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Abstract—Numerous approaches can be employed to create 

models for assessing the heat gains of a building arising from both 

external and internal sources. This modeling process evaluates 

effective operational strategies, conducts retrofit audits, and 

projects energy consumption. These techniques range from simple 

regression analyses to more intricate models grounded in physical 

principles. A prevalent assumption underlying all these modeling 

techniques is the requirement for input variables to be derived 

from authentic data, as the absence of realistic input data can lead 

to substantial underestimations or overestimations in energy 

consumption assessments. In this paper, eight input parameters, 

including relative compactness, orientation, wall area, roof area, 

glazing area, overall height, surface area, and glazing area 

distribution, are employed for training proposed Naive Bayes 

(NB)-based machine learning models. Utilizing a novel approach, 

this research explores the application of Beluga Whale 

Optimization and the Coot Optimization algorithm for optimizing 

the Naive Bayes model in heating load prediction. By harnessing 

the collective intelligence of Beluga Whales and drawing from the 

cooperative behavior of coots, the research aims to improve the 

model's predictive capabilities, which is of paramount importance 

in building energy management. Based on the comparative 

analysis between developed models (NB, NBCO, and NBBW), it is 

attainable that NBCO and NBBW, as two optimized models, have 

2.4% and 1.3% higher R2 values, respectively. Also, the RMSE of 

the NBCO was, on average, 19-33% lower than that of the two 

other models, confirming the high accuracy of NBCO. This 

innovative integration of bio-inspired optimization techniques 

with machine learning demonstrates a promising avenue for 

optimizing predictive models, offering potential energy efficiency 

and sustainability advancements in the built environment. 

Keywords—Prediction models; heating load demand; building 

energy consumption; Naive Bayes; metaheuristic optimization 
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I. INTRODUCTION 

In contemporary facility management, a critical challenge 
managers face revolves around assessing and predicting a 
building's energy requirements, particularly those equipped with 
air conditioning systems. This challenge stems from the notable 
variability exhibited in the energy feeding patterns generated by 
these systems. These fluctuations can be attributed to changes in 
external climate situations, the ebb and flow of occupants 
throughout the day, and internal loads incorporated within the 
building [1]. A holistic understanding of building performance 
is imperative to address this challenge and optimize building 
energy consumption. This begins with the initial identification 

of energy resources and the principal end-uses within the 
building. Energy resources typically natural gas, encompass 
electricity, and district heating supply, while the major end-uses 
comprise heating, ventilation, and air-conditioning (𝐻𝑉𝐴𝐶) 
systems, domestic hot water, lighting, plug-loads, elevators, 
kitchen equipment, ancillary appliances, and various equipment 
[2]. Such an integrated approach can enhance energy 
management and sustainability in the built environment. 

Scholars have developed diverse assessment systems and 
modeling methodologies to propose an optimal predictive tool 
for estimating building energy consumption [3, 4]. Within this 
framework, two conventional devices for evaluating the Energy 
Performance of Buildings  (𝐸𝑃𝐵)  through modeling and 
simulation have been highlighted in lectures [5]. Historically, 
the physical attributes of buildings, such as their geometry, were 
used as the basis for energy performance simulations. However, 
using such predictors has limitations, as it entails controlling 
factors that are challenging to manipulate in practical 
applications [6]. This can be considered a drawback of these 
traditional approaches. The primary challenge in advancing 
simulation and modeling techniques is the accurate estimation 
of 𝐸𝑃𝐵 , a time-consuming process demanding meticulous 
attention due to including many influencing factors. 

Furthermore, using various simulation programs may yield 
assessments with varying degrees of accuracy [7]. These 
methods can be relied upon to calculate the impact of individual 
factors on EPB when all other variables remain constant. 
Notably, there are established computer software tools like 
Designer's Simulation Toolkit (DeST) [8], Energy Plus [9], and 
DOE-2 [10] that facilitate these modeling and simulation 
endeavors. 

Engineers have proposed using inverse (data-driven) 
modeling to remedy the limitations associated with simulation 
tools to explore EPB [11]. In this approach, a robust assessment 
of the impact of significant factors (e.g., roof area, relative 
compactness, and orientation) on 𝐸𝑃𝐵 can be achieved by 
ensuring a sufficient quantity of data samples [12–15]. Various 
Machine Learning (ML) models, due to their ease of 
implementation and high-performance speed [16–18], were 
highly regarded by scholars. 

For instance, Kalogirou and Bojic [19] employed a recurrent 
neural network to predict the energy feasting of a passive solar 
building. Pao [20] compared various models and concluded that 
ANN models are well-suited for forecasting building energy 
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consumption, effectively capturing complex non-linear 
relationships. Ben − Nakhi and Mahmoud [21] used 𝐴𝑁𝑁 
models to predict building cooling loads, achieving a strong fit 
to experimental data and optimizing thermal energy storage in 
public and office buildings. 

In addition to Artificial Neural Networks (𝐴𝑁𝑁𝑠), various 
other artificial intelligence (AI) tools, including Support Vector 
Machine (𝑆𝑉𝑀 ) [22] regression, neuro−fuzzy systems [23], 
and random forests [24], have been applied to address EPB 
challenges. For instance, Li et al. [25] conducted a qualified 
study on cooling load calculations, demonstrating the 
effectiveness of SVM and General Regression Neural Network 
(GRNN) compared to conventional ANNs. Moreover, 
researchers [26] have integrated SVM and wavelet transforms 
with Partial Least Squares Regression (𝑃𝐿𝑆) to model office 
building heating and cooling loads, yielding precise insights. 
While AI has proven valuable in EPB, computational challenges 
have prompted the use of metaheuristic algorithms like Genetic 
Algorithm and Particle Swarm Optimization [27, 28, 38], which 
this study further explores, focusing on Beluga Whale 
Optimization (𝐵𝑊𝑂) [29] and the Coot Optimization algorithm 
(COA) [30] for optimizing the Naive Bayes (NB) [31] model in 
heating load prediction. 

The NB model is a widely used machine learning (𝑀𝐿) 
algorithm known for its simplicity and effectiveness in 
classification tasks in many applications similar to this study 
[32–34]. It is based on Bayes' theorem and chin independence 
assumption, making it particularly suited for applications where 
the independence assumption holds. It calculates the likelihood 
of a particular instance belonging to a specific class based on the 
probabilities of its features occurring in each class. This study 
embarks on developing NB-based models for predicting heating 
loads (HL) in buildings. Two distinct optimizers, as mentioned 
above (BWO and COA), were employed to optimize the training 
process. The predicted results of the 𝑡ℎ𝑟𝑒𝑒  models were 
subjected to comparison utilizing performance metrics, 
including R², RMSE, MSE, U95, and IOA. Afterward, the most 
optimal hybrid model for predicting HL in buildings was 
identified. 

The choice of Naive Bayes (NB)--based machine learning 
models is particularly appropriate for addressing this type of 
problem due to several reasons. Firstly, NB models are known 
for their simplicity and computational efficiency, making them 
well-suited for handling large datasets and multiple input 
variables, such as those involved in predicting building heating 
loads. Secondly, NB models assume conditional independence 
between input features, which, despite being a simplification, 
often works well in practice, especially in complex systems 
where interactions between variables may not be easily 
discernible. This makes NB models robust and less prone to 
overfitting compared to more complex algorithms. Additionally, 
the probabilistic nature of NB models allows for clear 
interpretability of the results, providing insights into the 
contribution of each feature to the prediction, which is valuable 
in the situation of building energy management. Finally, the 
integration of bio-inspired optimization techniques like BWO 

and COA further enhances the model’s ability to fine-tune its 
parameters, leading to improved accuracy and reliability in 
heating load predictions. This combination of simplicity, 
efficiency, and optimization makes NB-based models an 
effective choice for tackling the challenges of energy modeling 
in buildings. The paper is organized into five sections. The 
Abstract provides a concise summary of the study's objectives, 
methods, and key findings. The Introduction in Section I 
outlines the research background, related works, and 
significance. Materials and Methods in Section II details the 
dataset, machine learning models, and the hybrid optimization 
algorithms used, along with the evaluation metrics. The Results 
in Section III presents the outcomes of the modeling process. 
Discussion in Section IV offers a validation of present study, 
compares their performance, and addresses the study's 
limitations. Finally, the Conclusion in Section VI summarizes 
the findings, discusses implications for energy management, and 
suggests avenues for future research. 

II. MATERIALS AND METHODS 

A. Dataset Description 

The primary aim of this study is to predict HL in buildings 
by utilizing data that captures energy consumption patterns. A 
simulation approach involving the NB model is employed to 
accomplish this objective, with the training process 
incorporating two distinct optimizers designed to optimize NB 
hyper parameters. The inputs provided to the predictive model 
encompass various parameters, including relative compactness 
(𝑅𝐶𝐸) , 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎  (𝑆𝐴) , 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 ℎ𝑒𝑖𝑔ℎ𝑡  (𝑂𝑉𝐻) , 
𝑟𝑜𝑜𝑓 𝑎𝑟𝑒𝑎  (𝑅𝐴) , 𝑔𝑙𝑎𝑧𝑖𝑛𝑔 𝑎𝑟𝑒𝑎  (𝐺𝐴) , 𝑤𝑎𝑙𝑙 𝑎𝑟𝑒𝑎  (𝑊𝐴) , 
𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛  (𝑂𝑅), and 𝑔𝑙𝑎𝑧𝑖𝑛𝑔 𝑎𝑟𝑒𝑎 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛  (𝐺𝐴𝐷). 
The data relating to the input and output parameters, including 
minimum, maximum, average, standard deviation, Median, and 
Skewness, is reported in Table I. Minimum and maximum 
values identify the lowest and highest data points, establishing 
the data's range. The average, also known as the mean, provides 
a central measure to understand the typical value in the dataset. 
Standard deviation quantifies the dispersion of data points, 
indicating how closely they cluster around the mean. 
Conversely, the median represents the middle value when the 
data is ordered, making it robust to outliers. Skewness measures 
the asymmetry of the data distribution, indicating whether it is 
skewed to the left or right. 

The scatter plot in Fig. 1 demonstrates the correlation among 
input and output parameters. The data distribution related to the 
RCE, SA, and WA input parameters is vertically highly 
asymmetric with the highest skewness values (RCE and WA 
skewed right of the average and SA skewed left of the average). 
Data points of OVH are located in two values (3.5 and 7) where 
𝑂𝑉𝐻 = 3.5 is related to lower heating values (below 20), and 
𝑂𝑉𝐻 = 7 corresponds to the heating values higher than 20. The 
OVH and OR data points' distribution is highly symmetric, with 
skewness values approximately equal to zero and their median 
and average values the same. GA and GAD are the only 
parameters with zero values, indicating that their effect is 
neglected in some samples. 
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TABLE I.  THE STATISTICAL PROPERTIES OF THE INPUT ADJUSTABLE OF HEATING 

𝑽𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔 𝑪𝒂𝒕𝒆𝒈𝒐𝒓𝒚 
𝑰𝒏𝒅𝒊𝒄𝒂𝒕𝒐𝒓𝒔 

𝑴𝒊𝒏 𝑴𝒂𝒙 𝑴𝒆𝒅𝒊𝒂𝒏 𝑨𝒗𝒈 𝑺𝒌𝒆𝒘 𝑺𝒕. 𝑫𝒆𝒗. 

𝑅𝐶𝐸 𝐼𝑛𝑝𝑢𝑡 0.62 0.98 0.75 0.764 0.496 0.106 

𝑆𝐴 𝐼𝑛𝑝𝑢𝑡 514.5 808.5 673.75 671.708 −0.125 88.09 

𝑊𝐴 𝐼𝑛𝑝𝑢𝑡 245 416.5 318.5 318.5 0.534 43.63 

𝑅𝐴 𝐼𝑛𝑝𝑢𝑡 110.25 220.5 176.604 176.604 −0.163 45.17 

𝑂𝑉𝐻 𝐼𝑛𝑝𝑢𝑡 3.5 7 5.25 5.25 −2.9𝐸 − 19 1.751 

𝑂𝑅 𝐼𝑛𝑝𝑢𝑡 2 5 3.5 3.5 2.68𝐸 − 18 1.119 

𝐺𝐴 𝐼𝑛𝑝𝑢𝑡 0 0.4 0.234 0.235 −0.060 0.133 

𝐺𝐴𝐷 𝐼𝑛𝑝𝑢𝑡 0 5 2.813 2.813 −0.089 1.551 

𝐻𝑒𝑎𝑡𝑖𝑛𝑔  𝑂𝑢𝑡𝑝𝑢𝑡 6.01 42.96 22.307 22.307 0.361 10.09 
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Fig. 1. Scatter plot amid input and output. 

B. Machine Learning Model and Hybrid Optimization 

Algorithms 

1) Naive bayes (NB): The NB  is a robust probabilistic 

classification method grounded in Bayes' theorem, streamlining 

the modeling process by assuming input variable independence. 

When integrated with kernel density approximations, NB 

exhibits promise for significant enhancements in predictive 

accuracy, as indicated in previous studies [35, 36]. Notably, NB 

stands out due to its scalability, characterized by a need for only 

a few input parameters that increase linearly with the number 

of predictors. This differentiates it from computationally 

demanding classifiers. The closed-form training methodology 

of NB is remarkably efficient, ensuring swifter performance 

compared to more intricate computational techniques. 

The NB classifier represents an advanced system seamlessly 
incorporating the 𝑁𝐵  probability model into its decision-
making framework. Its foundation lies in applying the 𝑚𝑎𝑥 a 
posteriori (𝑀𝐴𝑃) choice rule, a proven approach for selecting 
the most likely supposition from a set of possible choices. 
Furthermore, it is worth noting the existence of a closely linked 
classifier known as the Bayes classifier. This formidable 
algorithm plays a pivotal role in assigning class labels 𝑦 = 𝐶𝑘, 
with k ranging from 1 to 𝐾 , a process involving an intricate 
assessment of multiple factors and variables to classify data 
points into predetermined categories. 

𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑝(𝐶𝑘) ∏ 𝑝((𝑥𝑖
𝑛
𝑖=1 |𝐶𝑘)) (1) 

2) Beluga whale optimization (𝐵𝑊𝑂): The BWO method 

simulates beluga whale (𝐵𝑊) behaviors for optimization, with 

two phases: exploration and refinement, using beluga whales as 

search agents updating candidate solutions within a specified 

area. The matrix maps the positions of these search agents 

(Zhong, Li, und Meng 2022): 

𝑋 = [

𝑥1,1 𝑥1,2 𝑥1,𝑑

𝑥2,1 𝑥2,2 𝑥2,𝑑

𝑥𝑛,1 𝑥𝑛,2 𝑥𝑛,𝑑

]  (2) 

Within this framework, 'n' signifies the people size of 𝐵𝑊, 
and ′𝑑′ denotes the dimensionality of design variables, with the 
fitness values of each individual within this population being 
meticulously recorded as follows: 

𝐹𝑋 = [

𝑓(𝑥1,1 ,𝑥1,2, … , 𝑥1,𝑛)

𝑓(𝑥2,1, 𝑥2,2, … , 𝑥2,𝑑)

𝑓(𝑥𝑛,1, 𝑥𝑛,2, … , 𝑥𝑛,𝑑

]  (3) 

The changeover from examination to exploitation in the 
BWO algorithm is determined by the mathematical 
representation of the balance factor 𝐵𝑓 . 

𝐵𝑓 = 𝐵0(1 − 𝑇/2𝑇𝑚𝑎𝑥)   (4) 

Throughout each iteration, random fluctuations within the 
range of (0, 1) are experienced by the value of 𝐵0 , with the 
current iteration being denoted by 𝑇,  and the 𝑚𝑎𝑥  allowable 
number of iterations being represented by 𝑇𝑚𝑎𝑥 . The exploration 
stage is initiated when the balance factor (𝐵𝑓)  surpasses the 

threshold of 0.5, while the exploitation stage is engaged when 
𝐵𝑓 is either less than or equal to 0.5. As the number of iterations 
(𝑇) escalates, the variability in Bf is observed to diminish from 
the initial span of (0, 1) to the narrower interval of (0, 0.5). This 
transformation underscores a conspicuous alteration in the 
probability of transitioning between the exploitation and 
exploration stages, with the likelihood of entering the 
exploitation phase being augmented as the iteration count 
progressively increases. 

 Exploration phase 

The exploration phase in 𝐵𝑊𝑂  is inspired by observed 
synchronized swimming behaviors of captive beluga whales, 
influencing the search agents' coordinates and subsequent 
position modifications. 

{
Xi,j

T+1 = Xi,pj
T + (𝑋𝑟,𝑝1

𝑇 − 𝑋𝑖,𝑝𝑗
𝑇 )(1 + 𝑟1)𝑠𝑖𝑛(2𝜋𝑟2),     𝑗 = 𝑒𝑣𝑒𝑛

Xi,j
T+1 = Xi,pj

T + (Xr,p1
T − Xr,pj

T )(1 + r1)cos(2πr2),    j = odd

(5) 

Within this equation, the current iteration count, denoted as 

𝑇, establishes the framework. The expression Xi,j
T+1 represents 

the newly adjusted location for the 𝑖 − 𝑡ℎ beluga whale along 
the 𝑗 − 𝑡ℎ dimension. Concomitantly, 𝑝𝑗 (with j spanning from 
1  to 𝑑 ) is symbolic of a value randomly selected from the 

𝑑 − dimensional space. Moreover, Xi,pj
T  designates the 𝑖 − 𝑡ℎ 

𝐵𝑊  position along the  𝑝𝑗  dimension at iteration 𝑇 .  

Furthermore, both Xi,pj
T  and Xr,pj

T  serve to depict the prevailing 

positions of the 𝑖 − 𝑡ℎ 𝐵𝑊 and a stochastically chosen 𝑟 − 𝑡ℎ 
beluga whale, where 𝑟 is selected randomly. Additionally, 𝑟1 
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and 𝑟2 are arbitrary values within the range of (0, 1). It is of 
significance to note that the sine (𝑠𝑖𝑛)  and cosine (𝑐𝑜𝑠) 
functions, applied to  (2πr2) , delineate the alignment of the 
mirrored 𝐵𝑊 fins toward the water's external. The selection of 
dimensions using odd or even numbers determines the reflection 
of synchronized or mirrored behaviors exhibited by 𝐵𝑊 during 
swimming or diving in the updated position. To enhance the 
stochastic components within the exploration stage, two random 
values identified as 𝑟 1and 𝑟2, are utilized. 

 Exploitation Phase 

The exploitation stage in 𝐵𝑊𝑂  is inspired by 𝐵𝑊 
cooperative foraging and adaptive movement patterns, 
involving sharing positional information and coordination, 
utilizing the Levy flight strategy for convergence enhancement 
(Mantegna 1994), which has been integrated into the 
exploitation phase of BWO. It is postulated that these whales 
employ the Levy flight strategy for capturing prey, and this 
strategy is expressed mathematically as follows: 

𝑋𝑖
𝑇+1 = 𝑟3𝑋𝑏𝑒𝑠𝑡

𝑇 − 𝑟4𝑋𝑖
𝑇 + 𝐶1. 𝐿𝐹 . (𝑋𝑟

𝑇 − 𝑋𝑖
𝑇) (6) 

In the context of the current iteration designated as "𝑇, " the 
following elements are encompassed: 𝑋𝑖 , which serves as a 
representation of the current position of the 𝑖 − 𝑡ℎ beluga whale 
and "𝑋𝑟 ," which represents the current position of a beluga 

whale that has been randomly selected. Furthermore, "𝑋𝑖
𝑇+1" 

denotes the updated position of the 𝑖 − 𝑡ℎ beluga whale, and 
"𝑋𝑏𝑒𝑠𝑡 " designates the optimal position among all the beluga 
whales. Additionally, "r3" and "r4" signify randomly generated 
numbers that fall from 0 to 1. Lastly, "𝐶1" is ascertained utilizing 
a calculation involving "𝑟4", specifically it determines the value 
of 𝑟4 multiplied by the expression " 𝐶1 = 2𝑟4(1 − 𝑇/𝑇𝑚𝑎𝑥) 
thereby representing the random jump strength that quantifies 
the magnitude of a Levy flight [37]. 

The Levy flight function, denoted as 𝐿𝐹,  is computed 
according to the following procedure. 

𝐿𝐹 = 00.5 ×
𝑢×𝜎

|𝑣|1/𝛽  (7) 

𝜎 = (
Γ(1+𝛽)×sin (𝜋𝛽/2)

Γ((1+𝛽)/2)×𝛽×2(𝛽−1)/2  (8) 

In this context, 𝛽,  the default constant set to 1.5, is 
accompanied by normally distributed random numbers 𝑢 and 𝑣. 

 Whale fall 

In BWO iterations, whale falls are simulated to mimic the 
beluga whale population changes. Assuming that some whales 
relocate or descend to the ocean floor, positions and step 
magnitudes are adjusted to maintain population size, resembling 
the natural process of whale fall decomposition. 

𝑋𝑖
𝑇+1 = 𝑟5𝑋𝑖

𝑇 − 𝑟6𝑋𝑟
𝑇 + 𝑟7𝑋𝑠𝑡𝑒𝑝  (9) 

"𝑋𝑠𝑡𝑒𝑝 is the step size of whale fall, which is determined as 

follows: where 𝑟5 , 𝑟6 , and 𝑟7 are random numbers within the 
range of (0, 1). " 

𝑋𝑠𝑡𝑒𝑝 = (𝑢𝑏 − 𝑙𝑏)exp (−𝐶2𝑇/𝑇𝑚𝑎𝑥) (10) 

In this context, the parameter𝐶2 is possessed, functioning as 
the step factor and being linked to the probability of a whale fall 
event, along with the population size (𝐶2  =  2𝑊𝑓  ×  𝑛). 
Furthermore, the variables 𝑢𝑏 and 𝑙𝑏 are present, signifying the 
𝑢𝑝𝑝𝑒𝑟  and 𝑙𝑜𝑤𝑒𝑟 boundaries of variables, respectively. It is 
observable that the extent of the step size is influenced by a 
range of factors, encompassing the constraints established by the 
design variables, the ongoing iteration, and the 𝑚𝑎𝑥 permissible 
number of iterations. 

This model calculates the probability of a whale falling (𝑊𝑓) 

as a linear function: 

𝑊𝑓 = 0.1 − 0.05𝑇/𝑇𝑚𝑎𝑥   (11) 

The decrease in the probability of a whale falling from 0.1 in 
the initial iteration to 0.05 in the final iteration indicates a trend 
in which, as the food source is approached more closely by 
beluga whales during the optimization process, the risk to beluga 
whales is mitigated. 

3) Coot optimization algorithm (COA): The COA is 

influenced by the group behaviors of Coots, a water bird 

species, and utilizes a metaheuristic optimization strategy. 

Coots exhibit various movements on water as they seek food 

sources or specific destinations, including chain, random, 

leader − driven, and leader − adjusted motions. The COOT 

algorithm integrates these behaviors into its structure. In its 

application, the algorithm commences by randomly 

establishing a population, following the guidelines of Eq. (12) 

as specified in (Naruei und Keynia 2021): 

𝐶𝑜𝑜𝑡𝑃𝑜𝑠(𝑖) = 𝑟𝑎𝑛𝑑 (1, 𝑁) × (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵 (12) 

𝐶𝑜𝑜𝑡𝑃𝑜𝑠(𝑖)  signifies the geographical coordinates of an 
individual Coot, where 𝑁 matches the dimensionality of issues 
or the count of involved variables. 𝑈𝐵  and 𝐿𝐵 , on the other 
hand, represent the 𝑢𝑝𝑝𝑒𝑟  and 𝑙𝑜𝑤𝑒𝑟 confines of the search 
space in which the pursuit is performed. 

𝑈𝐵 = [𝑈𝐵1, 𝑈𝐵2, … , 𝑈𝐵𝑁] , 𝐿𝐵 = [𝐿𝐵1 , 𝐿𝐵2, … , 𝐿𝐵𝑁](13) 

After the initial population setup, four different crusade 
designs are used to adjust the coots' situations. 

 Random Movement 

Following the equation described in Eq. (14) below, position 
𝑄 is first randomized for this particular movement: 

𝑄 = 𝑟𝑎𝑛𝑑(1, 𝑁) × (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵 (14) 

To avoid becoming trapped in local optima, the position is 
updated in line with the equation presented in Eq. (15): 

𝐶𝑜𝑜𝑡𝑃𝑜𝑠(𝑖) = 𝐶𝑜𝑜𝑡𝑃𝑜𝑠(𝑖) + 𝐴 × 𝑅2 × (𝑄 − 𝐶𝑜𝑜𝑡𝑃𝑜𝑠(𝑖))
 (15) 

To determine 𝐴 , the 𝑅2 is a random number that exists 
within the range [0, 1], and its value is calculated by an equation 
given in Eq. (16): 

𝐴 = 1 − 𝐿 × (
1

𝐼𝑡𝑒𝑟
)  (16) 
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In this case, 𝐼𝑡𝑒𝑟  is the highest achievable number of 
iterations, and 𝐿 is a reference to currently recorded numbers. 

 Chain Movement 

The regular location of 𝑡𝑤𝑜 chick birds may be calculated 
by applying the formula in Eq. (17) to execute chain movements. 

𝐶𝑜𝑜𝑡𝑃𝑜𝑠(𝑖) =
𝐶𝑜𝑜𝑡𝑃𝑜𝑠(𝑖−1)+𝐶𝑜𝑜𝑡𝑃𝑜𝑠(𝑖)

2
 (17) 

In this case, 𝐶𝑜𝑜𝑡𝑃𝑜𝑠(𝑖 − 1)  indicates the placement of 
another coot in the arrangement. 

 Adjusting Location Giving to the Leader 

A coot bird's place in each group is adjusted according to the 
leader's location, which causes the follower to move closer to 
the leader. The method given in Eq. (18) is used to estimate the 
leader's designation: 

𝐾 = 1 + (𝑖 𝑀𝑂𝐷 𝑁𝐿)  (18) 

𝐾 represents the index of leaders, 𝑖 " refers to the supporter 
coot bird's sequence, and 𝑁𝐿 indicates the total total of leaders 
in the group. 

Following the formula in Eq. (19), a coot's position will be 
modified during this specific motion. 

𝐶𝑜𝑜𝑡𝑃𝑜𝑠(𝑖) = 𝐿𝑒𝑎𝑑𝑒𝑟𝑃𝑜𝑠(𝐾) + 2 × 𝑅1 × 𝐶𝑜𝑠(2𝑅𝜋) ×
(𝐿𝑒𝑎𝑑𝑒𝑟𝑃𝑜𝑠(𝐾) − 𝐶𝑜𝑜𝑡𝑃𝑜𝑠(𝑖)) (19) 

𝐶𝑜𝑜𝑡𝑃𝑜𝑠(𝑖) refers to the present location of the coot bird, 
and 𝐿𝑒𝑎𝑑𝑒𝑟𝑃𝑜𝑠(𝐾) stands for the chosen leader's position. 𝑅1 
is a randomly generated number within the range of [0, 1], and 
𝑅 is another random number within the range of [−1, 1]. These 
parameters are utilized in the location update calculation 
outlined in Eq. (19). 

 Leader Movement 

The leadership roles experience modifications as outlined in 
Eq. (20), aiming to shift from locally optimal positions to 
globally optimal ones.

𝐿𝑒𝑎𝑑𝑒𝑟𝑃𝑜𝑠(𝑖) = {
𝐵 × 𝐵3 × 𝐶𝑜𝑠(2𝜋𝑅) × (𝑔𝐵𝑒𝑠𝑡 − 𝐿𝑒𝑎𝑑𝑒𝑟𝑃𝑜𝑠(𝑖)) + 𝑔𝐵𝑒𝑠𝑡    𝐵4 < 0.5

𝐵 × 𝐵3 × 𝐶𝑜𝑠(2𝜋𝑅) × (𝑔𝐵𝑒𝑠𝑡 − 𝐿𝑒𝑎𝑑𝑒𝑟𝑃𝑜𝑠(𝑖)) − 𝑔𝐵𝑒𝑠𝑡    𝐵4 ≥ 0.5
  (20) 

In this specific scenario, 𝑔𝐵𝑒𝑠𝑡  characterizes the optimal 
possible site, and 𝐵3 and 𝐵4 are haphazardly generated figures 
within the break [0, 1] . The value 𝐵  is calculated using the 
equation provided in Eq. (21): 

𝐵 = 2 − 𝐿 × (
1

𝐼𝑡𝑒𝑟
)  (21) 

a) Performance evaluation metrics: In the evaluation of 

the performance of a regression model, it is customary to 

employ the following metrics: 

 Coefficient of Determination (R2): Commonly 
represented as R2 , measures the percentage of 
inconsistency in the reliant on variable that can be 
attributed to the sovereign variables within a statistical 
model. The following formula demonstrates it: 

                 𝑅2 = (
∑ (𝑡𝑖−�̅�)(𝑣𝑖−�̅�)𝑛

𝑖=1

√[∑ (𝑣𝑖−𝑤)2𝑛
𝑖=1 ][∑ (𝑣𝑖−�̅�)2𝑛

𝑖=1 ]
)

2

  (22) 

 Error evaluation metrics (RMSE, MSE): 𝑅𝑀𝑆𝐸  (Root 
Mean Square Error) and MSE (Mean Square Error) are 
statistical metrics that quantify the average magnitude 
and accuracy of errors among predicted and observed 
values in a model, with RMSE emphasizing the root of 
the squared differences. These metrics are 
mathematically represented in Eq. (23) and (24) as 
follows: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑣𝑖 − 𝑤𝑖)2𝑛

𝑖=1   (23) 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑣𝑖 − 𝑤𝑖)2𝑛

𝑖=1    (24) 

 Uncertainty 95% (U95): This metric illustrates the range 
in which 95% of the predicted values correspond to the 
actual observed values. It provides valuable insights into 

the correctness and dependability of a model's 
predictions, particularly when evaluating its variation 
and level of uncertainty. The mathematical expression of 
this metric can be found in Eq. (25). 

𝑈95 = √∑ ( 𝑣𝑖 − �̅�)2/(𝑛 ∗ (𝑛 − 1))𝑛
𝑖=1  (25) 

 Index of Agreement (IOA): IOA is a metric used to 
evaluate the agreement or accuracy of model predictions 
compared to observed data, typically expressed as a 
value between 0 and 1. The Eq. (26) represents it below: 

𝐼𝑂𝐴 = 1 −
∑ |𝑤𝑖−𝑣𝑖|𝑛

𝑖=1

∑ (|𝑤𝑖− �̅�|+|𝑣𝑖− �̅�|)𝑛
𝑖=1

  (26) 

In all equations: 

𝑛: quantity of samples, 

𝑣𝑖 : denotes the individual predicted cost,  

�̅�: indicates the mean of the predicted morals, 

𝑤𝑖 : stands for the experimentally measured cost, 

�̅�: represents the average of the experimentally measured 
values. 

III. RESULTS 

In this research paper, the assessment of heating energy 
consumption relies on utilizing a Naive Bayes (NB) model. Two 
optimization algorithms, COA and BWO, have been employed 
to assess the model's performance and training procedure. To 
create the requisite datasets for training, validation, and testing, 
a partitioning scheme of 70% for training, 15% for validation, 
and 15% for testing has been implemented. 

In Table II, it is evident that the 𝑅2 values exhibit a range, 
with the lowest value of 0.947 (corresponding to the NB model) 
and the highest value of 0.987 (associated with the NBCO 
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model). Interpreting the 𝑅2, it is apparent that the NBCO model, 
with the highest 𝑅2, indicates superior model performance. The 
NBBW model, which achieved a 𝑅2 of 0.975, closely follows as 
the second-best performer. 

RMSE and MSE represent the amount of error according to 
their definitions. The smaller values of these metrics indicate 
better model performance. For the NB model, the highest values 
of RMSE and MSE are 2.050 and 4.204, respectively. In 
contrast, for the NBCO model, these values are significantly 
lower at 1.377 and 1.896, demonstrating the superior 
performance of the NBCO model. 

U95, representing data uncertainty, shows that a model's 
performance improves as this value decreases. According to 
Table II, the U95 values for models NBCO, NBBW, and NB are 
3.747, 4.676, and 5.677, respectively. 

The metric IOA indicates the agreement or accuracy of the 
model predictions associated to the practical data, and its value 
falls within the range of 0 to 1. NBCO, with an IOA of 0.995, 
ranks the highest, demonstrating superior performance. NBBW 
and NB models are second and third in model quality, 
respectively.

TABLE II.  THE RESULT OF THE DEVELOPED MODELS 

𝑴𝒐𝒅𝒆𝒍 𝑷𝒉𝒂𝒔𝒆 
𝑰𝒏𝒅𝒆𝒙 𝒗𝒂𝒍𝒖𝒆𝒔 

𝑹𝑴𝑺𝑬 𝑹𝟐 𝑴𝑺𝑬 𝑼𝟗𝟓 𝑰𝑶𝑨 

𝑁𝐵 

𝑇𝑟𝑎𝑖𝑛 1.940 0.964 3.764 5.375 0.991 
𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 2.298 0.947 5.282 6.354 0.986 
𝑇𝑒𝑠𝑡 2.278 0.956 5.188 6.278 0.988 
𝐴𝑙𝑙 2.050 0.960 4.204 5.677 0.990 

𝑁𝐵𝐶𝑂 

𝑇𝑟𝑎𝑖𝑛 1.325 0.985 1.757 3.598 0.996 
𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 1.491 0.978 2.222 4.104 0.994 
𝑇𝑒𝑠𝑡 1.490 0.980 2.219 4.034 0.994 
𝐴𝑙𝑙 1.377 0.983 1.896 3.747 0.995 

𝑁𝐵𝐵𝑊 

𝑇𝑟𝑎𝑖𝑛 1.605 0.975 2.575 4.429 0.994 
𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 1.880 0.967 3.536 5.115 0.991 
𝑇𝑒𝑠𝑡 1.914 0.964 3.662 5.276 0.991 
𝐴𝑙𝑙 1.698 0.972 2.882 4.676 0.993 

Fig. 2. displays a scatter plot for hybrid models, illustrating 
the variation among predicted and measured values. This scatter 
plot is generated using RMSE and 𝑅2 values, which primarily 
influence data dispersion. A decrease in RMSE corresponds to 
an increase in data density. Furthermore, a higher 𝑅2  value 
indicates a more precise fit of the line to the data. Based on the 
visual representations in the plots, it is evident that three primary 
lines can be identified: a central line, a line representing a 10% 
overestimation, and a line depicting a 10% underestimation. 

After explicit consideration, it is apparent that the minimum 𝑅2 
value, at 0.947, is associated with model NB, whereas model 
NBCO exhibits the highest value, 0.985. Furthermore, the 
highest RMSE is observed in model NB, which is equal to 2.30, 
and the lowest value for model NBCO is 1.33, representing a 
47% reduction in error. Based on these findings, it can be 
concluded that NBCO is the superior choice for predicting 
heating load.
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Fig. 2. The hybrid model's created scatter plot. 

Fig. 3 illustrates the variations in error metrics (𝑅𝑀𝑆𝐸 and 
𝑀𝑆𝐸)  and 𝑅2  values across the three models in this study. 
According to the trend lines for RMSE and MSE, it is observed 
that errors in all models initially increase during the train phase. 
However, there is a noticeable decrease from the validation 
phase to the test. In summary, after comparing the error rates of 
RMSE and MSE, it can be deduced that NBCO, with values of 

1.377 and 1.896, is the most accurate prediction model, while 
NBBW and NB are the second and third-ranking models, 
individually. In all phases, the value of 𝑅2 for NBCO is higher 
than NBBW and NB by approximately 1.13% and 2.396%, 
which again shows the superiority of the NBCO.

   

 

Fig. 3. Comparison between models corresponding RMSE, R2, MSE. 
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The histogram distribution diagram, depicting the error 
percentages of models, is presented in Fig. 4. The horizontal axis 
displays the percentage of errors, while the vertical axis 
represents the frequency of occurrences for each model during 
the training, validation, and test phases. In the basic 𝑁𝐵 model, 
the error percentage falls within the range of approximately -40 
to 40, with the highest frequency around 90. In the case of the 

two subsequent hybrid models, the error ranges for NBCO and 
NBBW are approximately -20 to 20 and -30 to 30, 
correspondingly. The highest frequencies of error values near 
zero percent for NBCO and NBBW are 100 and 120, 
respectively.

   

 

Fig. 4. The error ratio for the hybrid models is created on the Histogram distribution plot. 

The multi-line diagram illustrating the error percentages of 
the models is presented in Fig. 5. The horizontal 𝑎𝑥𝑖𝑠 represents 
the number of samples, and the vertical 𝑎𝑥𝑖𝑠  is divided into 
three components: the blue axis represents the error rate of 
model NB. At the same time, the brown and pink axes 
correspond to models NBCO and NBBW, respectively. It should 

be noted that the error percentage range for the NB model spans 
approximately from −40 to 40 during the train, validation, and 
test phases. In contrast, for the NBCO model, the range extends 
from -20 to just above 20, while for the NBBW model, it falls 
within the range of approximately (−30 to 30).

 

Fig. 5. The Multi-line plot for errors of the developed models.
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IV. DISCUSSION 

A. Validation of Present Study 

The validation of the developed NBCO model in this study 
demonstrates its superior performance compared to existing 
models. Table III presents a comparison among the NBCO 
model from the present study and the PSO-MLP model by Zhou 
et al. (Zhou u. a. 2020). The NBCO model achieves an R² value 
of 0.985, significantly higher than the 0.9126 obtained by the 
PSO-MLP model. This indicates that the NBCO model explains 
a larger proportion of the variance in heating load predictions, 
showcasing its enhanced predictive power. Additionally, the 
RMSE of the NBCO model is 1.325, which is substantially 
lower than the 2.9736 RMSE reported for the PSO-MLP model. 
A lower RMSE reflects higher accuracy in the predictions, 
further validating the effectiveness of the NBCO model in 
accurately forecasting heating loads. These results highlight the 
advantages of the bio-inspired optimization techniques 
employed in this study, particularly the Coot Optimization 
Algorithm, in refining the Naive Bayes model. The validation 
confirms that the NBCO model outperforms existing 
approaches, making it a valuable tool for improving energy 
efficiency and sustainability in building energy management. 

TABLE III.  THE VALIDATION OF DEVELOPED MODEL 

Article Model 
Evaluator 

R2 RMSE 

Zhou et al. (Zhou 

u. a. 2020) 
PSO-MLP 0.9126 2.9736 

Present study  NBCO 0.985 1.325 

B. Comparison 

Table IV presents a comparative analysis of the best-
performing models from the present study alongside similar 
models from relevant literature, focusing on their ability to 
predict HL. The models compared include Support Vector 
Regression (SVR), Multi-Parameter Moving Ridge (MPMR), 
Light Gradient Boosting Machine (LGBM), and the Naive 
Bayes optimized with Coot Optimization Algorithm (NBCO) 
developed in the current study. The SVR model by Moradzadeh 
et al. (Moradzadeh u. a. 2020) achieved an impressive 𝑅𝑀𝑆𝐸 of 
0.4832 and an R² value of 0.9979, indicating a high level of 
accuracy and predictive power. Similarly, Roy et al. (Roy u. a. 
2020) reported an MPMR model with an RMSE of just 0.059 
and an R² of 0.99, making it one of the most accurate models for 
heating [39] load prediction. Gong et al. (Gong u. a. 2020) 
employed the LGBM model, which also performed well, 
achieving an 𝑅𝑀𝑆𝐸  of 0.1929 and an R² value of 0.9882. In 
comparison, the NBCO model from the present study produced 
an 𝑅𝑀𝑆𝐸 of 1.325 and an R² value of 0.985. While the NBCO 
model's R² value is close to those reported in the literature, 
indicating strong predictive accuracy, its RMSE is notably 
higher. This suggests that while NBCO captures the overall 
variance in heating loads [40] effectively, there may be room for 
improvement in reducing the prediction errors to match or 
surpass the accuracy levels of the models reported in other 
studies. Despite this, the NBCO model still offers significant 
advantages, particularly in its innovative use of bio-inspired 
optimization techniques. The model's relatively high R² value 
demonstrates its ability to serve as a reliable tool for heating [41] 
load prediction, with the added potential for further refinement 

to improve its RMSE. This comparison underscores the value of 
continuing to explore and optimize machine learning models in 
the pursuit of enhanced energy efficiency in building 
management. 

TABLE IV.  THE COMPARISON OF THE BEST PERFORMED MODELS 

RESULTS OF PRESENT STUDY WITH SOME RELATED LITERATURES 

Articles 
Index values 

Target Models RMSE R2 

Moradzadeh et 
al. 
(Moradzadeh 
u. a. 2020) 

𝐻𝐿 𝑆𝑉𝑅 0.4832 0.9979 

Roy et al. (Roy 
u. a. 2020) 

𝐻𝐿 𝑀𝑃𝑀𝑅 0.059 0.99 

Gong et al. 
(Gong u. a. 
2020) 

𝐻𝐿 𝐿𝐺𝐵𝑀 0.1929 0.9882 

Present Study 𝐻𝐿 𝑁𝐵𝐶𝑂 1.325 0.985 

C. Limitation 

Despite the promising results, this study has several 
limitations that should be acknowledged, both in the context of 
the Naive Bayes (NB) model and the broader modeling 
approach. First, the NB model's inherent assumption of 
conditional independence among input features may not fully 
capture the complex interdependencies in building systems, 
potentially leading to inaccuracies when strong correlations 
exist between variables such as orientation, glazing area, and 
thermal performance. This limitation could result in suboptimal 
predictions, particularly in scenarios where these interactions 
play a significant role. Additionally, the optimization techniques 
employed Beluga Whale Optimization (𝐵𝑊𝑂)  and Coot 
Optimization Algorithm (𝐶𝑂𝐴) though effective, are relatively 
novel and less established than traditional methods. Their 
efficacy in various contexts remains to be thoroughly validated, 
and there may be cases where these optimizers do not provide 
substantial improvements over more conventional approaches. 
Moreover, the study focuses exclusively on predicting heating 
loads, overlooking other critical aspects of building energy 
management, such as cooling loads and ventilation. This narrow 
focus limits the comprehensiveness of the model and its 
applicability in broader energy efficiency strategies. Finally, the 
existing model does not account for real-time data integration or 
adaptive learning, which are increasingly important in dynamic 
energy management systems. The absence of these features may 
restrict the model's effectiveness in responding to changing 
conditions and optimizing performance over time. 

V. CONCLUSION 

The contemporary challenge of effectively managing 
building energy consumption, particularly in structures 
equipped with air conditioning systems, necessitated a holistic 
understanding of energy resources and end-uses within 
buildings. Achieving energy efficiency and sustainability in the 
built environment demanded the development of optimal 
predictive tools for estimating building energy consumption. 
Various modeling methodologies, including traditional 
approaches based on building geometry and advanced machine 
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learning models like 𝐴𝑁𝑁𝑠, 𝑆𝑉𝑀,  and random forests (𝑅𝐹) , 
were explored for this purpose. Additionally, integrating 
metaheuristic algorithms emerged as a promising avenue for 
optimizing these models. 

This study extended these efforts by applying the Naive 
Bayes (NB) model to predict heating loads in buildings and 
optimize the train process using the Beluga Whale Optimization 
(𝐵𝑊𝑂) and Coot Optimization Algorithm (𝐶𝑂𝐴). Comparative 
analysis revealed that the optimized NB models outperformed 
traditional NB, demonstrating the potential for these bio-
inspired optimization techniques to enhance predictive models 
and contribute to greater energy efficiency and sustainability in 
the built environment. Based on comparative analysis based on 
numerical values obtained for each evaluation metric 
corresponding to the developed models, the NBCO hybrid 
model attained a maximum coefficient of determination of 
0.985, surpassed NBBW and NB by 1.03% and 2.2%, 
respectively, and exhibited minimal performance RMSE error 
of 1.325, which are notably 17.4% and 31.7% lower than those 
observed in NBBW and NB. This research served as a 
significant step toward addressing the energy challenges faced 
by contemporary facility management, presenting a promising 
path for future developments in the field. 
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