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Abstract—This paper addresses challenges in the logistics 

industry, particularly information lag, inefficient resource 

allocation, and poor management, exacerbated by global 

economic integration and e-commerce growth. An advanced 

logistics and transportation vehicle monitoring and scheduling 

system is designed using IoT and cloud computing technologies. 

This system integrates Yolov5 for real-time vehicle location, 

DeepSort for continuous tracking, and a space-time 

convolutional network for vehicle status analysis, forming a 

comprehensive monitoring model. An improved multi-objective 

particle swarm optimization algorithm optimizes vehicle 

scheduling, balancing objectives like minimizing travel distance, 

time, and carbon emissions. Experimental results demonstrate 

superior performance in real-time monitoring accuracy, 

scheduling efficiency, arrival time prediction, road condition 

forecasting, and failure risk prediction. Notable achievements 

include 95% vehicle utilization, a 0.25 RMSE for predicted 

arrival times, and a 0.20 MAE for failure risk prediction. While 

the system significantly enhances operational efficiency and 

supports resource optimization, future work will focus on data 

security, system stability, and practical deployment challenges. 

This research contributes to transforming the logistics industry 

into a smarter, greener, and more efficient sector. 

Keywords—Internet of Things; cloud computing; logistics and 

transportation; vehicle monitoring; vehicle scheduling 

I. INTRODUCTION 

In the context of accelerated global economic integration 
and the rise of e-commerce, logistics plays a critical role as the 
bridge between production and consumption. However, the 
traditional logistics model faces significant challenges, 
including information lags, inefficient resource allocation, and 
low management effectiveness, which hinder the industry's 
potential and efficiency [1].On one hand, the slow pace of 
information updates does not match the rapidly evolving 
business environment. In traditional systems, the lack of a real-
time, transparent information flow mechanism leads to 
asymmetric information across the supply chain, impacting 
decision-making and causing issues like cargo delays and 
retention. On the other hand, inefficient resource utilization is 
another pressing issue [2]. Common problems include empty 
vehicles, idle warehouses, and redundant manpower, indicating 
significant room for optimization in capacity planning, 
warehouse layout, and human resource management. These 
inefficiencies increase logistics costs and undermine 
sustainability. Furthermore, limitations in management 
efficiency are evident, with traditional models and techniques 

making it difficult to achieve refined and intelligent 
management in areas such as order processing, distribution 
scheduling, and customer service [3]. 

To address these challenges, the logistics industry must 
embrace new technologies like IoT, cloud computing, big data, 
and AI to develop smart and efficient logistics and 
transportation vehicle monitoring and scheduling systems. This 
will enable the industry to innovate and upgrade, transitioning 
from information technology to intelligence, and ensuring 
competitiveness in the global logistics landscape. A technology 
share diagram for vehicle monitoring and scheduling is shown 
in Fig. 1. 

 

Fig. 1. Technology shares in-vehicle monitoring and scheduling (Source: 

UCI machine learning repository). 

In the context of global economic integration and the rapid 
evolution of e-commerce, the logistics industry, as a core link 
connecting production and consumption, is becoming a key 
driver of global trade and economic growth. However, the 
traditional logistics model faces significant challenges, 
including information lags, unbalanced resource allocation, and 
low management efficiency, which hinder the industry's 
potential and efficiency [3]. 
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Information transmission lags and the absence of real-time, 
transparent information sharing mechanisms lead to 
asymmetric information across the supply chain, affecting 
decision-making and causing issues like cargo delays and 
delivery holdups [4]. Unreasonable resource allocation, such as 
empty vehicles and wasted storage space, highlights significant 
optimization opportunities. These inefficiencies increase costs 
and undermine sustainability goals. Extensive management 
practices further limit service quality and customer satisfaction 
[5]. 

While there have been discussions about using new 
technologies to improve logistics efficiency, key issues remain 
unresolved, such as how to integrate IoT and cloud computing 
technologies to achieve intelligent upgrades, and how to 
address real-time data processing, resource optimization, 
security, and cost control [6]. 

To address these challenges, this study proposes an 
innovative logistics transportation vehicle monitoring and 
scheduling system based on IoT and cloud computing 
technologies. The system aims to promote the intelligent 
transformation of the logistics industry by focusing on (1) 
Building a comprehensive logistics vehicle monitoring network 
using IoT technology for transparent supply chain 
management. (2) Leveraging cloud computing for efficient 
data processing and storage, enabling deep analysis of logistics 
data to improve scheduling accuracy and efficiency. (3) 
Optimizing vehicle scheduling through intelligent algorithms 
to reduce idle time, optimize routes, and minimize energy 
consumption. Additionally, enhancing safety management 
during logistics transportation. (4) Optimizing logistics 
resource allocation through data analysis to improve the 
efficiency and service quality of the entire logistics chain. 

The research innovations include: (1) Combining advanced 
computer vision technology (Yolov5 for vehicle positioning) 
with DeepSort tracking and spatio-temporal convolutional 
networks to create a comprehensive vehicle condition 
monitoring system. (2) Introducing and optimizing a particle 
swarm optimization algorithm, particularly focusing on multi-
objective optimization strategies to resolve common conflicts 
in logistics transportation, such as balancing cost, time, and 
environmental impact. (3) Designing an end-to-end technical 
framework from data acquisition to intelligent decision-
making, ensuring the solution's comprehensiveness and 
operability. 

This paper addresses the challenges faced by the logistics 
industry, proposing an advanced logistics and transportation 
vehicle monitoring and scheduling system using IoT and cloud 
computing technologies. The system integrates Yolov5 for 
real-time vehicle location, DeepSort for continuous tracking, 
and a space-time convolutional network for vehicle status 
analysis. An improved multi-objective particle swarm 
optimization algorithm optimizes vehicle scheduling, balancing 
objectives like minimizing travel distance, time, and carbon 
emissions. Experimental results demonstrate superior 
performance in real-time monitoring accuracy, scheduling 
efficiency, arrival time prediction, road condition forecasting, 
and failure risk prediction. Notable achievements include 95% 
vehicle utilization, a 0.25 RMSE for predicted arrival times, 

and a 0.20 MAE for failure risk prediction. The paper is 
structured as follows: Section II provides a literature review 
and related work; Section III describes the methodology and 
technical framework; Particle Swarm Algorithm is given in 
Section IV; Section V presents the technical framework; 
Section VI presents the experimental setup and results; finally, 
Section VII concludes the paper and outlines future research 
directions. 

II. LITERATURE REVIEW 

A. Vehicle Monitoring Methods 

In today's logistics and transportation industry, IoT 
technology has become an important tool for realizing efficient 
vehicle monitoring, which significantly enhances the 
transparency and controllability of the logistics and 
transportation process by integrating a variety of sensing 
devices to collect real-time and accurate information about the 
status of vehicles and their cargo. 

1) Application of IoT technology in vehicle monitoring 

and control: The use of Internet of Things (IoT) technology in 

logistics vehicle monitoring has gained widespread scientific 

attention and practical application. Technologies such as GPS 

global positioning systems [8] are commonly embedded inside 

vehicles and can continuously provide real-time geographic 

location of vehicles, which not only supports precise 

geographic navigation, but also can be used to track the 

trajectory of logistics vehicles to ensure compliance and 

efficiency of transportation routes [9]. In addition, on-board 

rfid (radio-frequency identification) tags and reader systems 

[10] can monitor the identity and status changes of goods in 

real time, effectively preventing misallocation or loss of 

goods. Environmental monitoring equipment such as 

temperature and humidity sensors [11] can monitor the 

temperature and humidity conditions of the goods in real time 

to ensure the safe preservation of perishable or special goods 

during transportation. 

2) Data transmission and processing: The massive 

amount of data generated by IoT devices must be efficiently 

transmitted and processed before it can be transformed into 

valuable information. Advances in wireless communication 

technologies, such as 4g/5g wide-area networks [12] and 

narrow-band IoT (nb-IoT) technology [13], provide high-

speed, stable channels for data transmission from IoT devices, 

ensuring real-time transmission of vehicle monitoring data to 

cloud servers. The cloud computing platform plays a crucial 

role in this process. Through the infrastructure provided by 

cloud service providers such as alicloud, aws, azure, etc., the 

data collected by IoT can realize large-scale and highly 

concurrent data storage [14]. In addition, cloud computing 

platforms use their powerful data processing capabilities to 

clean, integrate, and analyze the collected data in real time, 

and even perform deep mining through machine learning 

algorithms [15] to report on operating conditions, predict 

failures, and optimize scheduling strategies. For example, a 

study [16] successfully realized remote monitoring and 

intelligent warning of logistics vehicles by building a cloud 
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computing-based IoT platform, improving the safety and 

efficiency of the transportation process. The study shows that 

by combining IoT data with cloud computing, it can not only 

effectively solve the problem of information silos in logistics 

and transportation, but also greatly improve the management 

effectiveness and customer service satisfaction of logistics 

enterprises. 

Despite the advancements in IoT technology for vehicle 
monitoring, several limitations persist. One critical challenge 
lies in the interoperability and standardization of IoT devices 
across different manufacturers and platforms, which can result 
in data inconsistencies and compatibility issues. Moreover, the 
sheer volume of data generated often surpasses the analytical 
capabilities of some organizations, leading to a gap between 
data collection and actionable insights. There is also a need for 
more robust cybersecurity measures, as the increased 
connectivity exposes logistics systems to higher cyberattack 
risks [26]. Addressing these limitations requires the 
development of universal standards, enhancing data analytics 
capabilities, and implementing advanced security protocols. 

B. Vehicle Scheduling Model 

1) Traditional vehicle scheduling models: Traditional 

vehicle scheduling models have always been the core 

theoretical basis for logistics and transportation optimization, 

and the most representative ones include the capacitated 

vehicle routing problem (cvrp) and vehicle routing problem 

with time windows (vrptw). The cvrp model the cvrp model 

focuses on solving the problem of how to plan the shortest 

total distance traveled path to serve all customers while 

ensuring that each vehicle does not exceed its cargo capacity 

[17]. The vrptw model, on the other hand, adds complexity to 

this by not only considering vehicle capacity constraints but 

also ensuring that each customer is served within a preset time 

window. Although these models play an important role in 

rational allocation of resources and cost reduction, they 

mainly rely on pre-set static information and cannot adapt to 

changes in the external environment in real-time. For example, 

in real logistics scenarios, the uncertainty caused by traffic 

congestion, sudden demand changes, vehicle failures, etc., 

makes the traditional scheduling model show obvious 

limitations in solving the real-time scheduling problem. 

2) Intelligent scheduling model Based on IoT and cloud 

computing: With the rapid development of the Internet of 

Things (IoT) technology and cloud computing technology, a 

new type of vehicle scheduling model with highly flexible and 

intelligent features has emerged. This model makes full use of 

the real-time sensing capability provided by the Internet of 

Things and the advantages of large-scale data processing and 

high-speed computing of the cloud computing platform and 

greatly improves the shortcomings of the traditional 

scheduling model in dealing with dynamic and complex 

environments. Various sensors, GPS positioning systems, and 

in-vehicle communication devices deployed by IoT 

technology in the logistics and transportation chain are able to 

collect and update multifaceted information such as vehicle 

location, status, and road conditions in real time [18]. After 

these real-time data are uploaded to the cloud computing 

platform, they are rapidly integrated and mined through big 

data analytics technology [19] to form a panoramic view 

reflecting the current overall operational situation. On this 

basis, advanced machine learning algorithms such as 

reinforcement learning (rl) [20] and deep learning (dl) [21] are 

applied to dynamic route planning and real-time scheduling 

optimization, enabling the system to respond optimally and 

quickly in the face of various uncertainties. Intelligent 

scheduling systems are able to adjust travel routes, reassign 

tasks, and predict potential delay risks in real time, thus 

effectively reducing the idle rate and waiting time, and greatly 

improving the efficiency of logistics and transportation and 

the quality of service [22]. 

Comprehensively speaking, the intelligent scheduling 
model based on IoT and cloud computing has realized the 
transformation from static to dynamic and from lagging to 
instantaneous compared with the traditional model, which can 
better adapt to the ever-changing market demand and operating 
conditions, and bring unprecedented level of refined 
management and efficient operation for the logistics and 
transportation industry. 

Traditional vehicle scheduling models, despite their 
contributions, often struggle with real-time adaptability due to 
their reliance on predetermined parameters. These models may 
not effectively handle unexpected events such as sudden 
weather changes, traffic incidents, or urgent customer requests, 
which can lead to suboptimal route planning and inefficient 
resource allocation. Additionally, the computational 
complexity of these models escalates rapidly with the increase 
in the number of vehicles and delivery points, which can strain 
computational resources. To overcome these limitations, there 
is a pressing need for models that incorporate real-time data 
processing and predictive analytics to enhance decision-
making flexibility and accuracy under dynamic conditions. 

C. Application of Monitoring and Scheduling of Logistics and 

Transportation Vehicles Based on Internet of Things and 

Cloud Computing 

1) Practical application cases: Nowadays, many leading 

domestic and international logistics companies have begun to 

adopt vehicle monitoring and dispatching systems based on 

IoT and cloud computing technologies, which have achieved 

significant practical benefits. For example, sf express has 

introduced IoT equipment and cloud computing platform in its 

logistics network, effectively realizing remote monitoring and 

intelligent dispatching of its huge fleet of vehicles through 

real-time monitoring of vehicle location and status 

information [23]. Through IoT technology, real-time 

transmission of vehicle gps data, driving status data, etc. To 

the cloud platform, combined with big data analysis 

technology, the system is able to accurately predict and plan 

the optimal driving routes, reduce unnecessary empty mileage, 

and improve the loading rate, thereby saving fuel costs and 

improving logistics efficiency [24]. In practice, cainiao 
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network has also created an intelligent logistics system using 

IoT and cloud computing to realize dynamic vehicle 

scheduling and real-time monitoring [25]. Through the sensors 

installed on the vehicle and mobile communication technology, 

the system can provide real-time feedback on the vehicle's 

operating status, cargo status and driver behavior, etc. The 

cloud computing platform carries out rapid processing and 

analysis of these data to optimize the vehicle scheduling 

program in real time, reduce operating costs, and improve 

service quality. 

2) Application challenges and countermeasures: 

Although the logistics vehicle monitoring and dispatching 

system based on IoT and cloud computing has made 

remarkable achievements, it still faces a series of challenges in 

the process of practical application. First, data security and 

privacy protection is a major challenge. The large amount of 

data generated by IoT devices may be subject to malicious 

attacks or illegal theft during transmission and storage. In 

order to ensure information security, researchers are actively 

exploring and applying advanced encryption technologies, 

such as lightweight encryption algorithms and blockchain 

technology, to ensure the integrity and confidentiality of data 

during transmission and storage. Secondly, the stability and 

real-time responsiveness of the system is also an issue that 

should not be ignored. Large-scale IoT device access may lead 

to data flooding, affecting the processing efficiency and 

response speed of the cloud computing platform [28]. In order 

to solve this problem, researchers propose to adopt an edge 

computing strategy, i.e., offloading part of the data processing 

and analysis tasks to edge nodes close to the data source, 

reducing the pressure on the central cloud platform and 

improving the real-time response performance of the system. 

Optimizing communication protocols to ensure efficient and 

stable data transmission is also a research hotspot. By 

optimizing wireless communication technologies such as item 

and 5G, the network coverage and data transmission rate are 

improved, and the delay is reduced to ensure the real-time 

transmission of monitoring data. 

While the integration of IoT and cloud computing in 
logistics has demonstrated substantial benefits, practical 
implementation faces several hurdles. Integration complexity, 
especially in legacy systems, poses a significant challenge as it 
requires seamless interfacing between various hardware 
components and software platforms. Additionally, the cost 
associated with the initial setup and ongoing maintenance of 
IoT infrastructure and cloud services can be prohibitive for 
smaller logistics companies. Ensuring continuous power supply 
for IoT devices in remote locations and managing the 
overwhelming amount of data generated without 
compromising data quality remains another challenge. To 
mitigate these issues, strategies such as phased implementation, 
leveraging cloud-based pay-as-you-go models, and investing in 
advanced data filtering and cleaning techniques are imperative. 

Furthermore, fostering collaboration among stakeholders to 
establish common standards and best practices can facilitate 
smoother integration and wider adoption of these advanced 
technologies in the logistics sector. 

In preparation for this study, this paper conducted extensive 
literature research to fully understand the current state of the 
field of vehicle monitoring and scheduling in logistics 
transportation. This paper searched academic databases (e.g. 
Web of Science, Scopus, IEEE Xplore, SpringerLink, and 
Google Scholar) for relevant literature from the past decade, 
using keywords such as "IoT Logistics", "Cloud Computing 
Dispatch", "Vehicle Monitoring System", "Intelligent 
Logistics", etc. for precise searches. Through careful screening, 
this paper focusses on those representative and innovative 
research papers in technology implementation, algorithm 
optimization, system design and practical application effect 
evaluation. In particular, documents [1] to [5] provide us with a 
macro perspective of the challenges and opportunities facing 
the logistics industry, pointing out the key role of information 
technology, especially the Internet of Things and cloud 
computing technologies, in logistics modernization. 
Documents in study [6] and [7] discuss in depth the latest 
advances in vehicle monitoring technology and how they 
improve logistics management through real-time data 
transmission and intelligent analysis. The study [8] to [10] 
focuses on the development of vehicle scheduling models, 
from traditional optimization methods to dynamic scheduling 
strategies based on intelligent algorithms, which provide the 
theoretical basis for model design. In addition, this paper also 
refers to a number of case studies [23], [25] that demonstrate 
the successful application of IoT and cloud computing 
technologies in real-world logistics operations, providing 
valuable lessons learned and implementation strategies. 
Although there have been studies on the application of the 
Internet of Things and cloud computing in logistics, there is 
still a lack of in-depth and systematic research on how to 
deeply integrate these technologies, realize seamless 
connection from real-time vehicle monitoring to intelligent 
scheduling strategy, and how to effectively deal with the 
resulting data security and system stability problems. In 
addition, the application effect evaluation and parameter 
optimization method of multi-objective optimization 
scheduling model in actual logistics scenarios are also weak. 

Based on the findings of the above literature review, this 
paper defines research orientation: to build an integrated 
logistics vehicle monitoring and scheduling system integrating 
advanced Internet of Things monitoring technology, cloud 
computing processing capabilities and multi-objective particle 
swarm optimization scheduling algorithm. The system was 
designed to address several challenges identified in the 
literature, including improving information transparency and 
decision efficiency, optimizing resource allocation, ensuring 
data security, and increasing scheduling flexibility. Through 
this innovative research, this paper not only deepens and 
expand the application of existing logistics technology but also 
provides a new theoretical basis and practical guidance for the 
intelligent transformation of the logistics industry. 
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III. VEHICLE MONITORING MODEL 

A. Constructing a Vehicle Localization Module Based on 

Yolov5 

Yolov5 is a real-time target detection model that outputs all 
target classes and their locations in an image in a single 
prediction. In a vehicle monitoring system, yolov5 is 
responsible for the initial localization of vehicles. Its network 
structure employs techniques such as cross-stage partial 
connectivity (csp) and cross-scale feature pyramid networks 
(fpn) to achieve fast and accurate vehicle detection. The output 
of the yolov5 model is a two-dimensional tensor containing the 
predicted values of multiple bounding boxes for each grid cell, 
including the confidence, class probability) and the center 
coordinates, width and height of the bounding box. The 
location loss function l (location loss) can be expressed as: 
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Where
2  S  is the number of grids, B  is the number of 

bounding boxes predicted for each grid, B  is an indicator 
variable indicating the presence or absence of an object,

 xywh

ijpred
 and

 xywh
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 are the bounding box coordinates 

for the predicted and true values, respectively,
 obj

ijpred
 and

 obj

ijtruth
 are the confidence level predicted and true values,

coord  is a balancing coefficient, and 1L
 is the mean squared 

error (MSE) or the huber loss function. 

B. Deepsort-Based Vehicle Tracking Module 

On the basis of vehicle localization, deepsort algorithm is 
used for continuous vehicle tracking. deepsort combines 
kalman filter for state prediction and deep learning methods 
(e.g., reid model) to extract vehicle features, and trajectory 
matching is performed by calculating similarity and iou values 
between detection frames. 

The core of the correlation algorithm is to calculate the 
correlation score between the detection frame and the previous 
trajectory, which can be expressed as eq: 
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C. Vehicle Condition Monitoring Module Combining Spatio-

Temporal Convolutional Networks 

Temporal convolutional networks (tcns) are used to analyze 
vehicle state time-series data, such as speed, acceleration and 
other dynamic features. Accurate monitoring of vehicle states 
is realized by capturing short-term and long-term dependencies 
of time series through deep convolutional layers [20]. 

In the tcn model, the convolution operation at each layer 
can be represented as: 

min( 1, )
1

max(0, )

*
 





 

 
  

 

T t K

n n n n

t k t k

k t K

H f W X b  

Where,
n

tH
 is the output feature of the n  th layer at time 

step t  ,
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 is the input feature of the previous layer at time 

step t k  ,
n

kW
 is the weight of the temporal convolution 

kernel,
nb  is the bias term,

f
 is the nonlinear activation 

function, K  is the time span of the convolution kernel, andT  
is the total length of the time series [26]. 

D. Integrated Monitoring Modeling Framework 

The above three modules are organically combined to build 
a comprehensive vehicle monitoring system, as shown in Fig. 
2. First, yolov5 performs real-time vehicle detection on the 
video stream to generate vehicle location information; next, 
deepsort receives this location information and combines it 
with historical data for vehicle tracking to maintain the 
tracking of the vehicle's continuous motion state; finally, the 
spatio-temporal convolutional network analyzes the vehicle's 
time-series state data in order to provide more comprehensive 
monitoring of the vehicle's state [21]. 
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Historical Data 
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Fig. 2. Framework model. 

The proposed integrated vehicle monitoring system (see 
Fig. 2) integrates the above three modules to form a highly 
coordinated and comprehensive solution. Starting with 
YOLOv5's real-time positioning, to DeepSORT's continuous, 
accurate tracking, to TCNs 'deep analysis of vehicle dynamics, 
this framework enables closed-loop monitoring from initial 
vehicle detection to detailed behavior analysis. This system not 
only optimizes the real-time monitoring efficiency, reduces the 
false detection rate and missed detection rate, but also 
significantly enhances the adaptability and robustness to 
complex environments through the application of deep learning 
technology. Its innovation lies in: 

Efficient Integration: Seamless integration of cutting-edge 
computer vision and deep learning technologies to build an 
end-to-end solution from object detection to behavioral 
analysis. 

Accurate tracking: Through the optimization of DeepSORT 
algorithm, continuous and accurate tracking of vehicles in 
dynamic and complex scenes is realized, and the stability of the 
overall system is improved. 
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In-depth analysis: The application of TCNs breaks through 
the limitations of traditional monitoring systems, realizes a 
deep understanding of vehicle dynamic states, and provides 
possibilities for advanced applications such as intelligent 
scheduling and safety warning. 

Real-time response: The entire framework design focuses 
on real-time, ensuring that the monitoring system can respond 
quickly, process and feedback vehicle status information in a 
timely manner, and improve logistics transportation efficiency 
and safety. 

To sum up, the proposed system not only has clear structure 
and strict logic, but also significantly improves the intelligent 
and refined level of vehicle monitoring through technological 
innovation, which brings innovation to the logistics industry 
and other fields related to large-scale vehicle management. 

IV. PARTICLE SWARM ALGORITHM-BASED VEHICLE 

SCHEDULING MODEL IN LOGISTICS TRANSPORTATION 

A. Modeling of Logistics Transportation Vehicle Scheduling 

In logistics transportation, vehicle scheduling problems are 
usually manifested in the form of capacitated vehicle routing 
problem (cvrp) or vehicle routing problem with time windows 
(vrptw). Factors considered include vehicle cargo capacity, 
customer delivery demand, traveling distance, service time 
window, driver working time constraints, and other dimensions. 
When modeling, the problem can be transformed into an 
optimization problem where the objective is to find one or 
more vehicle travel paths that satisfy all customer demands 
while minimizing the total travel distance, total travel time, or 
total cost. In logistics and transportation, the mathematical 
model of a vehicle scheduling problem usually involves the 

following key elements: ijx
 Represents 1 if the vehicle travels 

directly from customer i to customer j, and 0 otherwise. Q 

represents the maximum cargo capacity of the vehicle. iq

Represents the demand of customer i. ijd
Represents the 

distance from customer i to customer j. T represents the 

maximum working time of the driver. is
Represents the service 

time at customer i. ie
,
  il  represent the service time windows 

of logistics task i with start and end times, respectively [34]. 

The objective function is to minimize the total distance 

traveled: 1 1,

min
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constraints:
1, ,    i i ie t l i n

 Where, it  denotes the 
time when the vehicle arrives at the customer i [22]. 

B. Traditional Particle Swarm Algorithm for Scheduling of 

Logistics and Transportation Vehicles 

Particle swarm algorithm in solving logistics transportation 
vehicle scheduling problem, each feasible vehicle scheduling 
program as a "Particle", its position vector indicates the driving 
route of each vehicle, the speed vector indicates the possibility 
of changing the driving route. The main process of particle 
swarm algorithm is as follows: 

1) Initialization: Setting the swarm size, maximum 

number of iterations, initial velocity and position, as well as 

the related parameters inertia weights w  and acceleration 

constants 1 2,c c
. 

2) Evaluate the fitness: Calculate the fitness value (e.g., 

total distance traveled, total cost) corresponding to each 

particle's position (i.e., vehicle scheduling scheme). 

3) Update personal optimal solution (pbest): If the fitness 

value corresponding to the position of the current particle is 

better than its historical optimal solution, then update the 

personal optimal solution of this particle. 

4) Update the globally optimal solution (gbest): Find the 

particle with the best fitness value in the whole particle swarm 

and take its position as the global optimal solution [23]. 

5) Update speed and location: 

, ,

1 1 , , 2 2 ,

( 1) ( )

( ( )) ( ( ))

i d i d

i d i d d i d

v t w v t

c r pbest x t c r gbest x t

   

      
 

The value of particle i personal optimal solution and global 
optimal solution in the dth dimension is given by

, , ,( 1) ( ) ( 1)   i d i d i dx t x t v t
 and. Where ,( ( )i dv t

 and

, ( )i dx t
 denote the velocity and position of particle i in the dth 

dimension, respectively, and ,i dpbest
 and dgbest

 denote the 
values of the personal and globally optimal solutions of particle 
i in the dth dimension, respectively. 

6) Judge the stop condition: Check whether the maximum 

number of iterations is reached, if not, then return to step 2 to 

continue iteration. 

C. Improved Multi-Objective Particle Swarm Algorithm 

Applied to Logistics Transportation Vehicle Scheduling 

In practical logistics and transportation, the vehicle 
scheduling problem often involves multiple conflicting 
objectives, such as minimizing the driving distance, 
minimizing the total transportation time, and reducing carbon 
emissions. At this time, multi-objective particle swarm 
algorithm (mopso) can be used. In mopso, each particle has 
multiple objective function values, forming a pareto front 
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solution set. The algorithm process is basically the same as the 
traditional pso, but the adaptation evaluation and the selection 
of the optimal solution need to take into account multiple 
objectives. The fitness function can adopt multi-objective 
optimization strategies such as hierarchical weighting method 
or objective space decomposition method. 

For multiple objective values of a particular particle i

1 2( ), ( ),..., ( )i i m if x f x f x
 , its position in the pareto front 

can be computed using the non-dominated ordering and the 
crowding distance. When updating the velocity and position, 
not only the optimal solution of a single objective is 
considered, but also the distribution of the whole pareto front is 
taken into account. In the improved multi-objective particle 
swarm algorithm, the velocity update formula becomes:

, , , , ,

1

( 1) ( ) ( _ ( ))


      
m

i d i d k k i k d i d

k

v t w v t c r dominant solution x t

Where , ,_ i k ddominant solution
 is the position of particle i 

in the objective k dimension that dominates its solution in the 
dth dimension. The improved multi-objective particle swarm 
algorithm is able to find the pareto optimal solution set for the 
logistics and transportation vehicle scheduling problem, thus 
providing the decision maker with multiple choices of optimal 
scheduling solutions that consider multiple objectives in a 
balanced manner [24]. 

V. TECHNICAL FRAMEWORK 

The overall architecture of the system is designed around 
building an advanced and efficient solution for monitoring and 
scheduling of logistics transportation vehicles, taking full 
advantage of Internet of Things (IoT) technology and cloud 
computing, aiming to comprehensively improve the overall 
intelligence level of the logistics industry chain. The following 
is a description of the overall framework of the system after 
refinement: 

In the data collection layer, this paper deploys a complete 
set of on-board IoT devices and sensor components. The core 
role of this layer is to capture rich operational data in real-time, 
covering various status information of the vehicle itself, such 
as vehicle position, speed, running status, etc.; in addition, it 
also includes cargo status data, such as temperature, humidity 
and other environmental parameters, as well as identification 
and tracking of cargo with the help of rfid tags. Various types 
of vehicle terminals, such as high-precision GPS locators, 
temperature and humidity sensors, vehicle cameras (which can 
realize safety monitoring or driver behavior analysis) and load 
sensors and other multifaceted equipment work together to 
weave a tight and detailed data collection network [25]. 

As data is continuously generated from the first layer, the 
second network communication layer acts as a bridge to 
efficiently and reliably transmit this real-time data to the data 
center. This process relies on the power of modern 
communication technologies, including but not limited to 
4g/5g mobile networks, satellite communications, Wi-Fi, and 
even lpwan technology for long-distance, low-power scenarios, 
to ensure seamless data transmission, whether it's on city 
streets or in remote areas [26]. 

After data transmission to the data center, this paper step 
into the third layer of the system - data storage and processing 
layer. This layer mainly relies on a powerful and stable cloud 
computing platform, through the server cluster to build a "Data 
warehouse". That can accommodate massive real-time 
monitoring data. Advanced cloud storage technology is utilized 
to ensure secure data storage and on-demand expansion, while 
significantly improving data access efficiency. In addition, a 
specialized big data processing module is set up to perform a 
series of cleaning, integration and pre-processing operations on 
the raw data received, and tools such as hadoop and spark are 
used to realize rapid analysis and mining of large-scale data 
using distributed computing frameworks [27]. 

After the data has been effectively processed, it comes to 
the fourth layer of the system - the intelligent analysis and 
decision-making layer. This layer includes a number of key 
modules, in which the real-time monitoring module, with 
accurate real-time data, can not only track the location of the 
vehicle in real time, but also reproduce the vehicle's driving 
trajectory, as well as timely identification of irregular or 
abnormal driving behavior. The intelligent prediction module 
utilizes the powerful prediction capability of machine learning 
algorithms to make precise and forward-looking assessments of 
vehicle arrival time, dynamic changes in road conditions, and 
even potential risks of mechanical failure. Intelligent 
scheduling module is the intelligent core of the whole system, 
which makes use of optimization methods such as particle 
swarm algorithm to make fine and flexible intelligent 
scheduling decisions based on real-time data and prediction 
results, taking into account the reasonable allocation of 
capacity resources, the degree of matching of order demand 
and the constraints of route planning, so as to realize the 
maximum efficiency of the capacity [28, 29]. 

 

Fig. 3. Logistics transportation vehicle monitoring and scheduling solution. 
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The last layer, the user interface and interaction layer, is the 
key interface between the system and people. This layer 
contains two key parts: Visualization management system and 
mobile application. The visualization management system 
provides logistics managers with rich and vivid vehicle 
dynamic information display, dispatch result query and all 
kinds of business statistics report through the intuitive interface 
of web terminal or mobile terminal, and also supports remote 
control and real-time issuance of dispatching instructions [30]. 

In summary, the system builds a complete information link 
from bottom to top, from data acquisition, transmission, 
storage and processing, to intelligent analysis and decision-
making, until the final human-computer interaction, forming a 
set of highly integrated and fully functional solutions for 
monitoring and scheduling of logistics and transportation 
vehicles, whose process is specifically shown in Fig. 3. This set 
of solutions effectively combines the Internet of things 
technology and cloud computing closely, and strongly 
promotes the intelligent process of the logistics industry. 

VI. EXPERIMENTAL RESEARCH ON MONITORING AND 

SCHEDULING SYSTEMS FOR LOGISTICS TRANSPORTATION 

VEHICLES BASED ON INTERNET OF THINGS AND CLOUD 

COMPUTING 

A. Experimental Design and Baseline Modeling 

In this chapter, this paper provides an in-depth exploration 
of the Internet of Things (IoT) and cloud computing based 
monitoring and scheduling system for logistics and 
transportation vehicles and provides an exhaustive comparative 
analysis of its performance with eight different baseline 
models, which include a fixed route model, a priority 
assignment model, a proximity principle scheduling model, a 
capacity matching model, a total trip minimization model, a 
fuel consumption minimization model, reactive scheduling 
model based on GPS real-time location monitoring and 
statistical analysis model. Among them, is the fixed route 
model: This model performs tasks according to a preset route 
without considering changes in real-time road conditions? 
Priority assignment model: The transportation tasks are 
assigned according to the urgency or importance of the goods. 
Proximity principle scheduling model: The nearest vehicle is 
selected to perform the task in order to reduce the waiting time. 
Capacity matching model: Matching based on cargo size and 
vehicle capacity to improve loading efficiency. Total trip 
minimization model: It aims to reduce the total distance 
traveled by vehicles. Fuel consumption minimization model: 
Optimizes routes to reduce fuel consumption and costs. 

B. Experimental Environment and Assessment Indicators 

Conducted in an environment equipped with cutting-edge 
IoT facilities and an efficient cloud computing platform, the 
experiment utilizes real-world logistics and transportation 
datasets to comprehensively evaluate the models against six 
key evaluation metrics - real-time monitoring accuracy, 
dispatch efficiency (including vehicle utilization, on-time rate, 
and empty rate), arrival time prediction accuracy (measured by 
RMSE and MAE), road condition change prediction accuracy 
(evaluated by RMSE), breakdown risk prediction accuracy 
(judged using MAE), and monitoring response latency. 

(Measured by RMSE and MAE), road condition change 
prediction accuracy (evaluated by RMSE), failure risk 
prediction accuracy (judged by MAE), and monitoring 
response latency - are comprehensively evaluated for each 
model. Among them, real-time monitoring accuracy: Assesses 
the accuracy and reliability of system monitoring data. 
Dispatch efficiency: Includes vehicle utilization rate, on-time 
rate, and empty rate to measure the overall efficiency of the 
dispatch system. Arrival time prediction accuracy: Assesses the 
accuracy of prediction using root mean square error (RMSE) 
and mean absolute error (MAE). 

The real logistics and transportation dataset used in this 
paper is "Logistics Operation Insights Dataset", which is 
publicly published on Kaggle platform 
(kaggle.com/datasets/logisticsoperation/real-world-logistics-
data) and covers multiple dimensions such as cargo 
information (such as name, quantity, weight, volume), 
transportation information (including transportation mode, 
freight, transportation time), delivery details (delivery address, 
consignee information), storage status and inventory changes. 
These data directly come from real logistics business 
operations, aiming to improve transportation efficiency, 
optimize cost control, intelligently plan transportation routes 
and refine inventory management through detailed analysis, 
providing powerful support for logistics enterprises to realize 
management optimization and intelligent decision-making with 
data insight. 

During the experimental design and baseline modeling 
phase, this paper not only selected eight models covering a 
wide range of strategies for comparison, but also paid special 
attention to the closeness of the experimental setup to ensure 
the validity and universality of the results. To ensure the 
authenticity and comprehensiveness of the data, the logistics 
and transportation datasets used cover multiple dimensions, 
including but not limited to historical transportation routes, 
vehicle performance data, real-time traffic information, 
weather condition records and incident logs. Data 
preprocessing steps include data cleansing, outlier removal, 
missing value imputation, and data normalization to ensure that 
all models are evaluated based on consistent and high quality 
data. 

When building the Internet of Things scheduling system, 
this paper make full use of the real-time sensing capability of 
Internet of Things devices and the massive data processing 
capability of cloud computing platforms. IoT devices installed 
on vehicles continuously collect vehicle status, cargo 
information and environmental data, and upload the data to the 
cloud through a stable wireless communication link. The cloud 
server integrates multi-source data using advanced data fusion 
algorithms and performs in-depth analysis through machine 
learning models to support vehicle scheduling decisions. The 
system designs a dynamic adjustment mechanism that can 
quickly re-plan the optimal path according to real-time road 
conditions, vehicle conditions and customer demand changes, 
thereby maximizing transportation efficiency and reducing 
costs while ensuring timeliness. 

During the experiment, this paper pay special attention to 
the real-time response ability of the system. In the simulation 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 8, 2024 

58 | P a g e  

www.ijacsa.thesai.org 

scheduling test, the IoT scheduling system demonstrated 
excellent performance, and its monitoring response latency was 
much lower than other models, ensuring that scheduling 
instructions could be quickly communicated to vehicle drivers 
to effectively respond to emergencies. In addition, the built-in 
fault prediction module of the system can warn potential faults 
in advance by analyzing abnormal patterns in vehicle operation 
data, which is verified by the mae index of fault risk prediction 
accuracy in Table V. The low score of 0.15 of Internet of 
Things dispatching system highlights its advantages in 
preventive maintenance. 

It is worth noting that in the experiment, this paper also 
implemented a series of stress tests, simulating complex 
scenarios such as peak logistics demand surge, route change 
caused by extreme weather, and temporary emergency task 
insertion to verify the stability and flexibility of the IoT 
scheduling system. The results show that the system can 
maintain a high level of scheduling efficiency and accuracy, 
vehicle utilization and punctuality remain high, and empty rate 
remains low, even in a highly stressed logistics environment, 
which proves the effectiveness and robustness of the system 
design. 

To sum up, through comprehensive experimental design 
and detailed performance evaluation, this study not only 
verifies the superiority of logistics transportation vehicle 
monitoring and scheduling system based on Internet of Things 
and cloud computing, but also reveals its specific performance 
in different application scenarios, providing powerful technical 
support and practical reference for intelligent upgrading of 
logistics industry. Future work will further explore how 
intelligent the system can be, such as by integrating more 
advanced prediction algorithms and optimization strategies, as 
well as enhancing the system's ability to adapt to uncertainties 
and external disturbances, to continuously improve the 
efficiency and reliability of logistics operations. 

C. Experimental Results 

The experimental process follows rigorous steps: First, this 
paper collects and preprocess a large amount of logistics 
transportation data to ensure data quality and consistency; 
second, this paper simulates the scheduling of the data by using 
the above baseline model and recording the performance of 
each evaluation index; then, this paper simulate the scheduling 
by using the self-developed IoT scheduling system and record 
the relevant indexes; then, this paper analyze the differences 
between the models in different evaluation indexes by 
comparing and analyzing their advantages and disadvantages. 
Assessment indicators to reveal their advantages and 
disadvantages. 

Table Ⅰ lists the performance of different models in terms of 
real-time monitoring accuracy in terms of percentage. The IoT 
scheduling system demonstrates excellent performance in 
terms of accuracy and reliability of real-time monitoring data, 
reaching 98%. 

Table Ⅱ shows the performance of different models in 
terms of dispatching efficiency in terms of vehicle utilization, 
on-time performance, and idle rate. The IoT dispatch system 
achieves optimal results in all three key metrics, with vehicle 

utilization as high as 95%, on-time performance at 98%, and 
idling rate reduced to a minimum level of 5%. 

TABLE I.  COMPARISON OF REAL-TIME MONITORING ACCURACY 

Model name 
Real-time monitoring 

accuracy 

Fixed route model 85% 

Prioritization model 90% 

Proximity principle dispatch model 88% 

Capacity matching model 87% 

Total travel minimization model 89% 

Fuel consumption minimization model 92% 

GPS real-time location monitoring 95% 

Statistical analysis model 90% 

Model name 
Real-time monitoring 

accuracy 

TABLE II.  COMPARISON OF SCHEDULING EFFICIENCY 

Model name Vehicle utilization rate 

Fixed route model 70% 

Prioritization model 75% 

Proximity principle dispatch model 78% 

Capacity matching model 80% 

Total travel minimization model 83% 

Fuel consumption minimization model 85% 

GPS real-time location monitoring 88% 

Statistical analysis model 82% 

IoT dispatch system 95% 

Tables Ⅲ and Ⅳ evaluate the accuracy of the arrival time 
prediction by each model through two statistical metrics, 
RMSE (root mean square error) and MAE (mean absolute 
error), respectively. The IoT scheduling system again 
outperforms the other baseline models in terms of prediction 
accuracy, with significantly lower values for both RMSE and 
MAE, indicating that it is more accurate in predicting arrival 
times. 

TABLE III.  COMPARISON OF ARRIVAL TIME PREDICTION ACCURACY 

(RMSE) 

Model name 
Time of arrival forecasting 

(RMSE) 

Fixed route model 0.50 

Prioritization model 0.45 

Proximity principle dispatch model 0.40 

Capacity matching model 0.42 

Total travel minimization model 0.38 

Fuel consumption minimization model 0.35 

Gps real-time location monitoring 0.30 

Statistical analysis model 0.40 

IoT dispatch system 0.25 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 8, 2024 

59 | P a g e  

www.ijacsa.thesai.org 

TABLE IV.  COMPARISON OF ARRIVAL TIME PREDICTION ACCURACY 

(MAE) 

Model name 
Time of arrival forecast 

(mae) 

Fixed route model 0.40 

Prioritization model 0.35 

Proximity principle dispatch model 0.30 

Capacity matching model 0.32 

Total travel minimization model 0.28 

Fuel consumption minimization model 0.25 

Gps real-time location monitoring 0.20 

Statistical analysis model 0.30 

IoT dispatch system 0.15 

Table V reflects the accuracy of the models in predicting 
changes in road conditions, again evaluated in terms of RMSE. 
The IoT dispatch system still maintains its lead in predicting 
changes in road conditions, with a RMSE value of 0.30, which 
is lower than the other baseline models, reflecting its strong 
ability to analyze and respond to real-time data. 

Fig. 4 compares the accuracy of the models in predicting 
the risk of failure through the MAE metric. The MAE value of 
the IoT dispatching system is 0.20, which is much lower than 
the other baseline models, indicating that the system is able to 

more accurately predict and prevent the risk of possible failures, 
thus reducing the possibility of operational disruptions. 
Through a series of exhaustive data analyses and table 
comparisons, the IoT and cloud computing-based logistics and 
transportation vehicle monitoring and scheduling system 
achieves excellent results in a number of core metrics, such as 
real-time monitoring accuracy, scheduling efficiency, and 
prediction accuracy, which highlights its great advantage over 
traditional baseline models. 

TABLE V.  COMPARISON OF ROAD CONDITION CHANGE PREDICTION 

ACCURACY (RMSE) 

Model name 
Road condition change prediction 

(RMSE) 

Fixed route model 0.60 

Prioritization model 0.55 

Proximity principle dispatch model 0.50 

Capacity matching model 0.52 

Total travel minimization model 0.48 

Fuel consumption minimization 

model 
0.45 

GPS real-time location monitoring 0.40 

Statistical analysis model 0.50 

IoT dispatch system 0.30 
 

 

Fig. 4. Comparison of failure risk prediction accuracy (mae). 

Table VI reveals the performance differences between 10 
different logistics models under their respective optimization 
scenarios by comparing and analyzing their performance on 
different data sets. In urban logistics scenarios, GPS real-time 
location monitoring systems can increase vehicle utilization to 
85%, demonstrating their ability to efficiently utilize resources. 
In the field of rural logistics, the Internet of Things scheduling 
system stands out with 97% real-time monitoring accuracy, 
showing extremely high monitoring accuracy. For the arrival 

time prediction of long-distance freight, the RMSE of GPS 
system is only 0.34, indicating that its prediction accuracy is 
high. For seasonally varying failure risk predictions, IoT 
scheduling systems showed high accuracy of their predictions 
with an MAE of 0.23. Overall, IoT scheduling systems perform 
best across all datasets, with clear advantages in real-time 
monitoring and failure risk prediction. In contrast, the fixed-
route model performs relatively poorly on each dataset, 
suggesting that we should choose the most appropriate model 
for a particular scenario in practice. 
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TABLE VI.  COMPARATIVE ANALYSIS OF PERFORMANCE ON DIFFERENT DATA SETS 

Model Name 
Dataset A: Urban Logistics 

(Vehicle Utilization Rate) 

Dataset B: Rural Logistics 

(Real-Time Monitoring 
Accuracy) 

Dataset C: Long-Distance 

Freight (Arrival Time Prediction 
RMSE) 

Dataset D: Seasonal 

Variability (Failure Risk 
Prediction MAE) 

Fixed Route Model 68% 83% 0.52 0.35 

Prioritization Model 72% 87% 0.48 0.33 

Proximity Principle 

Dispatch Model 
75% 86% 0.45 0.32 

Capacity Matching 
Model 

77% 85% 0.43 0.31 

Total Travel 

Minimization Model 
80% 88% 0.40 0.30 

Fuel Consumption 
Minimization Model 

82% 90% 0.37 0.28 

GPS Real-Time 

Location Monitoring 
85% 93% 0.34 0.26 

Statistical Analysis 
Model 

83% 91% 0.36 0.27 

IoT Dispatch System 92% 97% 0.29 0.23 

 

Through the above experimental process, this paper can 
comprehensively assess the advantages of the IoT and cloud 
computing-based scheduling system compared to the 
traditional model in terms of real-time monitoring, scheduling 
efficiency, prediction accuracy, and response speed. These 
advantages not only improve the efficiency and reliability of 
logistics transportation but also provide new ideas and 
solutions for future logistics transportation. 

VII. CONCLUSION 

Based on the urgent needs of modern intelligent traffic 
management and logistics and transportation industries, this 
study designs and implements an efficient vehicle monitoring 
and scheduling framework with the support of the Internet of 
Things (IoT) and cloud computing technologies. The research 
process covers the whole process from real-time vehicle 
detection to intelligent scheduling decision-making: Firstly, the 
advanced yolov5 model is used to implement real-time vehicle 
recognition on the video stream and generate high-precision 
position information in real-time; secondly, the deepsort 
algorithm is introduced to integrate real-time position data and 
historical trajectory information to ensure the accurate tracking 
of the vehicle's continuous motion state; finally, spatio-
temporal convolutional network is applied to finally, the use of 
spatio-temporal convolutional network to deeply excavate the 
time series characteristics of the vehicle state greatly enhances 
the integrity of the state monitoring. 

A. Innovation Points 

1) A set of comprehensive vehicle monitoring models 

integrating yolov5, deepsort and spatio-temporal 

convolutional networks is constructed to realize the whole 

chain processing from position detection to state analysis. 

2) An improved multi-objective particle swarm algorithm 

is proposed and successfully applied to the logistics 

transportation vehicle scheduling model, which improves the 

scientificity and effectiveness of scheduling decisions. 

3) The scheduling system built using the Internet of 

Things and cloud computing technology has effectively 

improved real-time monitoring capability, scheduling 

efficiency and forecast accuracy, shortened response time and 

made significant progress compared with traditional models. 

B. Deficiencies 

1) The adaptability of the current system still needs to be 

further enhanced, especially the accuracy of vehicle detection 

and tracking in complex environments still needs to be 

improved. 

2) Although spatio-temporal convolutional networks can 

better handle time-series data, when dealing with large-scale 

vehicle state data, the consumption of computational resources 

is large and the optimization space still exists. 

3) Improved multi-objective particle swarm algorithms 

may require more diversified optimization strategies to cope 

with various uncertainties when facing extremely complex 

logistics scenarios. 

In future work, this paper will focus on the following 
aspects: First, although this study successfully demonstrated 
the efficiency and accuracy of the logistics transportation 
vehicle monitoring and scheduling system based on IoT and 
cloud computing, as the technology continues to evolve, this 
paper will continue to explore and integrate the latest advances 
in emerging technologies such as 5G communication, edge 
computing and artificial intelligence algorithms to further 
optimize data transmission speed, improve system 
responsiveness and intelligent decision-making. Second, given 
the growing importance of environmental sustainability and 
green logistics, future research will aim to incorporate carbon 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 8, 2024 

61 | P a g e  

www.ijacsa.thesai.org 

footprint calculations and environmental path optimization 
capabilities to ensure that systems not only improve logistics 
efficiency, but also support corporate sustainability goals and 
reduce the environmental impact of logistics activities. Finally, 
in order to promote and validate the system's broad 
applicability, this paper plan to conduct field pilots in logistics 
enterprises of different sizes and types, collect more diverse 
data, and conduct long-term follow-up studies to assess the 
long-term benefits and potential improvements of the system. 
Through interdisciplinary collaborations, bringing together 
operations management, information technology and social 
science perspectives, this paper will also delve into the 
socioeconomic impacts of technology implementation to 
ensure that technological advances benefit the entire logistics 
ecosystem. 
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