
processing through a Multilayer Perceptron (MLP) and SoftMax 
activation function to obtain the final prediction results. 

 
Fig. 2. The overall workflow of UAsORFs. 

C. Hybrid Coding 

To overcome the limitations of sequential models and 
discrete models, we propose a hybrid encoding scheme that 
combines global sequence models and biological features. The 
aim is to fully utilize the advantages of both, thereby enhancing 
the prediction of protein-coding sORFs. As illustrated in Fig. 3, 
For a given sequence s , the hybrid encoding scheme can be 

formulated as follows: 

 1 2=[E ,E ]E   (1) 

 
Fig. 3. Hybrid encoding scheme. E1 is one-hot sequential model, E2 is gkm 

discrete model. 

Here, we utilize the one-hot sequential model [41] to capture 
the global sequence order information, Therefore, 

1E  can be 

expressed as: 

 1 1 2[ , ,..., ]iE x x x
  (2) 
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   (3) 

During one-hot encoding, we employ binary vectors of 
length 4 to encode the four nucleotides in biological sequences. 
Specifically, the position corresponding to a base is represented 
as 1, while the other positions are represented as 0. Additionally, 
when dealing with shorter sequences, we use the encoding 
[0,0,0,0] for sequence padding to maintain consistency in 

sequence length. Once a small protein sequence N of length i  is 

inputted, a feature vector matrix is obtained to be fed into the 
model for training. 

For the discrete model, we employ non-overlapping gkm 
[36] to capture local sequences order information effectively. K-
mer, as a classic and effective feature representation, have been 
widely used in the field of bioinformatics, notably in the 
prediction of protein coding regions [42-44], coding potentials 
[31, 45], and identification of regulatory elements [29, 41]. 
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Nevertheless, traditional k-mer methodologies are constrained 
by a pivotal issue that the increase of k leads to a very long and 
sparse feature vector [36]. To overcome this issue, we introduce 
the concept of gaps, which allows for certain mismatch exist in 
the k-mer sequence [36]. Gkm not only effectively reduce the 
dimensionality and sparsity of the feature vector but also 
demonstrates outstanding predictive prowess over conventional 
k-mer approaches, as evidenced by multiple studies in the 
biological domain [36, 46]. 

The gkm [36] method has two parameters: the length of the 
whole word 𝑙  and the number of informative positions 𝑘 . 
Therefore, the gap count is 𝑙 − 𝑘. Combining previous work [1] 
and the dimension range of one-hot feature vectors, which is 
[100, 1200], we set 𝑙 = 5 and 𝑘 = 3. This not only effectively 
reduces the feature vector's dimensionality from 451,024 to 

𝐶5
243 = 640, which is close to the dimension of the one-hot 

feature vectors, but also allows using both together to enhance 
the ability to learn relevant patterns. This benefits the deep 
learning model by improving its expressive power and 
predictive accuracy. But also encompasses non-overlapping 3-
mers information (e.g., AAAXX, ..., TTTXX). As shown in 
Fig. 3, when 𝑙 = 5 the length of each sORF subsequence is 5. 
For 𝑘 = 3 , calculate the frequency of occurrence of each 
subsequence with three consecutive nucleotides. Thus, 𝐸2can be 
expressed as: 

 2 [ ( ), ( ),..., ( )]E f XXAAA f XAXAA f TTTXX
  (4) 

Where 𝑓(𝑋𝑋𝐴𝐴𝐴) calculates the frequency of non-
overlapping gapped trinucleotides (XXAAA) occurring in 
biological sequences. By introducing two gaps 𝑋𝑋 , the two 
words 𝐺𝑇𝐴𝐶𝐴 and 𝐶𝑇𝐴𝐶𝐴 of length 5 have the same gapped 
trinucleotides 𝑋𝑇𝑋𝐶𝐴. 

D. UCA Model 

Considering the hybrid coding approach used for sORF 
sequences, effectively integrating global sequence order 
information and gkm through deep learning, and autonomously 
learn features of sORFs of different lengths in different species 
is a problem that needs to be addressed. To this end, as illustrated 
in Fig. 2, we propose a UAsORFs architecture aimed at 
addressing this issue. In the UAsORFs architecture, sORF 
sequences are first encoded into one-hot coding and gkm feature 
representations. These are then processed through the UCA 
module and concatenated with gkm encoding.  

While the issue of hybrid encoding has been discussed in 
previous sections, the focus of this section is to provide a 
detailed explanation of the UCA network module. The UCA 
module mainly consists of two key components: the U-Net [47-
49] and the CA [50] based on convolutional neural network 
(CNN). 

We are the first apply U-Net to the prediction of protein-
coding sORFs in order to extract multi-scale, long-range and 
short-range interaction features from input sequences. This 
design is intended to ensure that the network can capture 
sufficient contextual information for longer sequences and 
maintains effective representation capabilities for shorter 
sequences. 

 

Fig. 4. U-Net model. 

As shown in Fig. 4, the input of the U-Net network is 
denoted as 𝐸1 after a convolution operation, while the output is 
represented as Y. The numbers at the top of the image represent 
the number of channels, while the lower-left corner shows 
dimensions as length × width. The kernels for Double conv and 
Up conv are 3 × 3, Conv uses a 1 × 1 kernel, and the max-pooling 
layer uses a 2 × 2 kernel. Through convolutional operations, 
𝐸1 ∈ {0,1}304×4 is transformed into ∈ {0,1}16×304×4 , where 𝐾 
can be regarded as an image that contains 16 color channels with 
a size of 304 × 4. Each channel signifies one of 16 possible 
nucleotide combinations, enabling the model to explicitly 
consider long-range interactions among nucleotides. Following 
processing by the U-Net, the output feature layer Y , Y ∈
𝑅16×304×4 forms a matrix of size 16 × 304 × 4. Compared with 
the original one-hot coding, feature map Y can capture more 
abundant sORF sequence feature information, extract local 
patterns, context relations and higher-level semantic information 
in the sequence after multi-layer convolution and pooling layer 
processing of U-Net. It can provide powerful support for the 
next prediction work. 

Next, for CA-based CNN, in image processing, CNN plays 
a crucial role in image processing, enabling the learning and 
extraction of effective image features. In the feature extraction 
phase, we employ a series of layer structures including 
Convolutional Layer, Batch Normalization (BN), Revised 
Linear Unit Activation Function (ReLU), Coordinate Attention, 
Max-Pooling and Dropout operation. The collaboration between 
these layer structures helps to achieve effective feature 
extraction and characterization of the input data. 

In the traditional convolutional pooling process, applying 
channel attention mechanisms like Squeeze-and-Excitation (SE) 
attention [51] can assess the importance of each channel to learn 
the weights of different channel features [50]. However, the SE 
attention only considers encoding inter-channel information but 
neglects the importance of positional information, especially in 
cases of global sequential encoding (such as one-hot coding). 
The CA mechanism considers both inter-channel relationships 
and positional information within the feature space. Such a 
mechanism effectively focuses on different spatial locations of 
the input feature maps, enhancing the model's perception of key 
features and aiding in the better learning of useful features by 
the network model. 

The CA Block is divided into two processes: Coordinate 
Information Embedding and Coordinate Attention Generation, 
as illustrated in Fig. 5. 
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Fig. 5. Coordinate attention model. 

 ( ( ))c gy W f W x x      (5) 

Where x  denotes the input feature map, 
cW  and 

gW are the 

weight matrices of generation attention and channel attention,  
denotes element-by-element multiplication,  denotes the 

sigmoid function, and f denotes the weight coefficients of 

channel attention. Through the generative attention mechanism, 
a weight coefficient is learned for each spatial location. This 
weight coefficient is multiplied element-by-element with the 
input feature map to obtain a weighted feature map. Then, a 
weight coefficient is learned for each channel through the 
channel attention mechanism. 

This weight coefficient is multiplied element-by-element 
with the weighted feature map and is used to weight the different 
channels of the feature map. This allows the network to pay 
more attention to the important channel information and 
suppress the unimportant channels to extract more effective 
feature representations and get the final output feature map. 

IV. TRAINING AND EVALUATION 

A. Loss Function 

To enhance the generalization ability and robustness against 
noise ability of the model, we use Label Smoothing (LS) loss as 
the loss function. The Label Smoothing loss function reduces the 
risk of overfitting and overconfidence by introducing a certain 
degree of smoothness. Its formula is as follows: 

 
(1 ) ( , ') ( , ')L CE y y CE y      

  (6) 

 
( , ) ( log( ))i iCE p q p q    (7) 

Where y is the true label, 𝑦′ is the output label probability 
distribution of the model, 𝑢  is the smoothed label, 𝜀  is the 
smoothing factor, and 𝐶𝐸 is the cross-entropy loss function. In 
the loss function, we multiply the loss of the true labels by 
(1 − 𝜀), multiply the loss of the smoothed labels by 𝜀, and then 
weight and sum the two portions to get the final loss value. 𝜀 >
0 the loss portion of the smoothed labels will play a certain role 
of regularization, which helps to reduce the risk of overfitting. 

B. Evaluation Indicators 

We adopted four evaluation metrics, including Sensitivity 
(SN), Specificity (SP), Accuracy (ACC), and Matthews 
Correlation Coefficient (MCC), to evaluate the robustness of the 

model and its predictive performance for encoding sORFs. The 
formulas are as follows: 

 

TP
SN

TP FP


   (8) 

 

FP
SP

TP FP


   (9) 

 

TP TN
ACC

TP TN FP FN




     (10) 

 ( ) ( ) ( ) ( )

TP TN FP FN
MCC

TP FP TP FN TN FP TN FN

  


      (11) 

Among them, TP and TN represent the number of correctly 
predicted coding and coding sORFs. FP and FN denote the 
number of incorrectly predicted coding and non-coding sORFs. 
SN and SP measure the model's ability to identify coding and 
non-coding sORFs. ACC reflects the proportion of correct 
predictions among all predictions. On the other hand, MCC 
comprehensively considers the relationships among TP, TN, FP, 
and FN, evaluating the correlation between predictions and 
annotations within the range of [-1, 1]. This metric system 
provides a comprehensive assessment of the model 
performance. 

C. Training Parameter Settings 

During training, we employed a learning rate decay strategy 
to prevent overfitting and accelerate the convergence of the 
learning algorithm. The initial learning rate was set to 4e-3, step 
size = 10 and gamma = 0.7. The Adam optimizer was chosen for 
parameter adjustment and optimization. In addition, set the 
batch size to 256, the number of epochs to 20 and the random 
seed to 42. Table Ⅱ provides the UCA network architecture and 
parameters, with the U-Net and CA network architectures 
illustrated in Fig.4 and Fig.5. Our experimental environment 
consists of a CPU: AMD Ryzen 7 5800H and a GPU: NVIDIA 
GeForce RTX 3060. 

TABLE II.  UCA NETWORK ARCHITECTURE AND PARAMETERISATION 

Layer Size 

Input 163044 

U-Net 163044 

CA 163044 

Conv 16(3,3) 

Maxpool (2,2) 

CA 161522 

Dropout 0.1 

Conv 6(3,3) 

Maxpool (2,1) 

Dropout 0.1 

Flatten 912 

Concat 1096(912+640) 

Linear 50 

Linear 2 

Softmax 2 
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V. RESULTS 

In this section, we conducted four experiments on six 
datasets. The first demonstrated the importance of hybrid 
coding. The second and third experiments compared our 
approach with current popular methods on multiple species 
datasets. The fourth experiment demonstrated the importance of 
each module of UAsORFs. 

A. Significance of Hybrid Coding 

To validate the effectiveness of hybrid coding, we conducted 
ablation experiments aimed at separating hybrid coding and 
observing the performance of single coding in sORFs prediction. 
Specifically, as shown in Table Ⅲ and Fig. 6, the hybrid coding 
was divided into one-hot and gkm encoding, which were then 
fed into MLP and CNN models (e.g., one-hot + CNN and gkm 
+ MLP). We uesd a training and evaluation strategy trained on 
the Pro-6318 dataset and tested on the Ara-2125 (Fig. 6A) and 
Pro-1228 (Fig. 6B) datasets to evaluate the performance of 
hybrid coding on both eukaryotic and prokaryotic datasets. 

TABLE III.  DESIGN AND RESULTS OF ABLATION EXPERIMENTS FOR 

HYBRID CODING 

Dataset Methods SN SP ACC MCC 

Ara-

2125 

PsORFs 0.4706 0.8613 0.6974 0.443 

one-hot+CNN 0.4815 0.9562 0.7188 0.4973 

k-mer+MLP 0.6918 0.8216 0.7267 0.5078 

gkm+MLP 0.5153 0.9501 0.7327 0.5168 

one-hot+k-
mer+CNN 

0.5976 0.9082 0.7529 0.5322 

one-hot+gkm+CNN 0.5962 0.9205 0.7584 0.5462 

one-

hot+gkm+UAsORFs 
0.6316 0.9031 0.7682 0.5571 

Pro-

1228 

PsORFs 0.8698 0.8997 0.8908 0.7814 

one-hot+CNN 0.6458 0.9525 0.8051 0.6333 

k-mer+MLP 0.798 0.8432 0.8215 0.6424 

gkm+MLP 0.8739 0.9546 0.9142 0.8311 

one-hot+k-

mer+CNN 
0.8278 0.8964 0.8705 0.7418 

one-hot+gkm+CNN 0.8772 0.9584 0.923 0.8482 

one-

hot+gkm+UAsORFs 
0.9137 0.9435 0.9292 0.8582 

According to the data presented in Table Ⅲ and Fig. 6D, 
one-hot+gmk+CNN and one-hot+k-mer+CNN outperform one-
hot+CNN, gmk+MLP, and k-mer+MLP on both the prokaryotic 
and eukaryotic datasets, which indicates that the hybrid coding 
scheme has a better prediction than the single coding model. It 
is worth noting that gmk+MLP achieved better predictive 
performance than k-mer+MLP, especially on the prokaryotic 
dataset, where ACC and MCC are improved by 9.27% (0.9142-
0.8215) and 18.87% (0.8311-0.6424) , demonstrating the 
effectiveness of gkm (l=5, k=3) features in distinguishing coding 
and non-coding fields regions. Meanwhile, one-hot+CNN has 
outperformed PsORFs in Ara-2125, which proves the 
effectiveness of global order information. 

In conclusion, our results suggest that there is a 
complementary relationship between one-hot coding and gkm 

features, and their combination helps deep learning methods to 
capture coding features more comprehensively. 

B. Multi Species Predictions Results 

To evaluate the performance of the different models, we 
conducted two experiments: (a) Training on the prokaryotic 
dataset Pro-1282 and testing on the remaining five datasets 
(Hum-7111, Ara-2125, Mou-7385 and Pro-6318, Bac-150). (b) 
Training on the prokaryotic dataset Pro-6318 and testing on the 
remaining five datasets. 

Since there is no overlap of sequences in the test and training 
datasets, the multi-species validation is considered as 
independent dataset testing. With these two multi-species 
experiments, we evaluate the generalization performance of the 
model in multi-species prediction. These experimental designs 
help to validate the model's ability to generalize across different 
biological species and provide an important reference for further 
model improvement. 

In our study, we evaluated seven different computational 
algorithms, some of which have been tested in the original 

literature on sORF [33]. As shown in Table Ⅳ，tools such as 

codingCapacity, PsORFs, CPPred-sORF, and DeepCPP employ 
discrete encoding schemes based solely on biological features. 
In contrast, UAsORFs enhances this discrete encoding 
framework by incorporating one-hot encoding, thereby 
increasing the representational capacity of sORFs. Furthermore, 
U-Net can integrate one-hot encoded features with spatial 
features, improving the accuracy of identifying specific regions 
or categories within sORFs data and enhancing segmentation 
performance, thus capturing details that other tools might 
overlook. The CA mechanism can emphasize crucial channels 
within the one-hot encoded data, ensuring that key classification 
information is prioritized and enabling the capture of significant 
features that might be missed by other tools. 

 As can be seen in Fig. 7 and 8, UAsORFs showed 
improvements across various independent datasets, particularly 
in terms of ACC and MCC metrics. On eukaryotic datasets, 
UAsORF achieved the highest ACC and MCC, surpassing the 
best-performing tool codingCapacity. In the Mou-7385 dataset, 
our method exhibited increases in ACC and MCC by 2.38% 
(0.5935-0.5697) and 7.57% (0.2398-0.1641). Similar 
improvements were observed in the Hum-7111 and Ara-2125 
datasets. In the Pro-6318 dataset, UAsORF outperformed 
PsORFs but slightly lagged behind codingCapacity. On the Bac-
150 dataset, UAsORF saw improvements in ACC and MCC by 
2.15% (0.79-0.7685) and 8.96% (0.4715-0.3819). 

From Fig. 8, it is evident that experiment (b) achieved better 
predictive performance compared to the training evaluation 
strategy of experiment (a). On the Bac-150 dataset, compared to 
PsORFs, UAsORFs showed approximately 5.12% increase in 
ACC (0.8-0.7488) and approximately 27.09% increase in MCC 
(0.5764-0.3055). With an increase in the number of training 
samples, UAsORFs more effectively captured sORF sequence 
features, resulting in better predictive performance. This also 
underscores the importance of constructing high-quality training 
and evaluation data. 

In summary, our study demonstrates that UAsORFs exhibit 
strong generalization capabilities, showcasing excellent cross-
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species predictive ability, and demonstrating their capacity to 
distinguish coding sORFs from non-coding ones. Furthermore, 
by altering training and evaluation strategies, we further validate 
the outstanding performance of the UAsORFs model in cross-
species prediction. 

C. UAsORFs Ablation Experiments 

To investigate the robustness and reliability of the UAsORFs 
model, we conducted a series of ablation experiments. As shown 
in Table Ⅴ, we systematically remove various components from 
the UAsORFs model, including the U-Net, CA and other 
modules.  We utilized the Pro-1228 dataset for training and 
compared their predictive performance on both the eukaryotic 
(Hum-7111) and the prokaryotic (Pro-6318) dataset. 

Fig. 9A and Fig. 9B show a performance comparison of the 
ACC and MCC across three eukaryotic test datasets (Hum-7111, 
Ara-2125, and Mou-7385) and two prokaryotic test datasets 
(Pro-6318 and Bac-150) under different methods. Fig. 9C and 

Fig. 9D show a performance comparison of ACC and MCC 
between Base, CA+LS and joining U-Net block on multi-
species test datasets. Performance comparison of ACC index 
and MCC index on multi-species test dataset by adding CA(Fig. 
9E), LS(Fig. 9F) block with Base et al. 

From Table Ⅴ and Fig. 9, it is evident that compared with 
the Base version, after adding U-Net, CA, and LS modules, the 
UAsORFs model improves the ACC(Fig. 9A) and MCC (Fig. 
9B)to 62.39% and 29.59% on the eukaryotic dataset, and 91.7% 
and 83.67% on the prokaryotic dataset respectively. 
Specifically, in Fig. 9C and Fig. 9D, compared Base and 
CA+LS, the inclusion of the U-Net module in UAsORFs lead to 
significant improvements in ACC and MCC, increasing by 
2.19% and 3.36% on the Hum-7111 test dataset. Fig. 9E and Fig. 
9F demonstrate the enhancement in predictive performance after 
incorporating the CA and LS modules. The experimental results 
demonstrate the effectiveness of using U-Net, CA, and LS 
modules for extracting sORFs features. 

 
Fig. 6. Performance comparison of hybrid coding. 
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TABLE IV.  COMPARISON OF UASORFS WITH SEVERAL OTHER PREDICTION TOOLS 

Method Year Feature Model 

CPPred 2019 
ORF length, ORF coverage, ORF integrity, Fickett score, Hexamer 

score, PI, Gravy, instability, CTD features 
SVM classifier 

MiPepid 2019 4-kmer logistic regression 

CPPred-sORF 2020 GCcount, mRNN-11codons and all features used by CPPred SVM classifier 

DeepCPP 2020 
maximum ORF length, mean hexamer score, k-mer, ORF 
coverage, Fickett score, g-gap and nucleotide bias 

CNN 

PsORFs 2021 Codon frequency Random forest 

codingCapacity 2023 
z-curve, codon frequency, k-mer and all features used by CPPred-
sORF 

Random forest 

Our-method 2024 gmk U-Net,CA 

 

Fig. 7. The result of SN(A), SP(B), ACC(C)and MCC(D)for experiment (a). 
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Fig. 8. The results of SN(A), SP(B), ACC and MCC(C) for PsORFs and UAsORFs using Pro-6318 train dataset. 

TABLE V.  DESIGN AND RESULTS OF ABLATION EXPERIMENTS FOR HYBRID CODING 

Dataset Method U-Net CA LS ACC MCC 

Hum-7111 Base - - - 0.5719 0.1719 

 CA+LS -   0.6020 0.2623 

 U-Net+LS  -  0.5679 0.1773 

 U-Net+CA   - 0.5945 0.2301 

 U-Net+CA+LS    0.6239 0.2959 

Pro-6318 Base - - - 0.8900 0.7864 

 CA+LS -   0.9094 0.8033 

 U-Net+LS  -  0.8960 0.7983 

 U-Net+CA   - 0.9156 0.8322 

 U-Net+CA+LS    0.9170 0.8367 
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Fig. 9. Comparison of multi-species prediction performance of U-Net, CA and LS blocks of UAsORFs on independent test datasets.
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D. Summarize 

Through cross-species experiments and ablation studies on 
datasets from different species, we comprehensively evaluated 
the performance of the UAsORFs model, and verified the 
effectiveness of hybrid coding, U-Net, CA, and LS in the 
UAsORFs, which can effectively distinguish coding sORFs 
from non-coding ones. There are two main reasons for the 
outperformance of UAsORFs over the other methods. Firstly, 
the hybrid coding strategy can access and combine the global 
and local sequence information of sORFs to enhance the sORF 
representation. Secondly, deep learning effectively and 
autonomously learns to extract the features of sORFs, the feature 
fusion mechanism of up-sampling and intermediate variables in 
the U-Net module contribute to deep feature mining of sORFs. 
The CA attention mechanism is able to better capture the 
complex dependencies between nucleotides, thereby improving 
the understanding of interactions in sORF sequences. The 
channel attention mechanism can adaptively learn the 
importance of each channel, which enhances the model's 
representation of nucleotide pairing features. 

VI. CONCLUSIONS 

In this work, our study uses a hybrid encoding of one-hot and 
gkm coding, which retains both the global sequence order 
information and captures biological features. This approach 
fully utilizes the advantages of both methods, enhancing the 
encoding capability of the sequences and greatly avoiding the 
shortcomings such as insufficient sequence features and human 
intervention caused by a single encoding method. Additionally, 
we propose a deep learning architecture called UAsORFs, the 
deep learning framework distinguish between coding sORFs 
and non-coding sORFs through autonomous learning. The 
framework used in this study does not require extensive manual 
extraction of features, effectively learns essential sORFs 
features across multiple species and achieve remarkable 
predictive performance for multi-species sORFs. Additionally, 
the UAsORFs is a new, novel and efficient method for the 
prediction of protein-coding sORFs. 

The study has seversal limitations. Firstly, the smaller 
sORFs dataset restricts the ability of the model to learn sORFs 
features. This is supported by the Multi-species predictions 
experiment (b), which demonstrates that increasing training 
samples allows UAsORFs to better capture sORFs sequence 
features, resulting in better predictive performance. Additionally, 
models trained on prokaryotic species exhibit suboptimal 
performance on eukaryotic protein-coding sORFs, suggesting 
that the current prokaryotic models may not capture certain 
features present in eukaryotic organisms. Future research should 
focus on expanding the sORF dataset and constructing a large-
scale multi-species dataset to enhance capture features of 
eukaryotic sORFs and improve the applicability for sORF 
prediction. Furthermore, exploring species-specific 
characteristics and integrating other types of biological data (e.g., 
epigenetic marks, RNA-Seq data) could lead to the development 
of new biological sequence encoding schemes and further 
enhance prediction accuracy. 
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