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Abstract—Multimodal medical image fusion leverages the 

correlation between different modal images to enhance the 

information contained within a single medical image. Existing 

fusion methods often fail to effectively extract multiscale features 

from medical images and establish long-distance relationships 

between deep feature blocks. To address these issues, we propose 

DMMFnet, an encoder-decoder fusion network that utilizes 

shared and private encoders to extract shared and private 

features. DMMFnet is based on super token sampling and 

channel-spatial attention. The shared encoder and decoder use a 

transformer structure with super token sampling technology to 

effectively integrate information from different modalities, 

improving processing efficiency and enhancing the ability to 

capture key features. The private encoder consists of invertible 

neural networks and transformer modules, designed to extract 

local and global features, respectively. A novel transformer 

module refines attention distribution and feature aggregation to 

capture superpixel-level global correlations, ensuring that the 

network effectively captures essential global information, thereby 

enhancing the quality of the fused image. Experimental results, 

comparing DMMFnet with nine leading fusion methods, indicate 

that DMMFnet significantly improves various evaluation metrics 

and achieves superior visual effects, demonstrating its advanced 

fusion capability. 

Keywords—Medical image fusion; channel-spatial attention; 

super token sampling; encoder–decoder 

I. INTRODUCTION 

Rapid advancements in medical imaging technology have 
allowed for the integration of multimodal medical pictures into 
clinical diagnosis, surgical guidance, and medical research in 
recent decades [1]. However, different medical images 
emphasize distinct aspects. For example, Computer 
Tomography (CT) scans yield accurate images of the bones, 
they do not capture the fine details of soft tissues. In contrast, 
Magnetic Resonance Imaging (MRI) offers finely detailed 
images of the organs' soft tissues, providing substantial clinical 
diagnostic value [2]. Positron Emission Tomography (PET) 
images reflect metabolic changes and functional states of lesions 
through the ingestion of imaging agents. Single Photon 
Emission Computed Tomography (SPECT) images diagnose a 
broad spectrum of diseases using varying depth colors to mark 
affected areas [3, 4]. The usage of the medical images one by 
one modality to diagnose diseases is not only time-consuming 
but also requires extensive experience. Therefore, the goal of 

multimodal medical image fusion techniques is to create a single 
multimodal image from two modalities, and the outcomes can 
preserve the meaning, unique characteristics, and information 
from the original images, such as high-resolution structural data 
from CT, tissue textures from MRI [5]. Fused images have a 
richer texture structure and more pronounced lesion areas 
compared to single-modality medical images [6]. This greatly 
helps physicians analyze the diseases that are challenging to 
observe, reducing the misdiagnoses rate and surgical errors. 

Usually, there are two types of image fusion tasks: 
supervised learning fusion and unsupervised learning fusion. 
Supervised learning is predominantly applied in the domain of 
multi-focus image fusion [7, 8]. Supervised learning is 
considered unsuitable for medical image fusion (MMIF) tasks 
due to the unique nature of medical images [9]. Moreover, due 
to the characteristics of medical images, the fusion methods 
designed for other types of images cannot be directly applied to 
multimodal medical image fusion tasks. According to different 
computational approaches, medical image fusion methods can 
be divided into traditional methods and deep learning methods. 

Historically, among the traditional fusion methods, multi-
scale transform (MST)-based methods, such as wavelet 
transform [10], pyramid transform [11], and subspace transform 
[12], have been commonly used. While the tower-based 
decomposition laid the groundwork for MST-based image 
fusion research with relatively simple implementation, it lacks 
directionality and is sensitive to noise, leading to redundancy 
between the pyramid levels. Wavelet transform offers good 
time-frequency locality and directionality without information 
redundancy, but it lacks directional selectivity and translation 
invariance, failing to fully extract edge information in images. 
Choosing the appropriate subspace mapping methods for 
specific fusion tasks remains a significant challenge in MST-
based fusion methods. 

For image fusion tasks, Pulse-Coupled Neural Networks 
(PCNN) [13] have received the most attention. Yin et al. 
proposed a fusion method combining NSST with PCNN (NSST-
PAPCNN) for multimodal image fusion tasks. In this approach, 
NSST is used for feature extraction from multiple levels [14]. 
Tan et al. developed NST-MSMG [15]. It fuses high-frequency 
data using PCNN and boundary measurements and fuses low-
frequency features utilizing an energy-based fusion rule set. 
However, PCNN-based approaches nevertheless follow the 
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fundamentals of multi-scale transform (MST) methods, which 
are needed for well-crafted decomposition and fusion rules. 

The sparse representation (SR) [16] is widely utilized for 
image fusion, employing a mechanism that optimizes an 
extensive dictionary and generates sparse coefficients to achieve 
effective fusion. Liu et al. integrated multi-scale decomposition 
with convolutional sparse representation (CSR) [17]. However, 
methods based on SR have high computational demands, 
generally employing a complete and redundant dictionary for 
adaptive sparse representation of images. Furthermore, applying 
the same decomposition operations to different modalities of the 
source images may result in unexpected artifacts. In addition, the 
manual construction of the decomposition strategies and fusion 
rules make the fusion process complex and time-consuming [18, 
19]. 

Recent advances have seen the adoption of deep learning 
techniques for multimodal image fusion, aiming to address the 
shortcomings of conventional fusion methods, all of which can 
be classified into three main types according to the network 
architectures: the Auto-encoder-based image fusion, the 
Convolutional Neural Network [20] (CNN)-based image fusion, 
and the Generative Adversarial Network [21] (GAN)-based 
image fusion. 

The CNN-based image fusion methods are effective in 
processing spatial and structural information within image 
neighborhoods. Although CNN-based models are proficient in 
extracting local details and inductive biases from images, they 
lack a comprehensive understanding and learning of global 
semantic information in images. Additionally, due to their 
limited receptive field, CNNs inherently find it challenging to 
capture long-range relationships within images. To deal with 
these problems, Dosovitskiy et al. introduced the Vision 
Transformer (ViT) [22], which uses self-attention to conduct 
global comparisons across all visual tokens. It has shifted the 
paradigm from CNN-based feature extraction. Subsequent 
studies [23, 24] have shown that ViTs have potent global 
dependency learning capabilities in visual content. But recent 
research [25, 26] has shown that ViTs tend to capture shallow 
local features with high redundancy. This is due to shallow 
global attention focusing on a few adjacent tokens and 
neglecting most distant ones, which heavily hinders the 
extraction of the texture details in the fused image [27]. 

GAN is a type of deep learning model consisting of two 
modules: the generator and the discriminator. Ma et al.  applied 
GANs to multimodal medical image fusion tasks [28]. Hung et 
al. introduce a multi-generator method for image fusion [29]. 
However, GAN-based image fusion approaches are prone to 
training instabilities and gradient vanishing issues [30]. 
Moreover, GAN architectures lose structural details due to 
down-sampling in pooling layers, which results in inefficient 
utilization of image information. The auto-encoder-based image 

fusion utilizes an unsupervised neural network model that 
comprises an encoder and a decoder. Deep Fuse [31] was one of 
the first methods in this domain. Li et al. introduced DenseNet 
and nested connections to improve the feature extraction 
capability of encoders [32, 33]. Furthermore, Jian et al. 
enhanced a self-encoder-based fusion framework by integrating 
an attention mechanism, aiming to extract features that are more 
interpretable [34]. However, due to the characteristics of GAN 
models, image fusion methods based on GANs are prone to 
instability during training. Additionally, GAN-based methods 
predominantly rely on CNN architectures, their limited ability to 
capture global information often results in insufficient fusion. 

Although the above multimodal image fusion methods have 
obtained quite good results, several of the aforementioned 
problems persist. To deal with them, we propose an encoder-
decoder network that uses the Invertible Neural Networks (INN) 
[35] and transformer module. The proposed method 
demonstrates superior feature extraction capabilities compared 
to existing method. By utilizing two distinct feature extractors 
to capture features at varying frequencies and then separately 
fusing these features during the fusion stage, our method 
preserves the original image's texture and structural information 
to the greatest extent possible. This approach is more effective 
in achieving the objectives of the MMIF tasks. 

Here are the primary contributions of this study: 

1) In order to effectively extract complementary 

information from the input images, a novel transformer module 

has been designed. The spatial and channel attention 

mechanisms are utilized to capture super-pixel-level global 

dependencies, resulting in a significant enhancement of the 

fusion image quality as demonstrated by both subjective and 

objective experiments. 

2) The Context Broadcasting (CB) technique is employed 

in the transformer layer. This integration ensures consistent 

attention at each layer of the transformer model, thereby 

reducing the density of attention maps. Furthermore, the 

consistent attention mechanisms facilitate easier overall 

optimization of the model, aiding in more effective learning and 

representation of the complex relationships within the input 

data. 

3) Extensive experiments on medical and biological image 

fusion demonstrate that the DMMFnet outperforms nine 

advanced fusion methods in terms of both quantitative metrics 

and visual assessment. 

The organization of the paper is as follows: Section I 
introduces the research background and the contributions of this 
work. Section II provides a detailed description of the proposed 
DMMFnet. Section III presents and discusses the experimental 
results. Section IV concludes the paper. 
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Fig. 1. The architecture of our DMMFnet method. 

II. THE PROPOSED FUSION NETWORK 

The detailed architecture of the proposed fusion framework 
is shown in Fig. 1. In general, CNN captures local features of 
the input image, whereas the transformer focuses on global 
features [36]. Therefore, we designed an encoder with a dual-
branch structure. We used the INN to extract local features of 
the image and the transformer branch to extract global features 
of the image, then fused them separately. Finally, the DMMFnet 
comprises three modules: a fusion layer designed to combine 
different features, a decoder is used to rebuild the image and 
create the fused image, while an encoder is used to extract 
features. 

The encoder consists of three components: a Shared Feature 
Extractor (SFE) based on STFormer, a Global Feature Extractor 
(GFE) based on CSDFormer, and a Local Feature Extractor 
(LFE) based on INN. Using PET-MRI image fusion as an 
example, we have defined some symbols to explain the entire 
fusion process: The paired PET and MRI input images are 
denoted as P and M, respectively. SFE, GFE, and LFE are 
indicated by 𝑆( ), 𝐺( ), and 𝐿( ), respectively. To extract shared 
features from the inputs is the aim of the SFE. This process is 
offered in Eq. (1): 

𝑓𝑃
𝑆 = 𝑆(𝑃), 𝑓𝑀

𝑆 = 𝑆(𝑀)  

The model's Shared Feature Encoder includes the STFormer, 
which is based on super token sampling attention blocks [37], 
and the Gated-Dconv Feed-Forward Network (GDFN) module 

[38]. Please refer to the original paper for more information on 
the structure of the super token sampling attention and GDFN. 
The schematic of the STFormer is depicted in Fig. 2. 

By incorporating super tokens into the transformer and 
utilizing sparse associative learning to sample super tokens from 
visual tokens, we can effectively capture global dependencies 
through self-attention on these super tokens. The reason for 
selecting super token sampling attention blocks in the shared 
feature extraction step is that they efficiently capture global 
dependencies by decomposing global attention into a 
multiplication of sparse associative mappings and low-
dimensional attention. This reduces computational complexity 
while retaining key image information. 

The GDFN block is intended to merge features from various 
sources, specifically images from different modalities that 
exhibit unique characteristics within certain frequency ranges. 
The DMMFnet network can flexibly process and merge these 
features through the GDFN block. 

 
Fig. 2. The schematic of the shared feature encoder. 
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Fig. 3. The framework of the Global Feature Extractor (GFE) and Local Feature Extractor (LFE). 

As illustrated in Fig. 3, the private feature encoder consists 
of two branches: GFE and LFE. The GFE extracts global 
features, while the LFE extracts local features. 

The GFE branch concentrates on low-frequency global 
features by finely tuning the attention distribution. It effectively 
captures global dependencies at the super-pixel level through 
spatial and channel attention. By incorporating a Dual Adaptive 
Neural Block (DA), it adaptively encapsulates global features 
from superpixels to pixels, optimizing feature focus and 
refinement to ensure the capture of subtle changes and patterns 
crucial to the fusion process. In designing the CSDFormer, a 
Context Broadcasting (CB) technique was employed in the MLP 
layer. This technique involves manually inserting uniform 
attention into every layer of the ViT model, providing the 
necessary dense interactions and lowering the concentration 
level of attention maps across all layers. CB also enhances its 
capacity and generalization ability with negligible cost [39]. 
which is formulated as Eq. (2). 

𝑓𝑃
 = 𝐺(𝑓𝑃

𝑆), 𝑓𝑀
 = 𝐺(𝑓𝑀

𝑆) 

The LFE branch is focused on the lossless extraction of local 
high-frequency features. Given that edge and texture details are 
crucial for image fusion tasks, the INN module is utilized to 
preserve as many image details as possible. The INN module 
aims to mitigate information loss by mutually generating input 
and output features through a reversible design, and it can retain 
the high-frequency information of the medical image almost 
without any loss. The process is offered in Eq. (3) below. 

𝑓𝑃
 = 𝐿(𝑓𝑃

𝑆), 𝑓𝑀
 = 𝐿(𝑓𝑀

𝑆)  

A. Fusion Layer 

The fusion layer comprises the basic feature fusion layer and 
the deep feature fusion layer, which respectively combine the 

basic and deep features. The fusion of basic and deep features is 
akin to the extraction of basic and deep features in the encoder. 
Therefore, CSDFormer and INN blocks are employed for the 
basic and deep fusion layers. The fusion process can be 
expressed by Eq. (4). 

𝑓 = 𝐹 (𝑓𝑃
 , 𝑓𝑀

 ), 𝑓 = 𝐹 (𝑓𝑃
 , 𝑓𝑀

 ) 

𝐹  and 𝐹 represent the basic and deep feature fusion layers, 
respectively. 

B. Decoder 

The different features extracted and processed in the 
previous phase are used as input to the decoder DC(). The 
reconstructed image from training stage I and the fused image 
from training stage II are the outputs of DC(). The corresponding 
formula is as follows: 

𝑃∗ = 𝐷𝐶(𝑓𝑃
 ，𝑓𝑃

 ),𝑀∗ = DC(𝑓𝑀
 ，𝑓𝑀

 ) 

 𝐹𝑈𝑆𝐸 = 𝐷𝐶(𝑓 , 𝑓 ) 

Due to the input includes cross-modal and multi-frequency 
features, ensuring consistency between the decoder and the 
shared encoder enables the decoder to better understand and 
exploit the feature representations provided by the encoder, 
leading to improved fusion results. Therefore, we employ 
STFormer blocks as the fundamental units for the decoder. 

C. Two-stage Training 

A significant obstacle in medical image fusion tasks is the 
absence of a definitive ground truth due to the expensive and 
privacy-sensitive nature of the data sources, rendering advanced 
supervised learning methods ineffective. Therefore, we employ 
a two-stage learning approach to end-to-end train the DMMFnet. 
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Training stage I: In this phase, we initially feed the paired 
PET and MRI images {𝑃,𝑀} into the Shared Feature Extractor 

(SFE) to extract their shared features {𝑓𝑃
𝑆, 𝑓𝑃

𝑆} .Subsequently, 
each image is processed through the GFE based on the 
CSDFormer structure and the LFE based on INN separately. The 
basic features {𝑓𝑃

 , 𝑓𝑀
 }  and detail features {𝑓𝑃

 , 𝑓𝑀
 }  are 

extracted from the two modalities. The basic and detailed 
features within the same modality are merged (such as {𝑓𝑃

 , 𝑓𝑃
 } 

for PET or {𝑓𝑀
 , 𝑓𝑀

 } for MRI) and transmitted to the decoder for 
the reconstruction of the original PET or MRI image. 

Training stage II: We continue to use paired PET and MRI 
images {𝑃,𝑀} as the input. However, this time, we fed them into 
the encoder that was trained in Training Stage I. This enables 
further decomposition of features. Afterwards, we input the base 
features {𝑓𝑃

 , 𝑓𝑀
 } and detail features {𝑓𝑃

 , 𝑓𝑀
 } individually into 

fusion layers 𝐹  and𝐹 .After the feature fusion process, the 
fused features {𝑓 , 𝑓 }  are inputted into the decoder, which 
generates the fused image 𝐹𝑈𝑆𝐸. 

D. Loss Function 

In training phase I, the total loss 𝐿𝑡𝑜𝑡𝑎𝑙 is offered in Eq. (7) 
below. 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝛼 𝐿𝑝𝑒𝑡 + 𝛼 𝐿𝑚𝑟𝑖 + 𝛼3𝐿𝑑𝑒𝑐𝑜𝑚𝑝  

𝐿𝑝𝑒𝑡 and 𝐿𝑚𝑟𝑖  represent the reconstruction losses for the two 

types of medical images. Since the model in the first stage can 
be regarded as a process of decomposition followed by 
synthesis, information loss inevitably occurs during both the 
decomposition and synthesis stages. 𝐿𝑑𝑒𝑐𝑜𝑚𝑝 denotes the feature 

decomposition loss, while  𝛼 ， 𝛼 ， 𝛼3  are adjustment 

parameters. The overall loss function in the first stage is 
designed to ensure that information is maintained throughout the 
encoding and decoding procedures. Each loss function is as 
follows. 

𝐿𝑝𝑒𝑡/𝑚𝑟𝑖 = 𝐿𝑖𝑛𝑡
𝐼 (𝐼, 𝐼∗) + σ𝐿𝑠𝑠𝑖𝑚(𝐼, 𝐼

∗) 

𝐿𝑑𝑒𝑐𝑜𝑚𝑝 =
(𝐶𝐶(𝑓𝑃

𝐷,𝑓𝑀
𝐷))

2

𝐶𝐶(𝑓𝑃
𝐵,𝑓𝑀

𝐵) 𝜀
  

𝐿𝑖𝑛𝑡
𝐼 =

 

𝐻𝑊
||𝐼 − 𝐼∗||  

where 𝐼  denotes the original image before reconstruction, 
and 𝐼∗ represents the image reconstructed in the first stage. Here, 
to ensure the positivity of this term, the operator CC is the 

correlation coefficient and ε is assigned a value of 1.01. 

In training phase II, the total loss 𝐿𝑡𝑜𝑡𝑎𝑙 is offered in Eq. (11) 
below. 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝛼 𝐿𝑠𝑠𝑖𝑚 + 𝛼 𝐿𝑡𝑒𝑠𝑡 + 𝛼3𝐿𝑖𝑛𝑡
𝐼𝐼  

𝐿𝑠𝑠𝑖𝑚represents the structural loss, measuring the similarity 

between two images. 𝐿𝑡𝑒𝑠𝑡 stands for texture loss, while 𝐿𝑖𝑛𝑡
𝐼𝐼  

denotes intensity loss. 𝛼 ,𝛼 ,𝛼3 are adjustment parameters. 

The overall loss function in the second stage aims to train the 
fusion network weights while simultaneously adjusting the the 
first stage's trained encoder and decoder. Each loss function is 
as follows. 

𝐿𝑖𝑛𝑡
𝐼𝐼 =

 

𝐻𝑊
||𝐼𝑓 −𝑀𝑎𝑥(𝐼𝑝𝑒𝑡 , 𝐼𝑚𝑟𝑖)|| 

𝐿𝑡𝑒𝑥𝑡 =
 

𝐻𝑊
|| |∇𝐼𝑓| − 𝑀𝑎𝑥(|∇𝐼𝑝𝑒𝑡|, |∇𝐼𝑚𝑟𝑖|)||

𝐿𝑠𝑠𝑖𝑚 = 𝛾 (1 − 𝑠𝑠𝑖𝑚(𝐼𝑓 , 𝐼𝑝𝑒𝑡)) + 𝛾 (1 − 𝑠𝑠𝑖𝑚(𝐼𝑓 , 𝐼𝑚𝑟𝑖))

H and W stand for the original image's height and width, 
respectively. 𝛾  and 𝛾  are the adjustment parameters used to set 
the importance of information from each image. In the context 
of multimodal medical image fusion, the most critical aspect is 
effectively preserving information about lesion regions and 
texture details. We consider the structural information of MRI 
images to be more important in the MMIF. Through 
experimentation, we have found that the best fusion results are 
achieved when 𝛾 = 0.45 and 𝛾 = 0.55. 

III. EXPERIMENTAL RESULTS AND DISCUSSION 

A. The Dataset and Experimental Setting 

The present study involves two fusion tasks: biological and 
medical image fusion. The medical image tasks include MRI/CT 
fusion, MRI/PET fusion, and MRI/SPECT fusion. All data can 
be obtained from [40]. The MRI/CT brain training set consists 
of 160 pairs, with 24 pairs in the test set; the MRI/PET brain 
training set comprises 245 pairs, with 24 pairs in the test set; and 
the MRI/SPECT brain training set includes 333 pairs, with 24 
pairs in the test set. The biological image fusion tasks include 
Green Fluorescent Protein (GFP) and Phase Contrast (PC) 
images fusion, with data sourced from [41]. The training set 
comprises 130 pairs, while the test set consists of 18 pairs. 
During the preprocessing stage, the training images are cropped 
to a size of 128 × 128. 

 
Fig. 4. The comparison of CT-MRI fusion results. 

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (l)(k)
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Fig. 5. The comparison of PET-MRI fusion results. 

 
Fig. 6. The comparison of SPECT-MRI fusion results. 

 
Fig. 7. The comparison of GFP-PC fusion results.

B. The Evaluation Metrics 

The quantitative metrics must be used in order to compare 
the fusion results objectively. The fusion results are 
quantitatively assessed from six dimensions: entropy of 
information (EN) [42], Spatial Frequency (SF) [43], mutual 
information (MI) [44], Structural Similarity Index Measure 
(SSIM) [45], Visual Information Fidelity (VIF) [46], and edge-

based similarity measurement 𝑄𝐴 /𝐹 [47]. Finally, calculate the 
average value of each metric for the respective methods for 
objective analysis. 

C. The Subjective Analysis 

For evaluation, we choose three fusion methods based on 
traditional methods and six state-of-the-art deep learning-based 

fusion methods., including PSO–NSST [48], LLPACM [49], 
PCNN–NSST 50], SDnet [51], EMFusion [52], U2Fusion [6], 
SwinFusion [53], CDDFuse [54], and CoCoNet [55]. The 
default values supplied by the authors of these image fusion 
algorithms are the configurations for the parameter settings. 
SwinFusion was originally designed to handle only MRI-PET 
images, necessitating the retraining of the model for other modal 
images. 

The fusion results for CT-MRI, MRI-PET, MRI-SPECT, 
and GFP-PC are shown in Fig. 4, Fig. 5, Fig. 6, and Fig. 7, 
respectively. In each figure, (a) and (b) are the original images. 

(c)-(l) represent the fused images using the PSO – NSST, 

LLPACM, PCNN – NSST, SDnet, EMFusion, U2Fusion, 

SwinFusion, CDDFuse, CoCoNet and the DMMFnet method. 

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (l)(k)

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)
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In Fig. 4, Fig. 4 (a) and Fig. 4 (b) represent the original CT 
and MRI images. Fig. 4 (g) is notably dark, obscuring detailed 
information. Fig. 4 (f), Fig. 4 (h), and Fig. 4 (k) lose some 
information from the original CT images, with the brain's outline 
becoming indistinct. Fig. 4 (d) is overly blurred, affecting clarity 
and detail. Fig. 4 (i) and Fig. 4 (j) are excessively bright, which 
hinders clear information presentation. Fig. 4 (c) and Fig. 4 (e) 
yield acceptable results but suffer from noise-like artifacts that 
affect structural details. Due to our proposed feature extraction 
strategy, the DMMFnet effectively preserves most of the 
structural information from the source images and excellently 
maintains the edges. 

As shown in Fig. 5, Fig. 5 (a) Fig. 5 (b) represent the original 
MRI and PET images, respectively. Fig. 5 (e) and Fig. 5 (f) 
appear overly bright, resulting in unclear visual effects. Fig. 5 
(g) is too dark, leading to poor preservation of MRI information. 
Fig. 5 (d) fails to effectively extract and preserve information, 
resulting in severe color distortion. Although Fig. 5 (i) and Fig. 
5 (j) retain color information well, there is still some loss of MRI 
information at the edges. Due to our proposed fusion method, 
the DMMFnet successfully integrates the main information 
from the source images into the fused image and accurately 
portrays lesion information. 

As shown in Fig.6, Fig.6 (a) and Fig.6 (b) are the original 
MRI and SPECT images. In contrast to PET, SPECT images 
have much sparser intensity information, leading to varying 
degrees of information loss across different deep learning 
methods. Fig. 6 (d) is overly blurred, while Fig. 6 (f) and Fig. 6 
(i) retain too much color information, resulting in overly bright 
images that obscure details. Fig. 6 (g) suffers from severe 
deficiencies in color information. The DMMFnet outperforms 
all other deep learning methods. 

As shown in Fig.7, Fig.7 (a) and Fig.7 (b) are the original 
GFP and PC images. Due to the higher resolution of GFP and 
PC images compared to medical images, the feature information 
is more apparent, and deep learning methods generally yield 
better visual results. In Fig.7 (d), significant feature loss is 
observed. In Fig.7 (c) and Fig.7 (e), the cell structures are 
preserved, but there is some loss of color information. 
Conversely, in Fig.7 (i), Fig.7 (j), and Fig.7 (k), the cell 
structures are not clearly preserved. Additionally, Fig.7 (g) is too 
dark, resulting in poor visual quality. DMMFnet preserves both 
the cell structures and color information more comprehensively. 

D. The Objective Analysis 

In MRI-CT image fusion, our algorithm possesses four 

optimal metrics (EN, SF, SSIM, and 𝑄𝐴 /𝐹  ) and one 
suboptimal metric (VIF), with the SF metric performing 
significantly better than the others. As shown in Table I. 

For MRI-PET image fusion, compared to other algorithms, 
our algorithm achieves the highest scores in SF, MI, SSIM, and 

𝑄𝐴 /𝐹, while being second best in VIF as seen in Table II. 

In MRI-SPECT image fusion, our algorithm has two optimal 

metrics (VIF and 𝑄𝐴 /𝐹 ) and one suboptimal metric, surpassing 
all deep learning methods, as seen in Table III. 

TABLE I.  THE OBJECTIVE EVALUATION OF CT-MRI FUSION IMAGES 

Fusion Methods Evaluation metrics 

 EN SF MI SSIM VIF 𝑸𝑨𝑩/𝑭 

PSO–NSST 4.5 34.25 2.091 1.361 0.5 0.5 

LLPACM 4.62 32.9 1.98 1.28 0.39 0.45 

PCNN–NSST 4.58 36.07 2.07 1.34 0.47 0.572 

SDnet 4.66 34.77 2.262 1.29 0.512 0.52 

EMFusion 4.62 26.7 2.04 1.352 0.43 0.5 

U2Fusion 4.64 35.77 1.94 1.34 0.4 0.51 

SwinFusion 4.691 33.6 1.92 1.352 0.611 0.51 

CDDFuse 4.62 35.3 2.08 1.33 0.49 0.53 

CoConet 4.682 36.152 1.92 1.33 0.43 0.54 

Proposed 4.691 38.521 2.04 1.361 0.512 0.621 

TABLE II.  THE OBJECTIVE EVALUATION OF PET-MRI FUSION IMAGES 

Fusion Methods Evaluation metrics 

 EN SF MI SSIM VIF 𝑸𝑨𝑩/𝑭 

PSO–NSST 5.32 38.032 2.75 1.272 0.65 0.71 

LLPACM 5.32 33.67 2.29 1.22 0.63 0.72 

PCNN–NSST 5.44 37.37 2.45 1.26 0.65 0.71 

SDnet 5.43 37.29 2.44 1.26 0.67 0.69 

EMFusion 5.38 32.9 2.26 1.272 0.682 0.7 

U2Fusion 5.35 38.01 2.772 1.26 0.67 0.732 

SwinFusion 5.522 36.49 2.12 1.23 0.711 0.68 

CDDFuse 5.44 37.68 2.43 1.25 0.62 0.67 

CoConet 5.581 37.89 2.63 1.26 0.67 0.741 

Proposed 5.4 38.051 2.811 1.281 0.682 0.741 

TABLE III.  THE OBJECTIVE EVALUATION OF SPECT-MRI FUSION IMAGES 

Fusion Methods Evaluation metrics 

 EN SF MI SSIM VIF 𝑸𝑨𝑩/𝑭 

PSO–NSST 5.542 27.931 3.071 1.25 0.842 0.71 

LLPACM 5.33 26.47 2.31 1.08 0.46 0.57 

PCNN–NSST 5.561 27.162 3.022 1.31 0.74 0.7 

SDnet 5.2 23.77 2.27 1.25 0.63 0.69 

EMFusion 5.2 20.11 2.42 1.26 0.71 0.71 

U2Fusion 5.08 25.45 2.8 1.25 0.81 0.742 

SwinFusion 5.07 22.67 2.12 1.282 0.871 0.64 

CDDFuse 5.2 25.98 2.69 1.24 0.75 0.72 

CoConet 5.18 25.27 2.89 1.27 0.7 0.71 

Proposed 5.09 25.83 3.071 1.282 0.871 0.751 

In GFP-PC image fusion, our algorithm possesses four 

optimal metrics (EN, MI, SSIM, VIF, and 𝑄𝐴 /𝐹 ), as seen in 
Table IV. 
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TABLE IV.  THE OBJECTIVE EVALUATION OF GFP-PC FUSION IMAGES 

Fusion Methods Evaluation metrics 

 EN SF MI SSIM VIF 𝑸𝑨𝑩/𝑭 

PSO–NSST 6.81 11.48 2.15 0.7 0.75 0.58 

LLPACM 4.78 10.9 1.62 0.64 0.65 0.37 

PCNN–NSST 6.75 11.56 2.73 0.79 0.87 0.54 

SDnet 6.81 12.73 3.05 0.74 0.63 0.642 

EMFusion 6.54 11.82 2.25 0.85 0.83 0.58 

U2Fusion 6.63 12.971 2.79 0.77 0.94 0.62 

SwinFusion 6.76 12.832 3.49 0.892 1.062 0.61 

CDDFuse 6.852 12.11 2.28 0.88 1.05 0.6 

CoConet 6.84 12.18 3.562 0.88 1.02 0.651 

Proposed 6.891 12.04 3.631 0.91 1.071 0.61 

Due to the inherently low original resolution of SPECT 
images, up-sampling is required before fusion, introducing a 
significant amount of non-uniform pixel noise. This noise 
interference adversely affects the results for metrics such as EN 
and SF, making deep learning methods perform less favorably 
on general evaluation metrics for SPECT-MRI modality fusion 
compared to traditional methods. However, our method better 
preserves information from both modalities, surpassing other 
deep learning approaches in objective analysis. 

E. The Ablation Study 

As the test cases, we chose 30 pairs of images at random 
from each modality for ablation experiments. We chose peak 
EN, MI, VIF, and SSIM as the metrics. The configuration of 
each experiment is shown in Table V. 

TABLE V.  THE OBJECTIVE EVALUATION OF GFP-PC FUSION IMAGES 

Experiment Configurations 

Experiment 1 
Replace the shared encoder STFormer with Restormer 

[38], keeping other parts unchanged. 

Experiment 2 Not utilize context broadcasting technology. 

Experiment 3 
The feature extraction component in the encoder uses 
only the transformer module. 

Experiment 4 
The feature extraction component in the encoder uses 

only the INN module. 

Experiment 5 Change the two-stage training to direct training. 

Experiment 6 
Removal of 𝐿𝑑𝑒𝑐𝑜𝑚𝑝 from the loss functions used in the 

first phase of training. 

Experiment 7 
Sets 𝛾  and 𝛾  to {0.5, 0.5}, indicates that both images 

are equally important. 

From Fig. 8, it can be observed that the fusion evaluation 
metrics using dual-branch feature extractors in the fusion 
module are better than those obtained by using either the CNN 
or the Transformer alone as the feature extractor. This indirectly 
confirms that dual-branched feature extractors improve the 
ability of the network to extract features, beneficial for 
subsequent bottom-level visual tasks in image fusion, and that 
context broadcasting technology significantly aids in improving 
fusion effects. In summary, Table VI proves the effectiveness 
and soundness of our network and loss function design. 

TABLE VI.  THE RESULTS OF THE ABLATION EXPERIMENT 

Experiment Evaluation metrics 

 EN SF MI VIF SSIM 

Experiment 1 4.93 24.43 2.69 .0.75 1.24 

Experiment 2 5.07 24.45 2.96 0.81 1.25 

Experiment 3 4.86 22.19 2.21 0.85 1.21 

Experiment 4 5.01 23.81 2.35 0.72 1.22 

Experiment 5 4.89 22.11 2.42 0.71 1.26 

Experiment 6 5.07 25.76 3.06 0.87 1.25 

Experiment 7 5.06 25.83 3.07 0.85 1.26 

Proposed 5.07 25.83 3.07 0.87 1.27 

 
Fig. 8. The ablation experiment and the corresponding zoomed-in details of 

each fused image. 

IV. CONCLUSION AND FUTURE WORK 

This study proposes a multimodal medical image fusion 
network, DMMFnet. For the extraction of shared features in 
multimodal images, a new transformer module based on super 
token sampling is constructed, which effectively captures global 
dependencies. This module not only significantly improves the 
processing speed of the model but also ensures the effective 
capture and preservation of key features, thereby enhancing the 
ability to recognize and integrate important information in 
medical images. In addition, the proposed CSDformer module 
further optimizes feature extraction and fusion. By introducing 
the Context Broadcast strategy, the much-needed dense 
interaction is achieved, which greatly improves the ability to 
capture detailed features. Although DMMFnet has achieved 
satisfactory fusion results, it does not present a notable 
advantage in computational efficiency due to the limitations of 
the Transformer architecture. 

Future work: Future improvements should focus on refining 
the network to achieve better results at a lower computational 
cost. Enhancements in this direction would make the DMMFnet 
more practical and efficient for real-world applications. 
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