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Abstract—Network security tackles a broad spectrum of 

damaging activities that threaten network infrastructure. 

Addressing these risks is essential to keep data accurate and 

networks running. This research aims to detect and prevent 

blackholes and wormholes in cloud-based wireless ad-hoc 

networks. A new Cross-Layer Validation Mechanism (CLVM) is 

introduced to detect and counter these dangerous attacks. CLVM 

boosts network security and ensures data travels through cross-

layer interactions. CLVM is tested using NS2 software by 

performing several simulations and comparing the results with 

previous methods. The results show that CLVM effectively 

defends against blackhole and wormhole attacks, which makes it 

a crucial extra service for cloud computing. CLVM provides a 

strong defense against new security threats, making sure the 

network stays reliable and safe. 
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I. INTRODUCTION 

Wireless networks play a key role in modern 
communication technology, enabling worldwide 
communication [1, 2]. Over the last two decades, progress in 
wireless communication has transformed our world, offering a 
range of wireless technologies such as Bluetooth, Wi-Fi, 
WiMAX, HSPA, 3G, 4G, 5G, ZigBee, Satellite, and NFC [3]. 
These wireless methods support different uses, from home 
networking to real-time multimedia and surveillance, adding to 
energy-saving designs on portable devices. We can split these 
networks into two main types: infrastructure-based wireless 
networks and infrastructure-less or Wireless Ad-hoc Networks 
(WANs) [4]. 

Infrastructure-based wireless networks rely on a fixed 
infrastructure in which nodes transmit data to a base station 
over predetermined routes [5]. Although these networks are 
reliable, they are typically expensive and unsuitable for hostile 
environments such as proactive disaster management or 
military applications where fixed infrastructure may not be 
available [6]. On the other hand, WANs function without 
predefined infrastructure. Nodes in these networks can connect 
to other nodes within their communication range, creating a 
dynamic, self-configuring, and self-organizing network [7]. 
They use shared radio channels and enable data forwarding 
between nodes. 

Unlike traditional wireless networks with fixed 
configurations, cloud-based WANs face unique issues that 

make their design and operation difficult. These networks must 
cope with changing layouts where nodes frequently connect or 
disconnect, resulting in constant shifts in routing paths. 
Additionally, the sprawling nature of WANs, as well as limited 
resources such as battery life and processing power, increase 
the risk of security threats. In cloud environments, these 
problems are exacerbated as data must be moved and processed 
across distributed nodes without central control. This setup is 
vulnerable to smart attacks such as blackhole and wormhole 
tricks, which can compromise network reliability and access. 
To address these problems, we need new ideas that increase 
security and keep the network running. This is the main 
objective of the Cross-Layer Validation Mechanism (CLVM) 
that we propose in this study. 

Key distinguishing characteristics of ad hoc networks 
include lack of fixed infrastructure, dynamic topology, multi-
hop routing, node heterogeneity, connection variability, scarce 
resources (power, storage, computing power), and limited 
physical security [8]. Nodes in WANs can be either mobile or 
fixed, resulting in two main categories based on mobility: 
Mobile Ad-hoc Networks (MANETs) and Wireless Sensor 
Networks (WSNs). MANETs are mobile nodes with no fixed 
location, while WSNs consist of non-mobile nodes deployed at 
specific locations [9]. The main differences between these 
networks are summarized in Table I. 

TABLE I. WSN VS. MANET 

Feature WSNs MANETs 

Optimization 
focus 

Power optimization 
Both QoS and performance 
optimization 

Communication Many-to-one Point-to-point 

Routing Data-centric Address-centric 

Destination 
The final destination is 

known 

The final destination is 

unknown 

Power source 
Not possible to change 

or recharge 

Can be changed or 

recharged 

Network type Homogeneous Heterogeneous 

Topology Static Dynamic 

While WANs offer significant advantages, they present 
several design and implementation challenges due to node 
mobility, limited resources, and decentralized network 
structures. These challenges span different protocol stack layers 
and increase the complexity of WAN development. In addition, 
WANs have specific vulnerabilities compared to other 
traditional networks, which are described below: 
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 Infrastructure absence: Nodes in these networks lack 
prior security association and can dynamically join or 
exit without notice, necessitating mutual trust among 
participating nodes within the protocol design. 

 Wireless links: The unsecured nature of wireless links 
allows potential adversaries to access the network, 
lacking the equivalent protection level of wired links, 
making the network vulnerable to attacks from various 
directions. 

 Limited physical protection: Nodes in WANs are often 
either minimally protected or entirely unprotected, 
intensifying network vulnerability due to their dynamic 
and mobile nature, facilitating easier insertion of 
malicious nodes. 

 Lack of central management: The absence of a central 
authority enables adversaries to devise new attacks, 
exploiting the cooperative algorithm present in WANs. 
Security mechanisms must be adaptive and scalable to 
cope with dynamic topology changes and node 
increases. 

 Resource constraints: Nodes in these networks have 
limited computational and power resources, making 
them susceptible to Denial-of-Service (DoS) attacks that 
exhaust the limited power source through excessive 
transmissions or computations. 

In ad hoc networks, the absence of a central security system 
allows bad actors, both inside and outside the network, to put 
network security and privacy at risk [10]. We can split security 
attacks into two types based on how they work: passive and 
active [11]. Passive attacks try to break data privacy by 
listening in on conversations to gather useful info for future bad 
actions. This makes them hard to spot [12]. Active attacks go 
after data integrity and privacy by changing, blocking, 
repeating, or getting rid of packets being sent. They use 
different network functions to pull off these attacks [13]. We 
group these attacks into internal and external based on where 
they come from. Internal attacks happen when compromised 
nodes within the same network cause trouble and mess up how 
the system or network works. External attacks, on the other 
hand, come from unauthorized outsiders who don't belong to 
the network [14]. 

Security mechanisms for ad hoc networks include two main 
approaches. To prevent security attacks, cryptographic 
techniques are used as the first line of defense against external 
attacks to ensure the authenticity and integrity of the data 
source. However, this mechanism can fail if internal attackers 
have valid cryptographic keys to launch an attack. Security 
attack detection and response serves as a secondary line of 
defense, identifying abnormal activity on the network before it 
causes damage. The defense offers effective countermeasures 
against detected attacks. 

The rest of this paper follows the following structure. A 
review of related work in the field of secure WANs is presented 
in Section II. CLVM is discussed in detail in Section III. The 
simulation results are presented in Section IV. The paper 

concludes with a summary of key findings and research 
directions in Section V. 

II. RELATED WORK 

Compressive Sensing (CS) data collecting systems may 
efficiently decrease the transmission cost of WSNs by using the 
sparsity of compressible signals. While there have been 
explanations of CS as a symmetric cryptosystem, CS-based 
data-gathering systems still encounter security risks because of 
the intricate deployment environment of WSNs. Zhang, et al. 
[15] developed two viable attack methods for certain 
applications. They introduced a secure approach for collecting 
data using compressive sensing. The proposed method 
improves data privacy through the use of an asymmetric semi-
homomorphic encryption technique and minimizes 
computational costs by utilizing a sparse compressive matrix. 
To be more precise, the asymmetric approach decreases the 
complexity of distributing and managing secret keys. 
Homomorphic encryption enables in-network aggregation in 
the cipher domain, thereby improving security and achieving 
network load balancing. The sparsity of the measurement 
matrix decreases both the computational and transmission 
costs, therefore offsetting the rising costs associated with 
homomorphic encryption. 

Al-Shayeji and Ebrahim [16] designed a robust and energy-
efficient system that minimizes energy use while ensuring 
privacy. The security strategy employs a customized version of 
the sharing-based method with a precision-enhanced and 
encryption-mixed privacy-preserving data aggregation 
procedure. The first protocol provides authentication and 
encryption via XOR gates, while the second protocol is a secure 
data aggregation method that improves security and energy 
efficiency. An approach to reduce energy usage is presented, 
which involves asynchronous scheduling duty cycling 
depending on location, priority, and pre-configuration. The 
findings indicate that the performance of the system is 
influenced by factors such as the sensing rate, data transmission 
frequency, data size, sensor placement and quantity, and 
smartphone battery capacity. For infrequent use and smaller 
amounts of data, the energy consumed by operations accounts 
for just 1% of the total battery capacity of the mobile device. 
When sensors are placed near the sink, the cost is decreased by 
more than 70% compared to an unsecured network, but there is 
an extra cost of 20%. The simulations demonstrate that the 
expense of encryption decreases with an increase in the quantity 
of sensors. In addition, as the number of sensors increases, the 
proximity between nodes reduces, resulting in more sensors 
entering sleep mode. 

Wang, et al. [17] suggested a hierarchical trust system based 
on fog computing to address security vulnerabilities in cloud-
enabled WSNs. This tiered approach has two components: 
confidence in the foundational framework and trust between 
cloud service providers (CSPs) and sensor service providers 
(SSPs). Monitoring behavior is built and executed inside WSNs 
to ensure confidence in the fundamental framework. At the 
same time, the intricate and detailed data analysis component is 
shifted to the fog layer. To establish trust between CSPs and 
SSPs, it is crucial to prioritize the real-time comparison of 
service parameters, the collection of exception information in 
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WSNs, and the focused quantitative assessment of entities. The 
experimental findings demonstrate that the fog-based topology 
effectively conserves network energy, swiftly detects malicious 
nodes, and promptly recovers misjudgment nodes within an 
appropriate timeframe. Moreover, the dependability of edge 
nodes is effectively ensured by data analyses conducted in the 
fog layer, and an assessment approach that relies on comparable 
service records is proposed. 

Hsiao and Sung [18] developed an innovative method to 
bolster the data security of WSNs by using blockchain 
technology. They used blockchain technology and data 
transmission to provide a safe framework for WSNs based on 
the Internet of Things (IoT) architecture. The research employs 
embedded microcontrollers such as Raspberry Pi and Arduino 
Yun to construct a portable database node that gathers sensor 
data and hash values from preceding blocks. The transaction 
ledger is converted into a sensor data record, thereby improving 
the dependability of the WSN structure. The system can process 
data from a private cloud and display sensor data. The wireless 
network design is constructed utilizing embedded devices, 
facilitating the creation of a web server using Python or 
JavaScript programming languages. The research examines the 
efficacy of conventional methods against new data transmission 
methods, concluding that using innovative methods using 
blockchain technology renders it very difficult for operators to 
manipulate sensor data. 

Haseeb, et al. [19] proposed a protocol for safe data 
collection in mobile WSNs, which utilizes cloud services. The 
technique aims to efficiently distribute information in dynamic 
networks by employing mobile sensors with little loss and 
power consumption. Furthermore, it guarantees the continuous 
presence and uniformity of the gathered data inside the cloud 
organizations while enhancing the routing reliability. The 

simulation results and their analysis demonstrate the substantial 
efficacy of the suggested approach. 

Sharmila, et al. [20] introduced a hybrid key management 
system for WSNs linking edge devices. This system utilizes 
Elliptic Curve Cryptography (ECC) and a hash function to 
create pre-distribution keys. The key setup is accomplished by 
simply broadcasting the node identity. The primary purpose of 
implementing a hybrid technique in the key pre-distribution 
method is to achieve mutual authentication between the sensor 
nodes during the installation phase. The suggested solution 
decreases computing complexity while enhancing security, 
making it suitable for implementation in sensor nodes with 
limited resources. 

Ensuring the reliable and secure functioning of WSNs 
necessitates the identification of anomalies. Maximizing 
resource efficiency is essential for minimizing energy use. 
Gayathri and Surendran [21] introduced two methods for 
anomaly detection in WSNs: Ensemble Federated Learning 
(EFL) with cloud integration and Online Anomaly Detection 
with Energy-Efficient approaches (OAD-EE) using cloud-
based model aggregation. Cloud-integrated EFL uses ensemble 
approaches and federated learning to improve detection 
accuracy and safeguard data privacy. OAD-EE, using a cloud-
based model aggregation approach, employs online learning 
and energy-efficient strategies to save energy on sensor nodes. 
A complete and efficient system for anomaly detection in 
WSNs is established by integrating EFL and OAD-EE. The 
experimental findings indicate that adopting cloud technology 
in EFL leads to the best accuracy in detection. On the other 
hand, OAD-EE, which utilizes cloud-based model aggregation, 
exhibits the lowest energy consumption and the shortest 
detection time among all algorithms. Consequently, OAD-EE 
is well-suited for real-time applications. 

TABLE II. AN OVERVIEW OF RELATED WORKS 

Reference Methodology Key features Results 

Zhang, et al. 

[15] 

Compressive sensing with 

asymmetric semi-
homomorphic encryption 

Uses CS to reduce transmission cost, asymmetric 
semi-homomorphic encryption for data privacy, and 

sparse compressive matrix to minimize 

computational costs 

Improved data privacy, network load balancing, decreased 

computational and transmission costs, offset rising costs 
associated with homomorphic encryption 

Al-Shayeji 

and Ebrahim 

[16] 

An energy-efficient 

system with a customized 

sharing-based method 

Sharing-based method for privacy, precision-

enhanced and encryption-mixed privacy-preserving 
data aggregation, asynchronous scheduling duty 

cycling 

Enhanced energy efficiency and security, performance 
influenced by various factors, energy consumption as low 

as 1% of mobile device battery for infrequent use, cost 

reduction over an unsecured network but an additional 
20% cost 

Wang, et al. 

[17] 

Hierarchical trust system 

based on fog computing 

Trust in foundational framework and between cloud 

service providers and sensor service providers, real-
time comparison of service parameters 

Effective energy conservation, swift detection of 

malicious nodes, reliable data analysis in fog layer, 
proposed assessment approach relying on service records 

Hsiao and 

Sung [18] 

Blockchain technology 

for data security 

Uses blockchain for WSN security, embedded 

microcontrollers for portable database node, 

transaction ledger for sensor data, web server 

creation with Python/JavaScript 

Enhanced data dependability and security, difficulty for 

operators to manipulate sensor data, improved 

performance of WSN architecture using blockchain 

technology 

Haseeb, et al. 
[19] 

Protocol for safe data 

collection in mobile 

WSNs 

Uses cloud services for dynamic network 

information distribution mobile sensors to minimize 
loss and power consumption, ensures continuous 

data presence and consistency 

Significant efficiency in data collection and routing, 

enhanced reliability and uniformity of collected data in 
cloud organizations, substantial efficacy demonstrated 

through simulation results 

Sharmila, et 

al. [20] 

Hybrid key management 
system using ECC and 

hash function 

Uses ECC and hash function for key pre-
distribution, mutual authentication during 

installation phase, reduced computing complexity 

Enhanced security and computing efficiency, suitable for 
resource-constrained sensor nodes, improved mutual 

authentication 

Gayathri and 

Surendran 

[21] 

Anomaly detection using 
EFL and OAD-EE 

EFL with cloud integration for accuracy and data 

privacy, OAD-EE for energy-efficient anomaly 

detection, combined algorithm for efficient system 

Best accuracy in detection with EFL, lowest energy 

consumption, and shortest detection time with OAD-EE, 
integrated algorithm improves overall efficiency, 

scalability, and real-time response 
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The reviewed related works, as outlined in Table II, address 
various security and efficiency challenges in wireless sensor 
networks (WSNs) and mobile ad-hoc networks (MANETs) 
using diverse methodologies, such as compressive sensing, 
blockchain technology, and fog computing. However, these 
approaches encounter specific limitations. For instance, while 
Zhang, et al. [15] leverage semi-homomorphic encryption to 
enhance data privacy, the rising costs of this encryption remain 
a challenge. Similarly, Al-Shayeji and Ebrahim [16] focus on 
energy efficiency, yet their method incurs an additional 20% 
cost for security enhancements. Addressing these challenges, 
the current study introduces a novel mechanism that 
synergistically integrates the strengths of various approaches to 
bolster network security and data integrity while minimizing 
computational and transmission costs. Through extensive NS2 
simulations, the proposed method demonstrates superior 
performance in detecting and mitigating blackhole and 
wormhole attacks, offering a robust defensive mechanism for 
cloud-enabled WSNs. This study's main contributions include 
the development of an efficient, cost-effective security 
framework that ensures reliable and secure data transmission, 
thus advancing the state-of-the-art in network security for 
WSNs and MANETs. 

III. PROPOSED MECHANISM 

This paper proposes a novel CLVM framework to identify 
and eliminate malicious activities within network routing 
protocols. CLVM aims to improve network reliability and data 
security by setting trust values for individual network elements. 
This trust scoring helps to find and remove wormhole nodes, 
making sure data moves over trusted routes. CLVM's main goal 
is to keep the network secure by spotting and containing 
harmful activities before they cause trouble. It does this in two 
ways. The framework has ways to detect and stop harmful 
activity in the network. This includes picking trusted paths to 
send data, which helps avoid potential threats. CLVM gives 
trust scores to network parts based on a full evaluation. This lets 
the framework prioritize data transfer across reliable and 
trustworthy nodes. Fig. 1 shows how CLVM works overall. The 
framework spots harmful activity by looking at how individual 
nodes in the network behave. During route discovery, nearby 
nodes are picked, and each node confirms it got and sent on data 
packets. 

 
Fig. 1. Workflow of the cross-layer validation mechanism. 

The Round-Trip Time (RTT) associated with data packet 
communication is a key anomaly detection metric. The 
framework leverages the Request-To-Send (RTS)/Clear-To-
Send (CTS) handshake mechanism within the Media Access 
Control (MAC) layer to determine RTT. Significant variations 
in RTT can indicate the presence of a blackhole node, where a 
node along the designated route discards incoming packets 
instead of forwarding them. Fig. 2 depicts a typical blackhole 
attack scenario. In this example, data is transmitted from source 
node S to destination node D via nodes 7 and 8. However, node 
2, acting maliciously, accumulates all incoming data packets 
without forwarding them. The extended RTT caused by this 
behavior can be identified through the RTS/CTS mechanism, 
exposing the blackhole node. 

The IEEE 802.11 standard defines the Media Access 
Control (MAC) layer protocol for wireless local area networks 
(WLANs). This protocol leverages Carrier Sense Multiple 
Access with Collision Avoidance (CSMA/CA) to minimize 
collisions during data transmission. CSMA/CA mandates that 
nodes listen for ongoing transmissions before initiating their 
own, significantly reducing the likelihood of packet collisions.  

Fig. 2. Blackhole attack scenario in a WAN. 
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In CSMA/CA, the Request-To-Send/Clear-To-Send 
(RTS/CTS) handshake process offers a way to cut down on 
collisions even more when hidden terminals are involved. This 
method works like this: A node that wants to send data first 
transmits an RTS frame to the receiver it's aiming for. When the 
receiver gets this RTS frame, it sends back a CTS frame, which 
sets aside the channel for the upcoming data transmission. 
Other nodes in the area pick up on this CTS frame and hold off 
on sending anything during this reserved time slot, which stops 
collisions from happening. 

While the RTS/CTS handshake solves the hidden terminal 
problem, it adds extra work because of the RTS and CTS frame 
exchange. This extra work can have a big impact on network 
speed when many nodes are active in a small area. Researchers 
have looked into other ways to reduce this extra work, but the 
possible benefits haven't been worth the added complexity 
these changes would bring. 

Another consideration for WLANs is the power 
consumption associated with RTS/CTS frames and data 
packets. The Power Control Mechanism (PCM) can adjust 
transmission power levels based on specific needs. Typically, 
RTS/CTS frames are transmitted at a higher power level 
(Pmax) to ensure wider reception, whereas data packets might 
utilize a lower power level to conserve energy. However, PCM 
might occasionally raise the transmission power of data packets 
to Pmax to overcome potential signal degradation. 
Acknowledgment (ACK) packets are generally transmitted at a 
lower power level. 

The importance of minimizing collisions in the MAC layer 
stems from the power consumption associated with 
retransmissions. Retransmissions not only waste bandwidth but 
also deplete battery life in mobile devices. While RTS/CTS-
based protocols offer advantages, they do not eliminate the 
hidden terminal and exposed terminal problems, especially in 
high-density networks. Furthermore, migrating such protocols 
to cloud-based environments introduces additional challenges 
that must be addressed. This paper proposes a secure routing 
protocol designed to establish reliable communication paths 
within a network while mitigating the risks of wormhole nodes. 
The protocol operates under the following assumptions: 

 Transmission range: All participating nodes are confined 
within a predefined transmission range (R). 

 Node mobility: Nodes are considered stationary for 
routing calculations. Real-world deployments might 
involve mobile nodes, requiring adjustments to the 
protocol. 

 Neighbor discovery: Nodes can discover and 
communicate with neighboring nodes within their 
transmission range. 

The core objective of the protocol lies in identifying a 
secure path between a source node (S) and a destination node 
(D). The distance between these nodes (d) is calculated using 
Eq. (1), which factors in the transmission range (R) and the 
average node speed (V). The transmission range can be 
dynamically adjusted within a predefined threshold based on 
the varying distances between nodes. A weighted average 

distance is also employed as a stopping condition for route 
discovery.  

𝐷𝑖𝑠𝑡𝑆𝐷 =
𝑅 − 𝑑

𝑉(𝑅 − 𝐷)
 (1) 

To enhance security, each node maintains a counter variable 
initialized to zero. This counter is incremented whenever a 
designated operator node retrieves data from a particular node. 
The operator node can connect and disconnect from any node 
within the network. The counter reflects the number of 
interactions a node has had with the operator. If multiple 
operators collect data from the same node (node-S), the data on 
the destination node stored by the operator with the higher 
counter value takes precedence. The counter range is also 
configurable, with a minimum value of zero and a maximum 
value determined by the network's reach. 

Unique identifiers are assigned to each node to facilitate 
secure communication. Data packets transmitted within the 
network encompass various fields, including a packet ID, 
distance traveled, counter value, and potential information 
regarding intermediate nodes. The validity of these parameters, 
including details about intermediate nodes, is verified at each 
network layer until the data reaches its intended destination. 

Route discovery and data transmission processes leverage a 
routing table (R-table) that stores information about nodes and 
established routes. This information is constantly compared 
against the data packets to ensure validity. Since source nodes 
are assumed to be geographically close, any node can access 
details on neighboring nodes. Data is then forwarded to the 
nearest available node along the designated path. 

The paper highlights a potential security concern: a 
wormhole attack scenario. In this scenario, a malicious node 
(node-S) intercepts data packets from the source node and 
transmits them to another colluding node (node-8) closer to the 
destination. Node-S then impersonates node-7, the intended 
recipient of the data from the source, by altering its ID to match 
node-7's. Consequently, the source node is deceived into 
believing it communicates directly with node-7, establishing a 
wormhole connection. The proposed protocol must have 
mechanisms to identify and counteract such wormhole attacks. 

Unlike traditional routing protocols, where multiple nodes 
might operate on the same radio frequency, this approach 
assigns unique channels to individual nodes. This 
distinctiveness allows the source node to verify the legitimacy 
of neighboring nodes by transmitting on a randomly chosen 
channel. 

The core principle assumes a legitimate neighboring node 
can detect a message transmitted on its designated channel. In 
contrast, a wormhole node lacking knowledge of the correct 
channel will miss the transmission. The probability of a source 
node failing to detect a wormhole node through a single random 
channel test can be calculated using Eq. (2). In this equation, 'n' 
represents the total number of neighbors, and 'S' represents the 
number of suspected wormhole nodes within the set of 
neighbors.  
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𝑃𝑟

= ∑ 𝑃𝑟(𝑆, 𝑀, 𝐺)𝑃𝑟(𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛|𝑆, 𝑀, 𝐺)

𝑎𝑙𝑙 𝑆,𝑀,𝐺

= ∑
(

𝑠
𝑆

) (
𝑚
𝑀

) (
𝑔
𝐺

) 𝑆 − (𝑚 − 𝑀

(
𝑛
𝑐

) 𝑐𝑎𝑙𝑙 𝑆,𝑀,𝐺

 

(2) 

The channel frequency diversity approach can be extended 
to enhance detection accuracy by conducting multiple rounds 
of random channel tests (denoted by 'r' in Eq. (3)). With each 
round, the source node selects a random subset of neighbors and 
a random channel for transmission. Eq. (3) calculates the 
probability of failing to detect a wormhole node after 'r' rounds 
of testing. 

𝑃𝑟(𝑑𝑒𝑐𝑜𝑛𝑡𝑡 = 1 − 𝑃𝑟(𝑛𝑜𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛)
𝑟

1𝑟𝑜𝑢𝑛𝑑

= 1 − (1 − 𝑃𝑟((𝑃𝑟)
𝑟

1𝑟𝑜𝑢𝑛𝑑

= 1 − (1 − ∑
(

𝑠
𝑆

) (
𝑚
𝑀

) (
𝑔
𝐺

) 𝑆 − 𝑚 − 𝑀)

(
𝑛
𝑐

) 𝑐𝑎𝑙𝑙,𝑆,𝑀,𝐺

) 𝑟 

(3) 

This technique assumes a network scenario where a node's 
neighbors might encompass 'S' wormhole nodes, 'M' malicious 
nodes of other types, and 'G' legitimate nodes. Due to practical 
constraints, the source node can only test a limited number of 
neighbors at a time. Eq. (2) factors the possibility of 
encountering a wormhole node, a malicious node of a different 
type, or a legitimate node within the chosen subset of 'C' 
neighbors. By analyzing the probability ratio derived from Eq. 
(2) and Eq. (3), it can be concluded that the channel frequency 
diversity approach offers a viable solution for detecting 
wormhole nodes within various Wide Area Network (WAN) 
topologies. 

IV. RESULTS AND DISCUSSION 

The CLVM was implemented and evaluated using the NS-
2.5 network simulator. Table III summarizes the simulation 
parameters employed in the evaluation process. The primary 
objective of this evaluation was to assess the efficiency of 
CLVM relative to an existing approach, LBIDS [22]. The 
simulations were conducted in a 1000 x 1000 m network area, 
simulating a typical wireless ad hoc network environment. The 
nodes were randomly distributed across this area, with the 
number of nodes varying between 10 and 50 over five rounds 
of simulation, increasing by ten nodes per round. Node mobility 
was simulated using the random waypoint mobility model, with 
node speeds ranging from 1 to 15 m/s, reflecting the dynamic 
nature of real-world ad hoc networks. 

The radio propagation model used was the two-ray ground 
reflection model, which takes into account both direct and 
ground-reflected paths of signal propagation, allowing for a 
more realistic simulation of wireless communications. The 
transmission range of each node was set to 250 meters, with the 
MAC layer using the IEEE 802.11 standard. Traffic was 
generated using a constant bit rate (CBR) application with 
packet sizes of 50 bytes, simulating a typical data transfer 
scenario. Energy consumption was modeled based on the 
remaining energy level of nodes after each round, using 

mechanisms such as RTS/CTS handshakes and distance 
checking to save energy. 

TABLE III. SIMULATION PARAMETERS AND VALUES 

Parameter Value 

Simulation area 1000m x 1000m 

Malicious node ID count 2 

Malicious node percentage Up to 5% 

Node placement Random 

Simulation duration 100 seconds 

Packet size 50 bytes 

Traffic type CBR, 100 – 500 

MAC protocol 802.11 

Total nodes 20 – 750 

Transmission range 250 m 

Propagation model Two-ray ground reflection 

Node Speed 1 – 15 m/s 

A. Transmission Delay Analysis 

Fig. 3 compares the average transmission delay incurred by 
each approach across the five rounds. The results demonstrate 
that CLVM consistently exhibits lower transmission delay 
compared to LBIDS. In the case of round five with 50 nodes, 
LBIDS exhibits a transmission delay of 46 milliseconds (ms), 
whereas CLVM achieves a delay of only 24 ms. This 
improvement can be attributed to the efficiency gains 
introduced by CLVM's mechanisms, such as trust value 
evaluation and route selection. 

 
Fig. 3. Average transmission delay comparison. 

B. Throughput Analysis 

Throughput, measured by the successful transmission and 
reception of data packets, serves as another key performance 
metric. Fig. 4 depicts the throughput achieved by both CLVM 
and LBIDS across the five rounds. The results indicate that 
CLVM consistently delivers superior throughput compared to 
LBIDS. This can be primarily explained by CLVM's ability to 
mitigate malicious activities that disrupt data transmission 
within the network. For example, in round five, LBIDS 
achieves a throughput of 6123 packets, whereas CLVM 
delivers a higher throughput of 6400 packets. 

Number of rounds

0 2 4 6 8 10

T
im

e

0

20

40

60

80

LBIDS 

CLVM  



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 8, 2024 

645 | P a g e  

www.ijacsa.thesai.org 

 
Fig. 4. Average throughput comparison. 

C. Energy Consumption Analysis 

The remaining energy level of network nodes after each 
round was evaluated to assess the energy efficiency of both 
approaches. Fig. 5 presents the results, indicating that CLVM 
nodes conserve more energy than LBIDS nodes. This is a 
consequence of CLVM's strategies for reducing unnecessary 
communication and data transmissions. Mechanisms like 
RTS/CTS handshakes and distance verification contribute to 
this energy conservation. Nodes are unable to transmit data if 
they fail to provide valid IDs or adhere to the RTS/CTS protocol 
and distance requirements. This helps to preserve node energy. 
The simulations reveal that in round five, the remaining energy 
level for LBIDS nodes is 95%, whereas CLVM nodes retain a 
higher energy level of 96%. 

 

Fig. 5. Remaining energy comparison. 

D. Malicious Activity Detection Analysis 

The simulations also evaluated the effectiveness of both 
approaches in detecting malicious activities within the network. 
CLVM's algorithm leverages a long-established foundation and 
incorporates node behavior analysis for comprehensive 
malicious node identification. Fig. 6 compares the number of 
malicious activities detected using LBIDS and CLVM. The 
results demonstrate that CLVM significantly reduces the 
number of malicious activities within the network. This 

improvement stems from CLVM's verification of critical 
parameters like node ID, RTS/CTS compliance, and 
transmission distance during data exchange. Additionally, 
CLVM maintains a database for comparison purposes, enabling 
it to identify nodes that deviate from expected behavior and 
potentially block them. While LBIDS focuses on detection, 
CLVM prioritizes prevention by proactively identifying and 
mitigating potential threats. 

 
Fig. 6. The number of malicious activities comparison. 

The obtained results clearly show that CLVM not only 
outperforms the existing LBIDS approach in practical metrics 
such as transmission delay, throughput, and energy 
consumption but also embodies significant theoretical 
advances. CLVM's integration into existing network protocols 
is achieved through its trust-based validation process, which 
improves route selection and mitigates malicious activity more 
effectively than traditional methods. By prioritizing trust 
assessment at multiple levels, CLVM eliminates the limitations 
of LBIDS, which focuses primarily on detection rather than 
prevention. This cross-layer approach allows CLVM to reduce 
transmission delays and energy consumption while maintaining 
high throughput, providing a more holistic and efficient 
network security solution. CLVM's theoretical robustness, 
combined with its practical effectiveness, makes it a superior 
alternative to existing security mechanisms in cloud-enabled 
wireless ad hoc networks. 

The simulation setup was designed to closely mimic real-
world scenarios by incorporating widely used models such as 
random waypoint mobility and two-ray ground reflection. 
These models simulate the unpredictable movement of nodes or 
realistic signal propagation in an open environment. The range 
of node speeds and the random distribution of nodes reflect the 
dynamic and decentralized nature of cloud-enabled wireless ad 
hoc networks. However, it is important to note that certain 
simplifications were made in the simulation. For example, 
environmental factors such as obstacles and interference, which 
can significantly impact signal propagation and network 
performance in real-world scenarios, have not been fully 
modeled. In addition, the simulations assumed idealized 
conditions for node operations and communications, which 
may differ from the more complex and variable conditions 
encountered in actual operations. 
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V. CONCLUSION 

This study introduced CLVM as an innovative solution to 
enhance the security and efficiency of cloud-enabled wireless 
ad-hoc networks. Extensive evaluations demonstrated that 
CLVM significantly outperforms the existing LBIDS approach 
in key performance metrics, including transmission delay, 
throughput, energy consumption, and malicious activity 
detection. CLVM achieves a remarkable reduction in 
transmission delay, evidenced by a delay of only 24 
milliseconds in a 50-node network compared to LBIDS’s 46 
milliseconds. Additionally, CLVM consistently delivers higher 
throughput, with a notable increase to 6400 packets in the same 
network configuration. Energy efficiency is another critical 
advantage, as CLVM nodes retain 96.59% of their energy 
compared to LBIDS’s 95.1%, thanks to effective strategies like 
RTS/CTS handshakes and distance verification protocols. 
Moreover, CLVM excels in detecting and mitigating malicious 
activities, leveraging comprehensive node behavior analysis 
and a proactive approach to threat prevention. These 
improvements underscore the robustness and reliability of 
CLVM in securing data transmission and maintaining network 
integrity. 

Looking forward, future research will focus on several key 
areas to build on the findings of this study. One possible path is 
to extend the CLVM to other types of wireless networks, such 
as Vehicular Ad-hoc Networks (VANETs) or industrial IoT 
environments, where security challenges are even more 
pronounced. Additionally, optimizing CLVM for larger 
deployments with hundreds or thousands of nodes is critical to 
ensure its scalability and efficiency in various network 
scenarios. Further research could also include integrating 
CLVM with advanced machine learning algorithms to improve 
its ability to detect and adapt to new types of security threats in 
real-time. These future efforts aim to refine and expand 
CLVM's capabilities, ensuring its relevance and effectiveness 
in the ever-evolving network security landscape. 
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