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Abstract—This review examines noise reduction techniques in 

Advanced Driver Assistance Systems (ADAS) sensor data 

management, crucial for enhancing vehicle safety and 

performance. ADAS relies on real-time data from conventional 

sensors (e.g., wheel speed sensors, LiDAR, radar, cameras) and 

MEMS sensors (e.g., accelerometers, gyroscopes) to execute 

critical functions like lane keeping, collision avoidance, and 

adaptive cruise control. These sensors are susceptible to thermal 

noise, mechanical vibrations, and environmental interferences, 

which degrade system performance. We explore filtering 

techniques including KalmanNet, Simple Moving Average 

(SMA), Exponential Moving Average (EMA), Wavelet Denoising, 

and Low Pass Filtering (LPF), assessing their efficacy in noise 

reduction and data integrity improvement. These methods are 

compared using key performance metrics such as Signal-to-Noise 

Ratio (SNR), Mean Squared Error (MSE), and Root Mean 

Squared Error (RMSE). Recent advancements in hybrid filtering 

approaches and adaptive algorithms are discussed, highlighting 

their strengths and limitations for different sensor types and 

ADAS functionalities. Findings demonstrate the superior 

performance of Wavelet Denoising for non-stationary signals, 

SMA and EMA's effectiveness for smoother signal variations, 

and LPF's excellence in high-frequency noise attenuation with 

careful tuning. KalmanNet showed significant improvements in 

noise reduction and data accuracy, particularly in complex and 

dynamic environments. Extended Kalman Filter (EKF) and 

Unscented Kalman Filter (UKF) were especially effective for 

RADAR sensors, handling non-linearities and providing accurate 

state estimation. Emphasizing Hardware-in-the-Loop (HIL) 

bench testing to validate these techniques in real-world scenarios, 

this study underscores the importance of selecting appropriate 

methods based on specific noise characteristics and system 

requirements. This research provides valuable insights for ADAS 

and autonomous driving technologies development, emphasizing 

precise signal processing's critical role in ensuring accurate 

sensor data interpretation and decision-making. 
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I. INTRODUCTION 

The evolution of automotive technology is rapidly 
transforming with the integration of Advanced Driver 
Assistance Systems (ADAS) and Autonomous Driving (AD) 
technologies, which are set to redefine vehicle safety and 
efficiency standards. Central to the success of these systems is 
the precise and reliable processing of sensor data from a variety 
of sources, including wheel speed sensors (WSS), inertial 
measurement units (IMUs), and radar systems. These sensors 

collectively enable the vehicle to perceive its environment, 
make decisions, and execute safe driving maneuvers [1], [2]. 
However, the performance of ADAS and AD is critically 
dependent on the quality of the sensor data, which can be 
severely compromised by noise and interference, posing 
significant challenges to system reliability [3]. As vehicle 
systems become increasingly interconnected through Vehicle-
to-Everything (V2X) communication and the rollout of 5G 
networks, the demand for real-time, robust, and low-latency 
data processing solutions has intensified, underscoring the 
necessity for efficient noise reduction algorithms. 

 
Fig. 1. Challenges encoutered by each sensor type. 

As shown in the Fig. 1 and in order to mitigate these 
challenges, cutting-edge signal processing techniques have 
been developed to enhance sensor data quality, each tailored to 
the unique characteristics of different sensors. For instance, in 
WSS, where high-frequency noise can disrupt accurate speed 
measurement, frequency-domain adaptive filtering has proven 
effective in stabilizing the data, ensuring smoother vehicle 
control and more accurate speed monitoring [4]. IMUs, which 
are essential for maintaining vehicle dynamics and stability, 
benefit from advanced Kalman filtering techniques—
particularly the Extended Kalman Filter (EKF) and Unscented 
Kalman Filter (UKF)—which are adept at managing the non-
linearities inherent in inertial measurements [3], [12]. 
Meanwhile, RADAR systems, tasked with obstacle detection 
and environmental mapping, require even more sophisticated 
noise reduction strategies, including multi-sensor fusion and 
machine learning-based methods, to effectively manage the 
complex and dynamic noise patterns encountered in real-world 
scenarios [5], [6]. 

To address the challenges posed by dynamic environments 
in ADAS applications, this Fig. 2 illustrates the increasing 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 8, 2024 

680 | P a g e  

www.ijacsa.thesai.org 

necessity for advanced noise reduction techniques tailored to 
specific driving situations. 

 
Fig. 2. The need for enhancing sensor noise reduction based on the driving 

situation identified. 

As ADAS technology continues to advance, the integration 
of more complex sensor systems, such as radar and lidar, has 
heightened the need for innovative noise reduction techniques. 
These systems operate in dynamic environments filled with 
clutter, where conventional noise reduction approaches may 
fall short. To overcome these limitations, researchers are 
developing more sophisticated signal processing algorithms 
and exploring alternative modulation schemes, specifically 
designed to enhance data acquisition accuracy and reliability 
[7]. For RADAR systems, advanced Kalman filtering methods, 
such as the Unscented Kalman Filter (UKF), have 
demonstrated exceptional performance in tracking applications, 
particularly where noise is non-Gaussian and non-linear [12]. 
Simultaneously, multi-sensor fusion strategies, which integrate 
data from radar, lidar, and cameras, have become increasingly 
vital in providing a comprehensive perception of the vehicle's 
surroundings, compensating for the limitations of individual 
sensors [8]. However, the success of these approaches hinges 
on precise data synchronization and the development of sensor-
specific noise reduction strategies, making them a critical area 
of ongoing research. 

This Fig. 3 highlights the range of noise reduction 
techniques evaluated in this study, with a focus on those 
specifically selected for their effectiveness in various sensor 
types. 

Recent advances in noise reduction techniques reflect a 
growing recognition of the need for tailored solutions across 
different sensors. For WSS, techniques like Simple Moving 
Average (SMA) and Exponential Moving Average (EMA) 
remain popular for their simplicity and computational 
efficiency, though Enhanced Simple Moving Average (ESMA) 
methods have emerged to address the limitations of 
initialization periods and stability [9], [10], [11]. IMUs, on the 
other hand, continue to benefit from the Kalman filtering 

family, with the EKF and UKF providing robust solutions for 
handling non-linear dynamics and improving measurement 
accuracy [13]. In RADAR systems, wavelet denoising has 
proven to be a powerful tool for managing non-stationary 
signals, while innovations like KalmanNet—which merges 
neural networks with Kalman filtering—offer significant 
advancements in reducing noise and enhancing signal clarity in 
complex operational environments [14], [15]. These 
innovations are critical not just for improving sensor data 
quality but also for enabling the high levels of performance 
demanded by modern ADAS and AD systems. 

 
Fig. 3. Noise reduction techniques and chosen techniques shape outline are 

in red. 

Effective noise reduction techniques are essential across 
WSS, IMUs, and RADAR systems, as they directly influence 
the reliability and safety of ADAS and AD applications. For 
WSS, methods like SMA and EMA continue to provide 
efficient solutions for mitigating speed-related noise, ensuring 
smoother control and accurate speed data [9], [10]. In IMUs, 
the advanced filtering techniques of EKF and UKF are crucial 
for maintaining vehicle stability by effectively handling the 
non-linearities in inertial data [16], [17]. RADAR systems, 
operating in complex environments, benefit significantly from 
wavelet denoising and hybrid methods like KalmanNet, which 
enhance signal clarity and improve the detection of critical 
obstacles [14], [15]. These tailored approaches are not only 
vital for current applications but also lay the groundwork for 
future advancements in automotive safety and sensor 
technology [18], [19], [20]. 

To validate the effectiveness of these advanced noise 
reduction techniques, we conducted a comprehensive empirical 
study using synthetic datasets that closely mimic the noise 
characteristics encountered by automotive sensors such as 
WSS, IMUs, and RADAR. By systematically introducing a 
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range of noise types and levels, we rigorously evaluated the 
performance of each noise reduction method across key 
metrics, including Mean Squared Error (MSE), Root Mean 
Squared Error (RMSE), Signal-to-Noise Ratio (SNR), and 
Peak Signal-to-Noise Ratio (PSNR). This approach ensured a 
robust assessment of each technique's ability to enhance data 
accuracy and reliability under real-world conditions. 

The Fig. 4 shows a summary of the key findings from 
existing literature, emphasizing the importance of tailored 
noise reduction approaches for enhancing sensor data accuracy 
in ADAS applications. 

 
Fig. 4. Key findings of the existing literature. 

The findings of this study strongly support the hypothesis 
that a tailored, sensor-specific approach to noise reduction can 
significantly improve data accuracy and system performance 
across various ADAS and AD applications. KalmanNet and 
hybrid techniques showed the greatest improvements in SNR 
and significant reductions in MSE and RMSE for RADAR 
data, while SMA, EMA, and Wavelet Denoising effectively 
reduced noise in WSS and IMU data, with Low Pass Filtering 
(LPF) providing broad applicability across all sensor types 
[21], [22]. These results underscore the critical importance of 
selecting the right noise reduction techniques based on the 
specific operational requirements and noise characteristics of 
each sensor, paving the way for enhanced automotive safety 
and efficiency. 

In the introduction, the critical role of Advanced Driver 
Assistance Systems (ADAS) and Autonomous Driving (AD) 
technologies in enhancing vehicle safety and efficiency is 
examined, with an emphasis on the importance of accurate 
sensor data processing. The challenges associated with noise 
and interference in key sensors—such as wheel speed sensors 
(WSS), inertial measurement units (IMUs), and radar 
systems—are highlighted, particularly given their integral role 
in ADAS and AD system performance. The methodology 
section discusses the application of advanced noise reduction 

techniques, specifically tailored to the unique characteristics of 
these sensors, while also considering the demands of Vehicle-
to-Everything (V2X) communication and 5G networks. 
Techniques such as Simple Moving Average (SMA), 
Exponential Moving Average (EMA), Wavelet Denoising, 
Low Pass Filtering (LPF), KalmanNet, Extended Kalman Filter 
(EKF), and Unscented Kalman Filter (UKF) are evaluated for 
their efficacy in noise reduction, with an additional focus on 
the necessity of real-time processing and the preference for 
simpler, computationally efficient algorithms over more 
complex ones. The results provide a detailed analysis, 
demonstrating the effectiveness of these methods in enhancing 
Signal-to-Noise Ratio (SNR) and reducing Mean Squared 
Error (MSE) and Root Mean Squared Error (RMSE), while 
also considering the practical implications of implementing 
these techniques in real-time V2X and 5G environments. The 
discussion elaborates on these findings, underscoring the 
importance of sensor-specific noise reduction strategies and 
their implications for the future development of ADAS. The 
conclusion synthesizes the key contributions of the study, 
proposing directions for future research aimed at further 
optimizing these techniques and ensuring their seamless 
integration into comprehensive, real-time ADAS frameworks, 
thereby advancing the reliability and performance of 
automotive safety systems. 

Given the critical role that precise noise reduction 
techniques play in the effectiveness of ADAS, it is essential to 
explore and build upon existing research that has laid the 
groundwork in this field. The following section reviews the 
advancements and challenges documented in recent literature, 
providing a context for the methodologies employed in this 
study. 

II. RELATED WORK 

Recent research has focused extensively on developing 
data-driven frameworks for diagnostics and prognostics across 
various domains, including automotive and aerospace. These 
frameworks typically involve sophisticated data acquisition 
processes from sensors and control units, often leveraging 
machine logs and CAN bus networks to enhance system 
monitoring and fault detection [23], [24]. Advanced data 
processing techniques, such as feature selection and extraction, 
have been employed to improve diagnostic accuracy, but their 
application in real-time systems remains a challenge due to 
computational limitations [23], [24]. 

The Fig. 5 provides an overview of the testing and 
validation activities critical to ensuring the reliability and 
performance of automotive systems, especially in the context 
of noise reduction. 

The adoption of machine learning algorithms, including 
Random Forests, Bayesian estimation methods, and Cox 
proportional hazards models, is widespread for fault detection 
and remaining useful life (RUL) prediction; however, these 
approaches often require significant computational resources, 
limiting their applicability in real-time environments [25]-[26]. 
Despite these advancements, there is a clear need for further 
research into hybrid models that can efficiently balance 
predictive accuracy with real-time processing demands, 
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particularly in safety-critical systems where data availability 
may be limited [25]. 

 
Fig. 5. Testing and validation activities in the automotive field [40]. 

The Fig. 6 below presents a comparison of advanced fault 
detection and diagnostic techniques, highlighting those selected 
for this study due to their relevance in noisy environments. 

In the context of noise reduction in data acquisition 
systems, particularly for automotive applications and 
Hardware-in-the-Loop (HIL) testing, various noise sources 
have been identified, including thermal fluctuations, 
mechanical vibrations, and environmental interferences [27], 
[28]. Although conventional noise mitigation techniques, such 
as proper cabling, shielding, and signal modulation, provide 
baseline improvements, they fall short in addressing the 
complex, high-frequency noise patterns encountered in modern 
vehicle systems, especially under dynamic conditions [27], 
[29]. Emerging machine learning approaches, like ensemble 
LSTM and Random Forest, have been proposed for fault 
detection in noisy conditions, showing promise in controlled 
environments but requiring further validation under real-world 
conditions [30]. Moreover, the impact of noise on sensor 
performance, particularly in automotive camera sensors and 
object detection systems, has underscored the necessity for 
simultaneous analysis of multiple noise factors to ensure robust 
performance [31]. 

This Fig. 7 illustrates the various sources of noise and 
interference that impact sensor data quality in automotive 
systems, underscoring the need for robust noise reduction 
strategies. 

 
Fig. 6. Advanced techniques for fault detection and diagnostics and selected 

ones for the current study in red [41]. 

 
Fig. 7. Noise and interferences. 
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This body of work highlights the critical importance of 
noise reduction in the automotive and aerospace industries. 
Researchers have explored a wide array of techniques to 
minimize aerodynamic, vibroacoustic, and communication 
noise, yet the integration of these techniques into real-time 
systems remains an ongoing challenge [32], [33]. Advanced 
methods, such as compressive sensing-based noise radar and 
hybrid active noise control systems, have been developed to 
improve sensor performance, but their high computational 
requirements often hinder their implementation in embedded 
systems [34], [35]. As the industry moves towards more 
complex and interconnected systems, such as those enabled by 
V2X and 5G technologies, there is an increasing demand for 
noise reduction techniques that are both highly effective and 
computationally efficient [36], [28]. This demand is further 
amplified by the exponential growth in sensor data volume and 
complexity, necessitating the development of novel algorithms 
that can operate within the stringent constraints of modern 
embedded systems [37]. 

The Fig. 8 below -compares existing noise reduction 
methods with the current demands of modern automotive 
systems, highlighting gaps that this study aims to address. 

 
Fig. 8. Comparaison between the existent method in the literature and the 

current need. 

In summary, the need for effective noise reduction in 
automotive sensor data acquisition is well-established in recent 
research. However, as vehicle connectivity and automation 
continue to expand, the challenges associated with noise in 
sensor systems grow more complex [37]. While existing 
studies have made significant strides in addressing these issues, 
particularly through HIL testing and the development of robust 
sensor models, there remains a critical need for further research 
that focuses on the integration of real-time noise reduction 
techniques within the context of V2X and 5G environments 
[38]-[39]. This integration is essential not only for meeting 
current safety standards but also for advancing the capabilities 
of future Advanced Driver Assistance Systems (ADAS) and 
autonomous driving technologies [36], [37]. Future research 
should prioritize the development of scalable, adaptive noise 
reduction strategies that can efficiently process the vast 

amounts of data generated by modern vehicle systems, 
ensuring both reliability and real-time performance [37]. 

III. CONTEXT AND OBJECTIVES 

Hardware-in-the-Loop (HIL) testing has become a 
cornerstone in the validation process of complex automotive 
and aerospace systems. By accurately simulating real-world 
conditions, HIL testing serves as a critical bridge between 
theoretical models and practical applications, ensuring that 
systems perform reliably and efficiently under operational 
constraints. Recent advancements in this domain have been 
pivotal in overcoming key challenges, such as the bandwidth 
limitations of Electronic Control Units (ECUs), while 
significantly enhancing diagnostic capabilities. These 
advancements are particularly vital as the integration of next-
generation technologies, including advanced communication 
networks like 5G and Vehicle-to-Everything (V2X), becomes 
increasingly prevalent in automotive systems. 

This Fig. 9 showcases a typical Hardware-in-the-Loop 
(HIL) test bench setup, demonstrating its critical role in 
validating the performance of noise reduction techniques under 
real-world conditions. 

 
Fig. 9. An example of HIL bench test bench with an ECU [42]. 

The primary objectives of this research are: 

 Enhancing the precision of data collection and testin 
through the development and implementation of 
advanced HIL testbeds. 

 Improving fault detection and noise reduction by 
integrating sophisticated signal processing techniques, 
tailored to the unique demands of modern sensor 
systems. 

 Optimizing HIL testing frameworks to effectively 
manage the complexities introduced by the integration 
of 5G and V2X technologies, ensuring robust 
performance and reliability. 

Addressing these objectives is crucial for refining real-time 
performance in HIL testing and ensuring that simulation 
outcomes closely mirror real-world conditions. As HIL testing 
methodologies evolve, these efforts will drive the development 
of more reliable, efficient, and safe automotive and aerospace 
systems, positioning them to meet and exceed the rigorous 
demands of contemporary engineering challenges. This study 
emphasizes the strategic selection of noise reduction 
techniques based on sensor-specific and operational 
requirements, highlighting their impact on the performance and 
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reliability of Advanced Driver Assistance Systems (ADAS). 
Future research should focus on further optimizing these 
techniques and exploring their seamless integration into 
comprehensive ADAS solutions, thereby advancing the frontier 
of automotive safety and operational efficiency. 

IV. METHODOLOGY 

A. General Approach 

To validate the hypothesis that tailored noise reduction 
techniques enhance the accuracy and reliability of sensor data 
in Advanced Driver Assistance Systems (ADAS), a 
comprehensive study was conducted. This study involved the 
generation of synthetic datasets for Wheel Speed Sensors 
(WSS), Inertial Measurement Units (IMU/GYRO), and 
RADAR sensors, reflecting the typical data volume and noise 
complexity encountered in real-world scenarios. This approach 
ensures that the study replicates the diverse and challenging 
conditions that ADAS must effectively manage for enhanced 
performance and safety. 

The following figure shows the proposed method followed 
for this paper: 

 
Fig. 10. Proposed method for filtering. 

Fig. 10 illustrates the structured approach followed in this 
research, highlighting the key stages of data generation, noise 
addition, and performance evaluation. 

The methodology followed a systematic approach as 
explained below: 

1) Data generation: Synthetic datasets were generated to 

simulate sensor data under various driving scenarios. For WSS 

and IMU/GYRO sensors, 10 signals were created for each 

sensor type, capturing rapid changes in speed, motion, and 

orientation. For RADAR sensors, 100 signals were generated 

to account for the increased complexity and variability in 

noise patterns encountered in dynamic environments. These 

datasets were designed to replicate the typical challenges 

faced by ADAS systems, ensuring the relevance and 

applicability of the findings. 

2) Noise addition: To replicate real-world conditions, 

various types and levels of noise were systematically 

introduced to the synthetic datasets. For instance, Gaussian 

noise was added to mimic thermal fluctuations, and periodic 

spikes simulated electromagnetic interference (EMI). The 

noise levels were varied to assess the robustness of each 

filtering technique across different conditions. Different levels 

of noise intensity were applied to test the robustness and 

adaptability of each filtering technique, ensuring 

comprehensive evaluation under varied conditions. 

3) Scenario simulation: The study simulated a range of 

high-risk and typical driving scenarios, including urban 

intersections, highway lane changes, and emergency braking. 

These scenarios were derived from real-world conditions 

commonly tested in ADAS and Vehicle-to-Everything (V2X) 

systems, ensuring that the simulation covered a broad 

spectrum of challenges that ADAS must handle effectively. 

This comprehensive scenario simulation provides a rigorous 

testing environment, closely mirroring the operational 

challenges encountered in actual driving situations. 

4) Filtering techniques exposition: The following Table I 

present a presents a comparative analysis of the noise 

reduction methods for WSS data in ADAS, highlighting their 

advantages, disadvantages, and performance metrics. This 

analysis is crucial for understanding the trade-offs associated 

with each technique, particularly in terms of computational 

complexity and real-time applicability. 

The following Table I presents a comparative analysis of 
noise reduction methods specifically tailored for wheel speed 
sensor (WSS) data in advanced driver assistance systems 
(ADAS). It provides critical insight into the constraints 
associated with their application in real-time environments by 
highlighting the advantages, disadvantages and performance 
metrics of each method. 

5) Performance evaluation criteria: The performance of 

each filtering technique was rigorously evaluated using 

metrics such as Signal-to-Noise Ratio (SNR), Mean Squared 

Error (MSE), and Root Mean Squared Error (RMSE). The 

analysis provided detailed insights into the scenario-specific 

performance and computational complexity of each method, 

with an emphasis on practical implications for ADAS 

development. The metrics used in this study are critical for 

quantifying the effectiveness of each noise reduction 

technique, offering a clear comparison of their relative 

strengths and weaknesses. 

To quantify the effectiveness of the noise reduction 
techniques evaluated in this study, the following Table II 
outlines the performance evaluation criteria, focusing on key 
metrics such as Signal-to-Noise Ratio (SNR), Mean Squared 
Error (MSE), and Root Mean Squared Error (RMSE). This 
comparison is essential for understanding the impact of each 
technique on data integrity and system reliability. 
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TABLE I.  COMPARATIVE ANALYSIS OF NOISE REDUCTION METHODS FOR WSS DATA IN ADAS 

Method Advantages Disadvantages Performance 

Simple Moving 

Average (SMA) 
- Easy to implement 

- Introduces lag 

- Less effective for complex noise 

patterns 

-  Significant noise reduction 

- Improves SNR 
- Higher MSE and RMSE compared to other 

methods during rapid signal changes 

Exponential 

Moving Average 

(EMA) 

- More responsive to recent changes 

- Smoother transition and less lag 
compared to SMA 

- More complex to implement than 
SMA 

- May still lag in highly dynamic 

scenarios 

- Better noise reduction than SMA 
- Higher SNR improvement 

- Lower MSE and RMSE than SMA, suitable for 

timely signal changes 

Wavelet Denoising 

- Handles non-stationary signals well - 

Effective at separating noise from the 
actual signal 

- Computationally intensive 
- Requires careful selection of 

wavelet type and decomposition 

level 

- Outperformed SMA and EMA 
- Highest SNR improvements 

- Lowest MSE and RMSE, effective for varying 

noise characteristics 

Low Pass Filtering 

- Simple and effective for high-frequency 

noise 

- Preserves low-frequency components of 
the signal 

- Can distort signal if cutoff 

frequency is not appropriately set 

- May not be effective for low-
frequency noise 

- Significant high-frequency noise reduction 

- Improved SNR 

- Potential signal distortion indicated by MSE and 
RMSE, requires careful tuning 

KalmanNet 

- Neural network-aided Kalman filtering 

to enhance noise reduction capability 

using learned patterns 

- Computationally intensive 

- Requires training data 

- Demonstrated significant improvements in noise 

reduction and data accuracy compared to traditional 

Kalman filters 

Extended Kalman 

Filter (EKF) 

- Suitable for non-linear systems 
- Incorporates system dynamics into the 

filtering process 

- Requires accurate system models 

- Computationally demanding 

- Significant noise reduction 

- Improved SNR 

- Lower MSE and RMSE, effective for non-linear 
RADAR data 

Unscented Kalman 

Filter (UKF) 

- Superior performance for highly non-

linear systems 
- Does not require linearization of the 

system model 

- High computational complexity 
- Sensitive to initial conditions 

- Outperforms EKF in highly non-linear applications 
- Highest SNR and lowest MSE and RMSE for 

complex noise patterns 

TABLE II.  METRICS CRITERIA EVALUATION 

Metric Increase Decrease 

Signal-to-Noise Ratio 

(SNR) 

- Indicates improved signal quality: 

 A higher SNR means the signal is clearer relative to the noise, 

suggesting that the filtering technique effectively reduces noise and 
enhances the signal's clarity. 

- Indicates poorer signal quality: 

A lower SNR implies that the signal is more contaminated 

by noise, suggesting that the filtering technique is less 
effective at noise reduction. 

Mean Squared Error 

(MSE) 

- Indicates poorer filtering performance: 

An increase in MSE means the difference between the filtered 
signal and the original clean signal is larger, suggesting that the 

filtering technique introduces significant error or fails to effectively 

reduce noise. 

- Indicates better filtering performance: 

 A decrease in MSE means the filtered signal is closer to 

the original clean signal, indicating that the filtering technique 
effectively reduces noise with minimal distortion. 

Root Mean Squared 

Error (RMSE) 

- Indicates poorer filtering performance: 
 An increase in RMSE suggests that the filtering technique is less 

effective, as there is a larger average magnitude of error between the 
filtered signal and the original clean signal. 

- Indicates better filtering performance: 
 A decrease in RMSE indicates that the filtering technique 

performs well, reducing the average magnitude of error and 
closely approximating the original clean signal. 

B. Scope and Limitations of the Research 

Fig. 11 shows the ADAS driving scenarios for which we 
limit the current study to identify the adequate filtering method 
for each situation accordingly. This focused approach ensures 
that the findings are directly applicable to the most critical real-
world challenges faced by ADAS systems. 

The scenarios used for generating WSS signals represent 
various high-risk and typical driving situations encountered in 
Advanced Driver Assistance Systems (ADAS). These include: 

1) Urban intersection: Simulates driving at different 

speeds within an intersection, capturing low, moderate, slow, 

and high-speed phases. 

2) Rear-end collision avoidance: Captures high-speed 

driving followed by rapid deceleration to avoid a rear-end 

collision. 

3) Pedestrian crossing: Models stopping and starting for 

pedestrian crossings, with periods of driving and stopping. 

4) Emergency braking for cyclist: Demonstrates 

deceleration and rapid acceleration to avoid a collision with a 

cyclist. 

5) Blind spot detection: Simulates consistent speed with 

noise to represent challenges in detecting vehicles in blind 

spots. 

6) Highway lane change: Depicts the process of lane 

changing on a highway, with distinct phases of driving in a 

lane and the lane change itself. 

7) Cut-in vehicle: Illustrates a vehicle cutting into the 

lane, requiring a deceleration phase followed by a return to 

normal speed. 

8) Roadworks zone navigation: Depicts navigation 

through a roadworks zone with varying speeds and obstacles. 
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9) Traffic jam assist: Represents slow driving and 

stopping typical of traffic jam conditions. 

10) Left Turn Across Path (LTAP): Models the approach, 

turn, and acceleration phases of making a left turn across 

another path. 

        

            

              

               

                       
Fig. 11. ADAS driving scenarios.  

These scenarios are derived from real-world situations 
commonly tested in ADAS and V2X (Vehicle-to-Everything) 
systems, as outlined in safety protocols like the European New 
Car Assessment Programme (Euro NCAP). The selection of 
these scenarios ensures the simulation of diverse and 
challenging conditions that ADAS must handle effectively for 
enhanced safety and performance. he rigorous selection and 
simulation of these scenarios are critical for validating the 
effectiveness of the noise reduction techniques in realistic and 
high-pressure environments. 

C. Detailed Proposed Method 

Below the detailed Method followed during this research: 

 
Fig. 12. Proposed method for noise filtering in the context of V2X & 5G 

challenges. 

The proposed method (Fig. 12) is illustrated in the schema 
above, showcasing the systematic process of data generation, 
noise introduction, filtering, and evaluation across diverse 
driving scenarios. This approach ensures that the study 
addresses the specific challenges posed by V2X and 5G 
integration in ADAS systems. 

1) Data generation and noise addition: The synthetic 

datasets were designed to replicate the sensor data from 

various automotive sensors under realistic driving conditions. 

For instance, WSS data was generated at high frequencies to 

capture rapid speed changes, while accelerometers and 

gyroscopes produced data representing motion and orientation 

in dynamic environments. This detailed approach ensures that 

the study comprehensively addresses the unique challenges 

posed by each sensor type, particularly under varied driving 

conditions, thus providing a robust basis for noise reduction 
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analysis. Noise was systematically introduced to these 

datasets, including Gaussian noise to simulate thermal 

fluctuations and periodic spikes to represent electromagnetic 

interference (EMI). The varied noise levels ensure a 

comprehensive evaluation of each filtering technique's 

effectiveness and resilience across diverse conditions. 

The filtering techniques applied in this study were selected 
for the ability to address the specific challenges posed by each 
sensor type. The selection was guided by the specific 
operational contexts and the complexity of the noise 
characteristics encountered in real-world scenarios: 

2) Identification of the convenient filtering techniques: 

Based on the Fig. 4, the filtering techniques applied in this 

study were selected for their ability to address the specific 

challenges posed by each sensor type: 

 Simple Moving Average (SMA) and Exponential 
Moving Average (EMA): These methods are 
computationally efficient and suitable for reducing 
short-term fluctuations and high-frequency noise in 
relatively stable environments. Their simplicity makes 
them ideal for real-time processing in scenarios where 
computational resources are limited, ensuring they meet 
the performance requirements of ADAS systems. 

 Wavelet Denoising: This technique excels in handling 
non-stationary signals, making it effective for complex 
and dynamic noise patterns. Its ability to separate noise 
from actual signal components ensures high accuracy, 
especially in environments where signal integrity is 
critical. 

 Low Pass Filtering (LPF): Simple yet effective for 
attenuating high-frequency noise, with careful tuning to 
avoid signal distortion. Although computationally 
lighter, LPF requires careful parameter selection to 
maintain signal fidelity and effectiveness. 

 KalmanNet: A neural network-aided Kalman filtering 
technique designed to enhance noise reduction 
capability by learning patterns within the data. This 
advanced method is particularly effective in dynamic 
environments but requires significant computational 
resources and training data. 

 Extended Kalman Filter (EKF) and Unscented Kalman 
Filter (UKF): These filters are particularly effective for 
non-linear systems, with the UKF offering superior 
performance without requiring linearization of the 
system model. Their robustness in handling non-
linearities makes them indispensable for accurate sensor 
data processing in complex ADAS scenarios. 

The methodology outlined provides a structured approach 
to evaluating and enhancing noise reduction techniques for 
automotive sensors in ADAS applications. By simulating 
diverse driving scenarios and introducing various noise types, 
the study identifies the most effective methods for improving 
sensor data integrity and reliability. This approach ensures that 
the findings are robust and applicable to real-world conditions, 

contributing to the advancement of noise reduction strategies in 
automotive systems. 

V. RESULTS 

A. Study Overview and Hypothesis Testing 

To rigorously evaluate the hypothesis that tailored noise 
reduction techniques enhance the accuracy and reliability of 
sensor data in Advanced Driver Assistance Systems (ADAS), 
this study conducted a comprehensive analysis across various 
driving scenarios. The analysis involved the generation of 
synthetic datasets for Wheel Speed Sensors (WSS), Inertial 
Measurement Units (IMU/GYRO), and RADAR sensors, 
reflecting the data volume and noise complexity typically 
encountered in real-world conditions. Various noise types and 
levels were systematically introduced, and multiple noise 
reduction techniques were applied. Their performance was 
measured using key metrics: Mean Squared Error (MSE), Root 
Mean Squared Error (RMSE), Signal-to-Noise Ratio (SNR), 
and Peak Signal-to-Noise Ratio (PSNR). Fig. 13 illustrates the 
flow of the results section, providing a clear roadmap of the 
steps and analysis undertaken. 

The results section is organized systematically to ensure a 
thorough evaluation of noise reduction techniques across 
various driving scenarios. Fig. 13 outlines the flow of this 
section, detailing each step of the analysis, from data 
generation to performance evaluation. 

 
Fig. 13. Results flow chart. 
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This flow chart helps readers navigate the structure of the 
results, ensuring clarity and coherence in the presentation of 
the findings. 

B. Synthetic Data Generation and Noise Modeling 

Synthetic datasets were generated to mimic sensor data 
from WSS, IMU/GYRO, and RADAR sensors under diverse 
driving scenarios, including urban intersections, highway lane 
changes, and emergency braking situations. These datasets 
serve as the foundation for evaluating the effectiveness of 
various noise reduction techniques. 

1) WSS signals: Fig. 14 shows the generated datasets for 

WSS signals with introduced noise across different ADAS 

scenarios. 

     

    

       

    
Fig. 14. DATA set generated for WSS signals with noises for each ADAS 

scenario. 

The noise profiles depicted in this figure are crucial for 
assessing the robustness of the filtering techniques applied later 
in the analysis. Noise introduction involved adding Gaussian 

noise to simulate thermal fluctuations and periodic spikes to 
replicate electromagnetic interference (EMI). Noise levels were 
varied to evaluate the robustness of each filtering technique 
under different conditions, ensuring a comprehensive 
assessment across all simulated scenarios. 

2) IMY/GYRO signals: The IMU/GYRO signals, as 

shown in Fig. 15, were generated with various noise levels to 

replicate real-world conditions experienced by these sensors. 

     

    

    

    

    
Fig. 15. DATA set generated for IMU/GYRO with noises for each ADAS 

scenario. 

These datasets are essential for testing the effectiveness of 
noise reduction techniques on motion and orientation data in 
dynamic driving scenarios. 

3) RADAR Signals: Fig. 16 presents the generated 

RADAR signals, highlighting the complexity of noise patterns 

in dynamic environments. 

Given the importance of RADAR in obstacle detection and 
localization, this dataset plays a critical role in evaluating noise 
reduction techniques tailored for such complex signals. 
RADAR signals are dependent on obstacle localization rather 
than specific ADAS scenarios. Therefore, this study did not 
cover them under ADAS scenarios. The generation focused on 
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real-time noise reduction with minimal time consumption to 
emphasize pattern recognition and the application of the 
appropriate noise reduction technique based on the ADAS 
situation encountered. For RADAR signals, the dynamic 
environment necessitates a different noise reduction approach 
than simpler sensors like WSS and IMU/GYRO. 

 
Fig. 16. DATA set for RADAR signals with noises. 

C. Filtering Technique Performance on Sensor Data: 

The effectiveness of the applied filtering techniques is 
illustrated in the following figures, showcasing the filtered 
outputs for each sensor type. 

1) WSS Filtered signals: Fig. 17 displays the filtered WSS 

signals after applying the various noise reduction techniques, 

highlighting their impact on signal clarity. 

This figure provides a visual comparison of how each 
technique improved the WSS data quality, making it easier to 
evaluate their relative effectiveness. 

 

       
Fig. 17. Filtered signals for WSS. 

2) IMU/GYRO filtered signals: The filtered signals for 

IMU/GYRO sensors are shown in Fig. 18, demonstrating the 

performance of different noise reduction methods. 

    
Fig. 18. Filtered signals for IMU/GYRO. 
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This visual representation underscores the importance of 
choosing the right technique based on the specific noise 
characteristics and sensor type. 

3) RADAR filtered signals: Fig. 19 illustrates the filtered 

RADAR signals, reflecting the challenges and successes in 

noise reduction for these complex sensor types. 

    
Fig. 19. Filtered signals for RADAR signals. 

This figure is crucial for understanding the effectiveness of 
noise reduction techniques in preserving the integrity of 
RADAR data, which is vital for accurate obstacle detection. 

D. Comparative Performance Analysis Across ADAS 

Scenarios 

The effectiveness of each filtering technique is further 
analyzed across the ten scenarios, including Urban Intersection, 
Highway Lane Change, Pedestrian Crossing, and Rear-End 
Collision Avoidance, among others. 

1) WSS metrics evaluation: Fig. 20 presents the metrics 

evaluation for WSS across various ADAS scenarios, providing 

insights into the performance of each filtering method. 

    
Fig. 20. WSS metrics evaluation across ADAS scenarios. 

This analysis highlights how well each technique 
maintained signal integrity while reducing noise under 
different driving conditions. 

2) IMU/GYRO metrics evaluation: Fig. 21 shows the 

metrics evaluation for IMU/GYRO signals, offering a detailed 

comparison of the noise reduction techniques applied. 

    

    
Fig. 21. IMU/GYRO metrics evaluation across ADAS scenarios. 

This figure is key to understanding the effectiveness of 
filtering methods in handling the complexities of motion and 
orientation data. 

3) RADAR metrics evaluation: Fig. 22 displays the 

metrics evaluation for RADAR signals, focusing on the ability 

of each technique to manage noise in dynamic environments. 

    
Fig. 22. RADAR metrics evaluation across ADAS scenarios. 

The results from this figure are essential for determining 
the best noise reduction approach for RADAR data, crucial for 
obstacle detection and avoidance in ADAS. 

The performance of each filtering technique was evaluated 
across the ten scenarios, focusing on how well each method 
reduced noise and preserved signal integrity, with a detailed 
analysis provided for each scenario. 

The Table III summarizes the performance and results of 
various filtering methods across multiple ADAS scenarios, 
such as Urban Intersection and Highway Lane Change. It 
details the specific performance of each noise reduction 
technique, highlighting key metrics that demonstrate their 
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effectiveness in reducing noise and preserving signal quality 
under different driving conditions. 

TABLE III.  FILTERING METHODS PERFORMANCE AND RESULTS ANALYSIS 

Noise 

Reduction 

Technique 

Scenario Performance Key Metrics 

Wavelet 

Denoising 

Urban 

Intersection 

Achieved the highest 

SNR and lowest 
MSE/RMSE, 

demonstrating robust 

noise reduction and 
signal preservation. 

Ideal for environments 

with non-stationary 
noise, making it 

suitable for dynamic 

urban settings. 

High SNR, Low 

MSE/RMSE 

Highway 

Lane 
Change 

Performed 

exceptionally well in 

handling high-
frequency noise and 

rapid lane changes, 

with significant 
improvements in 

PSNR. 

High PSNR 

Simple 

Moving 

Average 

(SMA) and 

Exponential 

Moving 

Average 

(EMA) 

Pedestrian 

Crossing 

Offered balanced 

performance with 
smoother transitions 

and reduced signal lag. 
EMA slightly 

outperformed SMA in 

SNR, especially in 
scenarios involving 

frequent stop-start 

motions. 

Smoother 
transitions, 

Reduced signal 
lag, Higher 

SNR for EMA 

Emergency 

Braking for 
Cyclist 

Provided effective 

noise reduction during 

rapid deceleration 

phases, though 
introduced some lag in 

more dynamic 

environments. 

Effective noise 

reduction, Some 
signal lag 

Low Pass 

Filtering 

(LPF) 

Blind Spot 

Detection 

Effective in high-

frequency noise 

attenuation but 
required careful tuning 

to prevent signal 

distortion. Showed 
consistent results in 

steady-state signal 

processing scenarios, 
such as Blind Spot 

Detection. 

Effective high-

frequency noise 

attenuation, 
Requires careful 

tuning 

Highway 
Lane 

Change 

Demonstrated 
substantial high-

frequency noise 

reduction but 
occasionally 

introduced residual 

errors, as indicated by 
higher MSE/RMSE 

values. 

High-frequency 

noise reduction, 

Higher 
MSE/RMSE 

KalmanNet 

Emergency 
Braking for 

Cyclist 

Showed superior noise 

reduction and signal 
preservation 

capabilities, 

particularly in 

High SNR, Low 

MSE/RMSE 

complex, dynamic 

scenarios. Achieved 
high SNR and low 

MSE/RMSE, effective 

in real-time 
applications where 

accuracy is critical. 

Extended 

Kalman Filter 

(EKF) and 

Unscented 

Kalman Filter 

(UKF) 

Cut-In 

Vehicle 

UKF outperformed 
EKF in handling the 

non-linearities 

associated with sudden 
vehicle maneuvers, 

achieving the highest 

SNR and lowest error 
metrics in this 

scenario. 

Highest SNR, 
Lowest error 

metrics 

Roadworks 

Zone 

Navigation 

EKF provided robust 
performance in 

varying speeds and 

obstacle-rich 
environments, with 

moderate 

improvements in SNR 
and RMSE. 

Moderate 

SNR/RMSE 

improvements 

VI. DISCUSSION 

A. Practical Implications for Real-Time ADAS 

Implementation 

The findings underscore the importance of selecting 
appropriate noise reduction techniques based on specific 
driving scenarios and sensor characteristics. While advanced 
techniques like Wavelet Denoising and KalmanNet offer 
superior performance, their computational complexity poses 
challenges for real-time implementation. Conversely, simpler 
methods like SMA and EMA provide adequate noise reduction 
with lower computational demands, making them suitable for 
real-time processing in less dynamic environments. 

B. Trends, Relationships, and Generalizations 

The results from the experiments demonstrated clear trends 
in the performance of various adaptive signal-processing 
algorithms. KalmanNet and hybrid methods consistently 
showed the highest improvement in Signal-to-Noise Ratio 
(SNR) and the most significant reduction in Mean Squared 
Error (MSE) and Root Mean Squared Error (RMSE). These 
results underscore the effectiveness of combining traditional 
and machine learning techniques in handling both random and 
systematic noise, enhancing the accuracy of sensor data in 
dynamic automotive environments. 

C. Scenario-Specific Performance Insights 

The scenario-specific analysis revealed distinct strengths 
and limitations of each filtering technique: 

This Table IV provides an evaluation of the noise reduction 
methods based on scenario-specific performance, offering a 
detailed analysis of their suitability in various ADAS 
environments. The advantages and disadvantages of each 
technique are listed, helping to identify the most effective 
approaches for dynamic, high-noise, and less dynamic 
conditions. 
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TABLE IV.  METHODS EVALUATION BASED ON SCENARIO PERFORMANCE 

EVALUATION 

Noise 

Reduction 

Technique 

Performanc

e 

Environme

nt 

Key 

Scenarios 
Advantages 

Disadvantag

es 

Wavelet 

Denoising 

Dynamic, 
high-noise 

environment

s 

Urban 

Intersection

s, Highway 
Lane 

Changes 

Superior 

noise 
reduction, 

ideal for 

dynamic 
settings 

Potentially 
higher 

computational 

complexity 

SMA and 

EMA 

Less 

dynamic 
conditions 

General 

ADAS 
applications 

requiring 

real-time 
processing 

Simplicity, 

computation
al efficiency 

Less effective 
in highly 

dynamic 

environments 

KalmanNe

t and UKF 

Non-linear 

dynamics, 
high 

uncertainty 

Emergency 

Braking, 
Cut-In 

Vehicle 

Best for 

complex 

scenarios, 
accurate 

signal 

preservation 

Higher 

computational 

demands 

Table I summarizes the comparative analysis of noise 
reduction methods across all scenarios, highlighting key 
metrics such as SNR, MSE, and RMSE. 

The following table V offers a comprehensive comparative 
analysis of the noise reduction techniques discussed, focusing 
on their application to WSS data in ADAS. It examines their 
overall performance, including their ability to improve Signal-
to-Noise Ratio (SNR) and reduce Mean Squared Error (MSE) 
and Root Mean Squared Error (RMSE), thereby providing a 
clear overview of their strengths and limitations. 

TABLE V.  COMPARATIVE ANALYSIS OF NOISE REDUCTION METHODS 

FOR WSS DATA IN ADAS 

Method Advantages Disadvantages Performance 

S
im

p
le

 M
o

v
in

g
 

A
v

e
ra

g
e
 (

S
M

A
) 

- Easy to 

implement 

- Introduces lag 

- Less effective for 

complex noise 
patterns 

-  Significant noise 

reduction 
- Improves SNR 

- Higher MSE and 

RMSE compared to 
other methods 

during rapid signal 

changes 

E
x

p
o

n
e
n

ti
a

l 
M

o
v
in

g
 

A
v

e
ra

g
e
 (

E
M

A
) 

- More responsive 

to recent changes 

- Smoother 
transition and less 

lag compared to 

SMA 

- More complex to 

implement than 
SMA 

- May still lag in 

highly dynamic 
scenarios 

 

- Better noise 

reduction than SMA 

- Higher SNR 
improvement 

- Lower MSE and 

RMSE than SMA, 
suitable for timely 

signal changes 

 

W
a
v

el
e
t 

D
e
n

o
is

in
g
 

- Handles non-

stationary signals 

well - Effective at 
separating noise 

from the actual 

signal 

- Computationally 
intensive 

- Requires careful 

selection of wavelet 
type and 

decomposition 

level 
 

- Outperformed 
SMA and EMA 

- Highest SNR 
improvements 

- Lowest MSE and 

RMSE, effective for 
varying noise 

characteristics 

 

L
o

w
 P

a
ss

 F
il

te
r
in

g
 

- Simple and 
effective for high-

frequency noise 

- Preserves low-
frequency 

components of the 

signal 

- Can distort signal 
if cutoff frequency 

is not appropriately 

set 
- May not be 

effective for low-

frequency noise 

- Significant high-

frequency noise 
reduction 

- Improved SNR 

- Potential signal 
distortion indicated 

by MSE and RMSE, 

requires careful 
tuning 

K
a

lm
a

n
N

e
t 

- Neural network-

aided Kalman 

filtering to 
enhance noise 

reduction 

capability using 
learned patterns 

 

- Computationally 
intensive 

- Requires training 

data 

- Demonstrated 

significant 
improvements in 

noise reduction and 

data accuracy 
compared to 

traditional Kalman 

filters 
 

E
x

te
n

d
e
d

 K
a

lm
a

n
 

F
il

te
r
 (

E
K

F
) - Suitable for non-

linear systems 

- Incorporates 

system dynamics 

into the filtering 
process 

- Requires accurate 

system models 

- Computationally 

demanding 

- Significant noise 

reduction 
- Improved SNR 

- Lower MSE and 

RMSE, effective for 
non-linear RADAR 

data 

 
 

U
n

sc
e
n

te
d

 

K
a

lm
a

n
 F

il
te

r 

(U
K

F
) 

- Superior 

performance for 

highly non-linear 
systems 

- Does not require 

linearization of the 
system model 

- High 

computational 
complexity 

- Sensitive to initial 

conditions 

- Outperforms EKF 

in highly non-linear 

applications 
- Highest SNR and 

lowest MSE and 

RMSE for complex 
noise patterns 

The Table V summarizes the performance of various noise 
reduction techniques across different driving scenarios, 
highlighting the strengths and limitations of each method in 
terms of key metrics like SNR, MSE, and RMSE, and 
providing clear insights into their suitability for specific ADAS 
applications. The comprehensive analysis across ten 
scenarios—Urban Intersection, Pedestrian Crossing, 
Emergency Braking for Cyclist, Highway Lane Change, Cut-In 
Vehicle, Rear-End Collision Avoidance, Blind Spot Detection, 
Traffic Jam Assist, Left Turn Across Path (LTAP), and 
Roadworks Zone Navigation—provided detailed insights into 
the suitability of each filtering technique under varied dynamic 
conditions. This detailed insight is crucial for tailoring noise 
reduction strategies to the specific operational contexts of 
ADAS, ensuring optimal performance under varied driving 
conditions. 

D. Effectiveness of Wavelet Denoising 

Wavelet Denoising was found to be the most effective 
method for non-stationary signals because it decomposes the 
signal into its frequency components, allowing for precise 
separation of noise from the actual signal. This method 
preserves important signal features while effectively 
attenuating noise, leading to improved SNR and lower MSE. 
However, the primary challenge is the computational 
complexity of the wavelet transform, which can be resource-
intensive and may not meet the real-time processing 
requirements of ADAS. Optimizing the algorithms and 
leveraging efficient hardware solutions are necessary to 
address these challenges and implement Wavelet Denoising 
effectively in real-time applications. 
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E. Advantages of Kalmannet 

KalmanNet integrates neural networks with traditional 
Kalman filtering, enhancing its capability to learn and adapt to 
complex, dynamic environments. This results in better noise 
reduction and data accuracy. In ADAS applications, 
KalmanNet provides robust performance in scenarios with high 
non-linearities and varying noise characteristics, making it 
suitable for handling the complex data from sensors like 
RADAR. 

F. Importance of Hardware-in-the-Loop (HIL) Testing 

HIL testing is crucial as it allows for the simulation of real-
world driving conditions and noise patterns in a controlled 
environment. This ensures that the noise reduction techniques 
are tested under realistic scenarios, validating their 
effectiveness before deployment in actual vehicles. In our 
study, HIL testing was used to simulate various ADAS 
scenarios and noise conditions, providing a comprehensive 
evaluation of each filtering method’s performance. 

 
Fig. 23. Testing approach from HIL bench perspective. 

Fig. 23 presents the testing approach from the HIL Bench 
perspective, showcasing how real-world driving conditions and 
noise patterns are simulated to rigorously evaluate and validate 
the performance of noise reduction techniques before their 
deployment in actual vehicles. 

G. Practical Viability of SMA and EMA 

Simple Moving Average (SMA) and Exponential Moving 
Average (EMA) provided effective noise reduction in scenarios 
with smoother signal variations. These methods, due to their 
computational simplicity, are highly viable for real-time 
applications where computational resources are limited. 
Although they introduce lag and are less effective in highly 
dynamic conditions, they provide reasonable noise reduction in 
scenarios with smoother signal variations. Combining these 
methods with other techniques can help mitigate their 
limitations and enhance overall performance. 

H. Exceptions and Outlying Data 

During the experiments, certain scenarios presented 
exceptions and outlying data points that deviated significantly 
from the expected performance metrics. For instance, in highly 
dynamic scenarios like emergency braking for cyclists, SMA 
and EMA struggled to adapt quickly enough, resulting in 
higher MSE and RMSE values. Additionally, Low Pass 
Filtering occasionally introduced signal distortions in scenarios 
with mixed frequency noise patterns, highlighting the need for 
precise tuning. These outliers emphasize the importance of 
scenario-specific adjustments and the potential for hybrid 
approaches to address diverse noise conditions more 
effectively. 

I. Comparison with Previous Studies 

The findings of this study align with previous research on 
noise reduction in ADAS sensor data management. Similar to 
the work by [1] and [5], our results confirm the effectiveness of 
advanced filtering techniques like KalmanNet and Wavelet 
Denoising in enhancing data accuracy and reliability. However, 
our study extends the existing literature by providing a more 
detailed comparative analysis across multiple driving scenarios 
and sensor types, offering practical insights for real-world 
applications. Furthermore, the integration of HIL testing in our 
methodology provides a robust validation framework, 
addressing a gap identified in earlier studies regarding the need 
for realistic testing environments. 

J. Future Research Directions 

Future research should focus on developing hybrid noise 
reduction methods that combine the strengths of traditional and 
advanced techniques, optimizing them for real-time 
applications. Expanding the dataset to include more diverse 
scenarios and sensor types will further validate the robustness 
and generalizability of these methods. Additionally, integrating 
machine learning algorithms and adaptive filtering techniques 
will be crucial in enhancing the adaptive capabilities of noise 
reduction methods in evolving technological environments. 

 
Fig. 24. Method applicability and possibility for extension on car and HIL 

bench. 
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Fig. 24 illustrates the potential for extending the proposed 
noise reduction methods to both automotive applications and 
Hardware-in-the-Loop (HIL) Bench testing, highlighting the 
adaptability and scalability of these techniques for broader use 
cases and real-time environments. 

K. Consolidated Findings and Recommendations 

Overall, this study provides a detailed comparison of noise 
reduction techniques across various ADAS scenarios, offering 
valuable insights for their application in real-world systems. 
The results highlight the necessity of a tailored approach to 
noise reduction, considering both the operational context and 
the computational resources available. 

VII. CONCLUSION 

This study demonstrated that adaptive signal processing 
algorithms significantly enhance the accuracy and reliability of 
sensor data in embedded automotive systems. The introduction 
highlighted the need for advanced techniques to manage the 
increasing complexity and volume of sensor data in modern 
vehicles. The experimental simulations confirmed that 
KalmanNet effectively reduces noise and improves data 
accuracy, showing the highest improvement in SNR and 
significant reductions in MSE and RMSE. The study also 
found that methods like Wavelet Denoising excel in dynamic 
environments with non-stationary noise, making them suitable 
for complex urban driving scenarios. The implications of these 
results are significant for the automotive industry, as 
implementing these adaptive algorithms can enhance the 
performance and safety of vehicle systems by ensuring robust 
and reliable sensor data handling. 

Future research should focus on further optimizing these 
algorithms, particularly in the context of real-time processing 
constraints, and exploring their integration into broader 
automotive applications, including autonomous driving and 
complex sensor fusion tasks. 

The integration of 5G, V2X, and IoV technologies into 
automotive systems significantly enhances the capabilities and 
performance of Advanced Driver Assistance Systems (ADAS). 
This study rigorously evaluated the effectiveness of various 
noise reduction techniques on Wheel Speed Sensors (WSS) 
and Inertial Measurement Units (IMUs) across a range of urban 
and dynamic driving scenarios. The findings underscore the 
necessity of selecting noise reduction techniques that are 
tailored to specific driving conditions and sensor 
characteristics, ensuring that ADAS systems can operate 
effectively under the diverse and challenging conditions 
encountered in real-world driving. 
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