
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 8, 2024 

706 | P a g e  

www.ijacsa.thesai.org 

Deep Learning and Computer Vision-Based System 

for Detecting and Separating Abnormal Bags in 

Automatic Bagging Machines 

Trung Dung Nguyen, Thanh Quyen Ngo, Chi Kien Ha 

Faculty of Electrical Engineering Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam 

 

 
Abstract—This paper presents a novel deep learning and 

computer vision-based system for detecting and separating 

abnormal bags within automatic bagging machines, addressing a 

key challenge in industrial quality control. The core of our 

approach is the development of a data collection system 

seamlessly integrated into the production line. This system 

captures a comprehensive variety of bag images, ensuring a 

dataset representative of real-world variability. To augment the 

quantity and quality of our training data, we implement both 

offline and online data augmentation techniques. For classifying 

normal and abnormal bags, we design a lightweight deep 

learning model based on the residual network for deployment on 

computationally constrained devices. Specifically, we improve the 

initial convolutional layer by utilizing ghost convolution and 

implement a reduced channel strategy across the network layers. 

Additionally, knowledge distillation is employed to refine the 

model's performance by transferring insights from a fully 

trained, more complex network. We conduct extensive 

comparisons with other convolutional neural network models, 

demonstrating that our proposed model achieves superior 

performance in classifying bags while maintaining high 

efficiency. Ablation studies further validate the contribution of 

each modification to the model's success. Upon deployment, the 

model demonstrates robust accuracy and operational efficiency 

in a live production environment. The system provides significant 

improvements in automatic bagging processes, combining 

accuracy with practical applicability in industrial settings. 
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I. INTRODUCTION 

An automatic bagging machine is a type of packaging 
machinery designed to automatically fill products into bags and 
then seal them. These machines are widely used in various 
industries, including food, agriculture, chemical, and 
manufacturing, for efficient and rapid packaging solutions. 
Automatic bagging machines can handle a wide range of bag 
materials, sizes, and types, such as plastic, paper, and fabric 
bags. An automatic bagging machine comprises several stages 
and components: a product feeding system, which delivers the 
product to the bagging area; a weighing and filling system, 
which ensures that each bag is filled with the correct amount of 
product; a bag supply and opening unit, which automatically 
takes a bag from the supply, opens it, and positions it for 
filling; and a sealing system, which seals the bag by heat 
sealing, stitching, or using adhesives. Fig. 1 illustrates the 
comprehensive setup of the automatic bagging machine 

utilized in our research, highlighting each of the critical 
components and stages that facilitate the seamless transition 
from product feeding to the final sealing process. Among the 
components, the bag supply and opening unit is a critical 
component, ensuring that bags are consistently and accurately 
supplied and opened for the product filling process. This unit is 
designed to handle a variety of bag types and materials, 
including paper, plastic, and woven fabric, with varying levels 
of thickness and rigidity. To maintain the maximum 
performance of automatic bagging machines, constant bag 
quality is essential at all times. Criteria related to bag quality 
include the bag mouth, bag position, and bag surface. For the 
bag mouth, the edges must be perpendicular to the sides and in 
a straight line. For the bag position, bags must lie flat 
throughout their entire length and width. For the bag surface, it 
must be free of folds and/or wrinkles that could result from 
improper storage. Fig. 3(b) indicates some instances where bag 
quality does not meet the standards. 

Any errors related to bag quality can cause serious 
problems. For example, a bag that is too weak might tear 
during the picking or opening process, while a bag with 
inconsistent dimensions might not align properly with the 
machine’s mechanisms. These issues can halt production, 
necessitating manual intervention to clear the jam and restart 
the machine. Even if abnormal bags are successfully opened 
and filled, they may not seal properly, potentially 
compromising the integrity of the packaging. This can affect 
product safety, shelf life, and customer satisfaction. 
Inconsistent bag quality can also lead to poor presentation of 
the final product, affecting brand perception. The failure to 
properly handle abnormal bags can lead to increased material 
waste, as bags that are damaged during the process or that fail 
quality checks after filling and sealing are discarded. This not 
only increases material costs but can also lead to higher labor 
costs associated with troubleshooting and rectifying issues 
caused by using these bags. 

To mitigate the issues caused by abnormal bags, 
manufacturers may implement quality control measures such as 
pre-screening bags before they enter the supply unit, adjusting 
machine parameters to better accommodate variation in bag 
quality, or investing in more advanced detection and handling 
systems that can adapt to a wider range of bag qualities. 
Implementing a rigorous quality assurance program with 
suppliers to ensure that bags meet all necessary specifications 
before they reach the production line is also crucial. Modern 
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bag supply and opening units often rely on sensors and 
automated systems to detect and adjust the bags being fed into 
the machine. Abnormal bags might not be detected accurately 

by these systems, leading to misfeeds or incorrect adjustments 
that can compromise the packaging process. 

 

Fig. 1. The comprehensive setup of the automatic bagging machine utilized in our research. 

Over the years, the adoption of machine vision for 
automatic quality inspection has seen significant advancements 
across various industries, revolutionizing how quality control is 
implemented and ensuring higher standards of accuracy and 
efficiency. In the metal casting industry, machine vision has 
been instrumental in detecting defects such as cracks, porosity, 
and misruns on cast parts [1]. The manufacturing industry has 
broadly embraced machine vision for a range of applications, 
from verifying product assembly to ensuring the accuracy of 
labeling and packaging [2]. In the agricultural sector, machine 
vision has been applied to the inspection of the external quality 
of date fruits [3]. Automatic rice-quality inspection systems 
represent another remarkable application [4]. These systems 
employ machine vision to classify rice grains by size, shape, 
color, and texture, as well as to detect impurities. In the wood 
industry, particularly in the inspection of hardwood flooring 
products, machine vision systems have been developed to 
detect surface defects such as knots, cracks, and color variation 
[5]. These systems can inspect flooring panels at high speeds, 
ensuring that only those meeting strict quality standards reach 
the consumer. Overall, the developments in machine vision for 
automatic quality inspection across these varied industries 
emphasize a trend towards greater automation and precision in 
quality control processes. By leveraging advanced imaging 
technologies and machine learning algorithms, industries are 
not only able to enhance the efficiency of their operations but 
also significantly improve the quality of their products, 
benefiting both manufacturers and consumers alike. 

In recent years, deep learning has seen remarkable 
developments, transforming the landscape of production 
industries with its unprecedented capabilities in data analysis, 
pattern recognition, and autonomous decision-making. 
Leveraging vast amounts of data, deep learning algorithms 
have become proficient at identifying complex patterns and 
anomalies that elude traditional computational methods. This 
advancement has been particularly impactful in automating 
quality control processes, predictive maintenance, and 
enhancing operational efficiencies across various sectors. 

However, deploying deep learning models, especially 
Convolutional Neural Networks (CNNs), on resource-
constrained embedded devices poses significant challenges. 
First and foremost, these devices typically have limited 
processing power, which can make it difficult to run the 
computationally intensive operations required by CNNs in real-
time. Additionally, embedded devices often have restricted 
memory capacity, constraining the size of the models that can 
be deployed and limiting the amount of data that can be 
processed at once. Energy consumption is another critical 
concern, as many embedded devices operate on battery power 
or in energy-sensitive environments. The high computational 
demands of CNNs can lead to rapid battery depletion or require 
compromises in performance to conserve energy. Model 
complexity versus performance trade-offs also present a 
challenge. Simplifying models to fit the constraints of 
embedded devices can lead to reduced accuracy and efficacy. 
Finally, the diversity of hardware in embedded systems 
necessitates custom optimization for each deployment, 
increasing development time and complexity. Addressing these 
challenges requires innovative solutions, including model 
compression techniques, specialized hardware accelerators, and 
efficient algorithm design to make CNNs viable for embedded 
applications. 

Based on the above analysis, this paper introduces a novel 
deep learning and computer vision-based system designed to 
enhance the efficiency and accuracy of automatic bagging 
machines by classifying bags as normal or abnormal. By 
integrating a sophisticated data collection system directly into 
the production line and employing advanced data augmentation 
techniques, this study addresses the critical need for high-
quality, diversified datasets in machine learning. Central to our 
approach is the development of a lightweight deep learning 
model, based on the modified ResNet-18 architecture, which is 
specifically optimized for deployment on resource-constrained 
devices such as the Raspberry Pi 4. The contributions of this 
paper are summarized as follows: 
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 We demonstrate the efficacy of combining offline and 
online data augmentation techniques to substantially 
improve model robustness and generalizability. 

 Our customized lightweight ResNet-18 model, featuring 
an innovative initial convolution layer modification, 
channel reduction, and the application of knowledge 
distillation, demonstrates a novel approach to 
optimizing deep learning models for efficient 
deployment on embedded systems. 

 Through comprehensive comparisons with other CNN 
models and ablation studies, we provide valuable 
insights into the model's decision-making processes and 
its superior performance. 

 The successful deployment of our model on the 
Raspberry Pi 4 not only proves its operational viability 
in real-world industrial settings but also sets a 
benchmark for future research in deploying deep 
learning models on resource-constrained devices. 

II. LITERATURE REVIEW 

A. Image Classification 

Image classification, a pivotal task in the field of computer 
vision, has experienced significant evolution over the past 
decade, predominantly shaped by the advent and advancement 
of CNNs and, more recently, Transformer models. 

CNNs have established themselves as the backbone of 
image classification tasks, marked by their ability to 
automatically and adaptively learn spatial hierarchies of 
features from image data. The foundational model, LeNet [6], 
introduced in the late 1990s, set the stage for the use of CNNs 
in image recognition. However, it was AlexNet's [7] victory in 
the ImageNet challenge in 2012 that truly catalyzed the deep 
learning revolution, highlighting CNNs' potential to achieve 
remarkable accuracy in classifying images across thousands of 
categories. Subsequent architectures, such as VGG [8], 
GoogLeNet [9], ResNet [10], MobileNet [11-13], ShuffleNet 
[14-15] and EfficientNets [16] have introduced innovations 
such as deeper networks, inception modules, and residual 
connections, significantly improving performance on various 
image classification benchmarks. These developments have not 
only enhanced the accuracy and efficiency of image 
classification tasks but have also broadened the application 
scope of CNNs to include areas like medical image analysis, 
autonomous vehicles, and surveillance systems, emphasizing 
their versatility and robustness in extracting meaningful 
patterns from visual data. 

The introduction of Transformers in image classification 
[17], initially conceived for natural language processing tasks 
[18], marks the latest significant innovation in the field. The 
seminal work, "Attention Is All You Need," introduced the 
Transformer model, which relies on self-attention mechanisms 
to process data in parallel, significantly reducing the need for 
sequential data processing and enabling the model to weigh the 
importance of different parts of the input data. The adaptation 
of Transformer models for image classification, notably 
through architectures like Vision Transformer, has opened new 

avenues for research and application. Unlike CNNs, 
Transformers do not inherently process spatial hierarchies but 
instead treat the image as a sequence of patches, applying self-
attention to understand the global context of the image, which 
can lead to superior performance in certain contexts. This 
paradigm shift toward using Transformers for image 
classification highlights the field's ongoing evolution and the 
continuous search for models that can more effectively capture 
and interpret the complex patterns present in visual data. 
Despite their promising capabilities, the adoption of 
Transformer models in image classification also presents 
challenges, including the need for large-scale datasets for 
training and higher computational resources, setting the stage 
for ongoing research and development in optimizing these 
models for wider application. To address the challenges posed 
by the adoption of Transformer models in image classification, 
researchers have focused on designing lightweight and efficient 
Vision Transformers that require fewer computational 
resources and can be trained with smaller datasets. Key 
methods include the introduction of techniques such as model 
pruning [19-22], where redundant or non-essential parts of the 
model are removed without significantly impacting 
performance, and knowledge distillation [23-24], where a 
smaller, more efficient model is trained to emulate the 
performance of a larger, more complex model. Additionally, 
some approaches utilize more efficient self-attention 
mechanisms [25-30], which reduce the computational 
complexity by focusing on only the most relevant parts of the 
input data, and employing token-based methods that decrease 
the number of input tokens to the Transformer, significantly 
reducing the computational load while maintaining high 
accuracy. These innovations represent a significant step 
towards making Vision Transformers more accessible for a 
broader range of applications, especially in environments with 
limited computational capacity. 

B. Deep Models for Classification Task in Production 

Industries 

Deep learning models have profoundly impacted 
production industries by enhancing classification tasks with 
unprecedented accuracy and efficiency. In the manufacturing 
domain, Xu et al. [31] proposed a model that leverages high-
resolution vision sensors and deep learning techniques to 
classify and rate multi-category steel scrap. The model 
significantly improved the accuracy and fairness of steel scrap 
quality evaluation in recycling processes. Vikanksh et al. [32] 
introduced the NSLNet framework, which combines ImageNet 
for feature extraction with adversarial training in the feature 
space through Neural Structure Learning, aiming to overcome 
the challenges of limited annotated datasets and decreased 
prediction accuracy due to image perturbations in steel surface 
defect identification. In a study by Mathieu et al. [33], a 
method was introduced involving a three-step approach of data 
collection, classification, and supervised learning using CNNs. 
This method aims to automate quality control of open mouth 
bag sealings in industrial bagging systems. This study 
contributed a novel CNN architecture for the image 
classification of open mouth bags, demonstrating promising 
results in automating quality control within the food industry's 
industrial bagging systems. 
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Deep learning models have also found application in the 
agriculture sector. Padmapriya et al. [34] introduced a multi-
stacking ensemble model combined with a novel feature 
selection algorithm, leveraging both machine learning and deep 
learning models for accurate multiclass soil classification, 
essential for smart agriculture advancements. Gill et al. [35] 
proposed a model that utilizes CNN, Recurrent Neural 
Network, and Long-short Term Memory deep learning 
methods for optimal image feature extraction and selection, 
applying these features to classify fruits effectively. The model 
outperformed traditional methods in handling the complex and 
heterogeneous nature of fruit recognition and classification 
tasks. Recently, Shewale et al. [36] proposed a model that 
utilizes deep learning, specifically CNNs, combined with 
image processing, to automatically extract features from leaf 
images for the identification, classification, and diagnosis of 
plant leaf diseases. This research provided an automated, high-
precision disease diagnosis system for tomato plants that 
bypasses manual feature engineering and segmentation, 
offering a scalable solution for crop disease diagnosis globally 
through the application of deep learning on extensive, real-time 
image datasets. 

In the food industry, specifically for assessing the quality of 
packaged food, Han et al. [37] introduced a study featuring a 
rapid, non-destructive method for estimating nut quality. This 
method uses hyperspectral imaging coupled with deep learning 
classification, specifically a CNN, to assess the quality of 
unblanched Canarium indicum kernels based on peroxide 
values. Kazi et al. [38] explored the use of transfer learning 
with classical and residual CNN architectures for classifying 
different types of fruits and their freshness, moving beyond 
traditional CNN implementations.  In the textile industry, deep 
learning has introduced new capabilities for fabric inspection, 
identifying weaving faults, and ensuring pattern consistency. 
Huang et al. [39] introduced an efficient CNN model designed 
for fabric defect segmentation and detection, which requires 
only a minimal number of defect samples for training, thus 
significantly reducing manual annotation costs. Wei et al. [40] 
introduced the BIVI-ML model that integrates three 
bioinspired visual mechanisms (i.e., visual gain, attention, and 
memory) into a deep CNN framework to address the 
challenges of multilabel textile defect classification, such as 
intersected defects and label correlations. This approach 
enhances resolution, focuses attention on defects, and 
accurately associates relevant labels for effective multilabel 
classification. 

III. METHODOLOGY 

In this section, we first introduce the data collection 
process, detailing the system implemented within the 
production line to gather a diverse and representative dataset of 
bag images. Following this, the data augmentation subsection 
explains how we leverage both offline and online techniques to 
enhance the dataset's quality and variability. Lastly, we discuss 
the design and optimization of a lightweight deep model for 
bags classification, focusing on our custom modifications to 
the ResNet-18 architecture, which includes adjustments for 
efficient operation on resource-constrained devices like the 
Raspberry Pi 4. 

A. Data Collection 

Designing a deep learning-based system for classifying 
normal and abnormal bags in automatic bagging machines 
presents several significant challenges, particularly in the 
domain of data collection. The effectiveness of such a system 
is heavily dependent on the quality and variety of the dataset 
used to train it. One of the primary challenges is the vast 
diversity of bags. These bags can vary widely in terms of size, 
shape, material, color, and design. Consequently, it is 
necessary to obtain the broadest possible variety of bag types to 
ensure that the control quality can be effectively managed 
across all potential items the system might encounter. This 
diversity is critical to developing a robust model capable of 
accurately identifying anomalies in any given bag. Another 
significant challenge is the scarcity of abnormal bags. 
Abnormalities can range from minor defects such as slight 
tears or misprints to more significant issues like incorrect 
sizing or completely torn bags. However, these occurrences are 
typically rare in a well-maintained production environment. 
This scarcity presents a problem for data collection because 
deep learning models require a substantial amount of data to 
learn from. The insufficient number of abnormal bags means 
the system may not observe enough examples of abnormalities 
during the data collection phase, leading to a model that might 
struggle to recognize less common or more subtle defects. Data 
collection is also hindered by the dynamic conditions under 
which bagging operations occur. Factors such as lighting, 
background, and speed of the conveyor can significantly affect 
the quality of the images captured for training the model. 
Consistency in these conditions is challenging to maintain, yet 
critical for training a model that is reliable under the diverse 
conditions it will encounter in real-world applications. 

To tackle the challenges associated with collecting a 
diverse and representative dataset for training a deep learning 
system for classifying normal and abnormal bags in automatic 
bagging machines, a sophisticated data collection system has 
been implemented directly into the automatic bagging 
machine's production line, as shown in Fig. 2. This system 
employs a high-resolution Vieworks CMOS VC-25MC-M/C 
30D area camera, renowned for its exceptional image quality 
and reliability. The camera is equipped with a 6 mm fixed focal 
lens, providing a wide field of view while maintaining 
sufficient detail for identifying both gross and subtle 
abnormalities in bags. The camera's parameters have been 
meticulously adjusted to optimize the lighting conditions and 
speeds at which bags are processed on the production line. This 
adjustment ensures that the images captured are of high quality 
and reflect the diverse conditions under which the system must 
operate. By integrating the camera directly into the production 
environment, the data collection system is able to capture 
images of bags under the actual conditions they will be 
encountered, thereby enhancing the realism and applicability of 
the training data. This setup is linked to a computer system 
equipped with both a powerful CPU and a GPU. The GPU, in 
particular, is crucial for processing the high volume of image 
data in real-time, allowing for immediate feedback and 
adjustments to the data collection process if needed. This 
computational power also supports the use of advanced image 
processing and augmentation techniques, which can artificially 
expand the dataset by modifying existing images to simulate a 
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wider range of abnormalities and conditions. All the data 
collection hardware specifications are shown in Table I. 

 

Fig. 2. Data collection system. 

TABLE I.  DATA COLLECTION HARDWARE SPECIFICATIONS 

Hardware Specifications 

Camera 
Model: Vieworks CMOS VC-25MC-M/C 30D 
Type: Area Camera 

Lens 
Type: 6 mm fixed focal lens 

Field of View: Wide 

Computer Intel(R) Core(TM) i7-11700K CPU + Nvidia RTX 4080 GPU 

To address the issue of the rare occurrence of abnormal 
bags, the system is designed to flag and store images of any 
detected abnormalities for further review. This process helps in 
creating a focused dataset of abnormal bags, which, although 
smaller in size, is rich in diversity and critical for training the 
detection system effectively. Furthermore, to mitigate the 
imbalance between normal and abnormal bag instances, 
sophisticated data augmentation techniques are employed. This 
approach increases the representation of abnormal bags in the 
training dataset without the need for an equivalent increase in 
the actual occurrence of these abnormalities on the production 
line. 

With the proposed data collection system, 1000 images 
have been collected. As in practical production, the operator is 
only concerned with whether the bag is an abnormal bag that 
needs to be discarded, not with the specific type of 

abnormality. Therefore, in this paper, the bags were classified 
into two categories, normal and abnormal. Normal bags are 
those that appear uniform in shape, with consistent dimensions 
and no visible defects on the surface. The integrity of each bag 
is maintained, and there are no signs of tears, misprints, or 
material weaknesses, as shown in Fig. 3(a). Abnormal bags, on 
the other hand, display various defects such as irregular shapes, 
tears, incorrect sealing, or material inconsistencies, as shown in 
Fig. 3(b). These abnormalities compromise the bag's 
functionality and potentially disrupt the operation of the 
machine, necessitating their removal from the production line. 

B. Data Augmentation 

Data augmentation plays a crucial role in the classification 
of normal and abnormal bags by significantly enhancing the 
diversity and volume of training data available for deep 
learning models. By artificially creating variations of the 
existing images through techniques such as rotation, noise 
injection, and perspective transformations, data augmentation 
helps models become more robust and less sensitive to small 
changes or imperfections in bag appearances. This process not 
only improves the model's ability to generalize across different 
conditions found in production environments but also 
addresses the challenge of limited samples of abnormal bags, 
thereby boosting the overall accuracy and reliability of the 
classification system. Broadly, data augmentation techniques 
can be categorized into two types: offline and online 
augmentations. Offline augmentation involves preprocessing 
and expanding the dataset before training begins. This means 
creating modified copies of the original images, such as 
rotated, flipped, or adjusted in terms of brightness and contrast, 
and adding them to the training set. This approach results in a 
statically enhanced dataset that the model trains on, allowing 
for a wide variety of data from the beginning. On the other 
hand, online augmentation takes place during the model 
training process itself. In this dynamic approach, images are 
augmented in real-time and fed into the model. This means that 
each epoch can present slightly different variations of the 
images to the model, introducing a richer set of examples over 
time. Techniques such as random cropping, zooming, or adding 
noise are applied in real-time, ensuring that the model rarely 
sees the exact same image twice. This not only improves 
generalization but also significantly enhances the model's 
robustness to new, unseen variations of bags. 

 

Fig. 3. Examples of normal bags (a) and abnormal bags (b). 
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In this paper, we employ a comprehensive approach to data 
augmentation, leveraging both offline and online techniques to 
enhance the diversity and quality of our dataset for classifying 
normal and abnormal bags in automatic bagging machines. 
Initially, the dataset was expanded through offline 
augmentation methods, specifically focusing on brightness and 
contrast adjustments, noise injection, color variations, and 
synthetic abnormality generation. The latter is particularly 
noteworthy as it involves creating synthetic defects such as 
tears, holes, or significant shape distortions on images of 
normal bags. This method plays a crucial role in artificially 
expanding the collection of abnormal bag examples, avoiding 
the necessity for such events to happen naturally, and thus 
overcoming the lack of abnormal instances in the original 
dataset. Following the offline augmentation phase, we 
combined the enhanced images with the original ones to 
construct a new, enriched dataset comprising 3150 images. 
This dataset includes 1420 images depicting normal bags and 
1730 images featuring abnormal bags, reflecting a more 
balanced distribution between the two categories. 
Subsequently, this augmented dataset was randomly divided 
into three subsets: a training set constituting 60% of the total 
images, a validation set comprising 20%, and a test set making 
up the remaining 20%. The distribution and details of the 
images within each subset are outlined in Table II. 

TABLE II.  NUMBER OF IMAGES IN EACH SUBSET 

Subset Number of images 

 Normal bags Abnormal bags 

Training 852 1038 

Validation 284 346 

Testing 284 346 

Total 1420 1730 

To further augment the diversity of data features available 
during model training, we implemented online augmentation 
techniques. During the training process, each image batch 
underwent preprocessing through a combination of methods, 
including color jittering to simulate varying lighting conditions 
and color schemes, Gaussian blurring to introduce variability in 
image sharpness and simulate minor camera focus issues, and 
random flipping (both horizontally and vertically) to ensure the 
model can accurately classify bags regardless of their 
orientation. This blend of online augmentation methods 
ensures that the model is exposed to a wide array of variations 
within the training data, significantly enhancing its ability to 
generalize from the training set to real-world scenarios where 
bags can appear under different conditions and with various 
types of abnormalities. 

C. Lightweight Deep Model for Bags Classification 

Since we use the Raspberry Pi 4 for classifying normal and 
abnormal bags in the automatic bagging machine, deploying a 
lightweight deep learning model on this board is necessary. 
The lightweight model is crucial because it is specifically 
designed to operate within the constrained computing resources 
and limited memory capacities typical of embedded systems. 
This model ensures that the classification process can be 
executed efficiently in real-time, maintaining high accuracy 
while minimizing latency, which is essential for integration 

into production lines. Furthermore, the optimized architecture 
of the model reduces power consumption, a critical 
consideration for continuous operation in industrial settings. 

In our paper, we selected ResNet-18 as the foundation for 
our lightweight deep learning model to classify normal and 
abnormal bags, specifically designed for deployment on the 
Raspberry Pi 4. This choice was driven by ResNet-18's 
inherently efficient architecture that strikes an optimal balance 
between computational demand and model performance. We 
have conducted several modifications to ResNet-18, including 
changing the initial convolution layer based on Ghost 
Convolution [41] and reducing the number of channels, as well 
as employing knowledge distillation as a training technique to 
transfer knowledge from a fully trained and fine-tuned ResNet-
18 model (teacher) to our optimized lightweight model 
(student). These enhancements further improve its suitability 
for real-time applications on hardware with limited computing 
resources. Compared to its deeper counterparts, such as 
ResNet-34 or ResNet-50, ResNet-18 offers a more practical 
solution for deployment on embedded systems like the 
Raspberry Pi 4. While deeper models might achieve slightly 
higher accuracy in certain contexts, their increased complexity 
and higher demand for computational resources make them 
less suitable for environments where power efficiency and low 
latency are paramount. The extensive use of Ghost 
Convolution, along with strategic knowledge distillation, 
allows our modified ResNet-18 model to maintain a 
competitive accuracy level while significantly reducing the 
necessary computational resources and power consumption. 
This balance is crucial for ensuring that the automatic bagging 
machine can operate continuously and efficiently in an 
industrial setting, making ResNet-18 the ideal choice for our 
application. 

1) ResNet-18 architecture: ResNet-18 is a variant of the 

Residual Network (ResNet) architecture [10], designed to 

tackle the vanishing gradient problem that arises with 

increasing network depth. This architecture allows for the 

training of deep neural networks by introducing residual 

connections, which enable the flow of gradients through the 

network without degradation. 

The architecture of ResNet-18, as shown in Fig. 4, consists 
of an initial convolutional layer followed by 16 convolutional 
layers organized into 8 residual blocks, and ends with an 
average pooling layer and a fully connected layer. The initial 
convolutional layer has a 7×7 kernel with 64 filters and a stride 
of 2. This layer is followed by a 3×3 max pooling layer with a 
stride of 2, which serves to reduce the spatial dimensions of the 
input image while preserving important features. Following the 
initial layers, ResNet-18 is composed of four main stages, each 
containing two residual blocks. Each block comprises two 3×3 
convolutional layers with the same number of filters. The 
stages are differentiated by the number of filters and the stride 
of the first convolutional layer in each stage. Specifically, the 
stages have 64, 128, 256, and 512 filters, respectively. The 
stride is set to 1 for all blocks except the first block of each 
stage after the first, where it is set to 2. This design choice 
reduces the feature map's size as the network gets deeper, 
increasing the field of view of the convolutional filters. 
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Fig. 4. ResNet-18 architecture. 

The innovation of ResNet lies in its residual connections, 
which skip one or more layers by performing identity mapping 
and adding the input of the block to its output. These 
connections help mitigate the vanishing gradient problem by 
allowing the direct flow of gradients during backpropagation. 
In ResNet-18, every two layers share a residual connection, 
forming the backbone of its design. At the end of the network, 
a global average pooling layer reduces the spatial dimensions 
to 1×1, effectively summarizing the features extracted by the 
convolutions into a compact form. This is followed by a fully 
connected layer, which maps the pooled features to the desired 
number of output classes, facilitated by a Softmax activation 
function for classification tasks. 

2) Improving initial convolutional layer: To address the 

high latency associated with the initial convolutional layer in 

ResNet-18, which is primarily due to its 7×7 convolution with 

a stride of 2, a modification is proposed to enhance 

computational efficiency while maintaining the layer's feature 

extraction capability. This modification involves increasing 

the stride of the initial convolutional layer to 4 and decreasing 

the kernel size from 7×7 to 5×5. The rationale behind this is 

twofold: a larger stride and a smaller kernel size directly 

reduce the amount of computation required, thereby lowering 

the latency. Furthermore, to compensate for the potential loss 

of feature extraction capability due to these reductions, a 

Ghost Convolution layer [41] is introduced right after the 

modified 5×5 convolutional layer. Ghost Convolution, as 

shown in Fig. 5, is a novel neural network architecture 

optimization technique designed to significantly reduce the 

computational cost and model size while preserving, or even 

enhancing, the model's performance. It achieves this by 

generating additional ghost feature maps from a smaller 

number of primary feature maps using inexpensive operations, 

thus efficiently utilizing computational resources. Serving as a 

pivotal innovation in deep learning, Ghost Convolution plays 

a crucial role in enabling more efficient and faster neural 

networks, particularly beneficial for deployment in resource-

constrained environments such as mobile devices and edge 

computing platforms. 

Building on the innovative approach outlined above, Table 
III presents a comparison of FLOPs before and after the 
modification of the initial convolutional layer to quantify the 
efficiency gains achieved through our modification. By 

adjusting the kernel size and stride, and by adding a Ghost 
Convolution layer, the initial convolutional layer achieves 
fewer FLOPs compared to the original convolutional layer. 
Through this strategy, the modified initial layer of ResNet-18 
offers reduced latency without substantially compromising the 
network's performance, making it more suitable for real-time 
applications or deployment on hardware with limited 
computational resources such as the Raspberry Pi 4. 

 

Fig. 5. Ghost convolution structure. 

TABLE III.  COMPARISON OF FLOPS BEFORE AND AFTER THE 

MODIFICATION OF THE INITIAL CONVOLUTIONAL LAYER 

Configuration 
Kernel 

Size 
Stride 

Additional 

Layers 

FLOPs 

(Billions) 

Original initial 

layer 
7×7 2 0 1.8 

Modified initial 

layer 
5×5 4 1 1.6 

3) Modifying channel numbers: In CNNs, the number of 

channels typically increases as the network progresses deeper. 

This design strategy originates from the need to capture 

increasingly complex features from the input data. Initially, 

layers detect simple patterns and textures, such as edges and 

colors. As we move deeper into the network, subsequent 

layers combine these basic features to detect more complex 

and abstract features, necessitating a larger number of 

channels to represent this growing complexity effectively. 

In the case of ResNet-18, the structure follows this 
principle closely. The network starts with an initial 
convolutional layer that has 64 channels. This is followed by 
four main stages, each comprising two residual blocks. The 
channel numbers for each stage double as the network goes 
deeper: the first stage has 64 channels per layer, the second 
stage has 128 channels, the third stage has 256 channels, and 
the final stage has 512 channels. This design enables the 
network to process and extract a rich hierarchy of features from 
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the input images. However, not all tasks require the full 
capacity of ResNet-18. For simpler tasks, such as classifying 
bags as normal or abnormal, the complexity of the model can 
be reduced without significantly impacting performance. This 
simplification can lead to gains in efficiency, making the 
network more suitable for deployment in environments with 
limited computational resources like the Raspberry Pi 4. Based 
on extensive experiments, we have found that adjusting the 
number of channels in each layer of ResNet-18 to 64, 96, 128, 
and 160 for the respective stages strikes a good balance 
between performance and computational efficiency for this 
specific task. Table IV provides a comparison of FLOPs before 
and after reducing the number of channels in each layer. The 
results show that modifying the channel numbers significantly 
reduces the FLOPs of each stage. 

TABLE IV.  COMPARISON OF FLOPS BEFORE AND AFTER REDUCING THE 

NUMBER OF CHANNELS IN EACH LAYER 

Stage Original Modified 

 Channels 
FLOPs 

(Billions) 
Channels 

FLOPs 

(Billions) 

2 64 0.35 64 0.35 

3 128 0.55 96 0.4 

4 256 0.4 128 0.3 

5 512 0.25 160 0.2 

FC layer - 0.1 - 0.05 

Total  1.65  1.3 

Reducing the number of channels across the layers of 
ResNet-18 not only improves the model's computational 
efficiency, reflected in lower FLOPs, but also reduces the 
latency of the network during inference. This modification, 
however, comes at the cost of reduced network capacity. The 
term capacity here refers to the model's ability to learn from 
data; a higher capacity enables a network to capture more 
complex patterns but may also increase the risk of overfitting 
and require more data to train effectively. For the task of 
classifying normal and abnormal bags, which is relatively 
simple, this reduced capacity does not significantly hinder 
performance and leads to a more efficient model suitable for 
real-time applications or deployment on hardware with limited 
computational resources. 

4) Knowledge distillation: Knowledge distillation is a 

powerful technique that can significantly improve the 

efficiency and accuracy of deploying the proposed model on 

the Raspberry Pi 4, especially for tasks of classifying normal 

and abnormal bags in an automatic bagging machine. The 

essence of knowledge distillation lies in transferring the 

knowledge from a large, complex teacher model to a smaller, 

more computationally efficient student model. This process 

allows the student model to learn the complex decision 

boundaries and the detailed representations captured by the 

teacher, without the need for extensive computational 

resources. In this paper, the teacher model is the fully trained 

and fine-tuned ResNet-18 model, which has been enhanced 

for better performance on the task of bag classification. The 

student model, on the other hand, is the simplified version of 

ResNet-18 with modifications to lower its computational 

demands. The distillation process involves running the dataset 

through both the teacher and student models, using the output 

probabilities (soft targets) of the teacher model as a guide for 

training the student model. These soft targets provide richer 

information compared to hard labels (normal/abnormal), as 

they contain insights about how the teacher model perceives 

the differences between classes, including the uncertainty and 

the relationships among them. To implement knowledge 

distillation effectively, we use a loss function that combines a 

traditional classification loss (i.e., cross-entropy against the 

true labels) with a distillation loss that measures the 

discrepancy between the teacher's predictions and the student's 

predictions. The distillation loss employs a temperature 

parameter to soften the probability distributions, making it 

easier for the student model to learn from the teacher's 

outputs. By employing knowledge distillation for the proposed 

model targeted for deployment on the Raspberry Pi 4, we can 

reduce model size and computational requirements while 

improving accuracy and enhancing inference speed. 

5) Overall architecture of the proposed model: The 

overall architecture of the proposed model is shown in Fig. 6. 

It incorporates several modifications to ResNet-18 to enhance 

performance while accommodating the computational 

limitations of embedded systems. Initially, the model 

introduces a modified initial convolutional layer, where the 

stride is increased to 4 and the kernel size is decreased from 

7×7 to 5×5. This modification aims to capture finer details of 

input images without excessively burdening the Raspberry Pi's 

computational resources. Following the initial convolutional 

layer, a Ghost Convolution layer is introduced. This layer 

plays a pivotal role in reducing the model's complexity by 

generating more feature maps from fewer parameters, thus 

efficiently enhancing the representational capacity without a 

substantial increase in computational demand. The core of the 

model is composed of successive Residual Blocks (Res 

blocks), specifically arranged to progressively refine the 

feature maps. The number of channels in each layer of 

ResNet-18 has been adjusted to 64, 96, 128, and 160 for the 

respective stages, optimizing the balance between 

computational efficiency and the model's ability to capture 

relevant features from the image data. This adjustment ensures 

that the model remains lightweight yet capable of processing 

the varying complexities of the bag images through its depth. 

Each Res block employs a combination of 3×3 convolutions, 

with some blocks incorporating a stride of 2 (denoted as 3×3 

conv, s2) to reduce the dimensionality and focus the model's 

attention on salient features. At the end of the model, a Global 

Average Pooling layer is utilized to condense the feature maps 

into a form suitable for classification, effectively reducing the 

dimensionality and focusing the model's output. This is 

followed by a Fully Connected (FC) layer that makes the final 

decision, classifying the input image as either normal or 

abnormal. Moreover, we apply knowledge distillation as a 

training technique to transfer knowledge from a fully trained 
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and fine-tuned ResNet-18 model (teacher) to our optimized 

lightweight model (student). This approach allows the 

lightweight model to achieve higher accuracy by learning 

refined representations and decision boundaries, effectively 

mimicking the performance of the more cumbersome teacher 

model without the associated computational overhead. 

 

Fig. 6. Overall architecture of the proposed model. 

IV. EXPERIMENTS AND RESULTS 

In this section, we first introduce a detailed description of 
the implementation setup and the evaluation metrics used to 
evaluate the performance of our model. Following this, we 
proceed into a comprehensive analysis of the results, drawing 
comparisons between the proposed model and both classical 
CNNs and existing lightweight neural network architectures. 
This comparison highlights the strengths and efficiencies of 
our model. Subsequently, we conduct an ablation study to 
evaluate the impact of various modules and modifications 
within our architecture, providing insight into their individual 
contributions towards the model's overall performance. Lastly, 
we discuss the deployment of our optimized model on the 
Raspberry Pi 4 within an actual automatic bagging machine 
setup, demonstrating its practical application and effectiveness 
in a real-world scenario. 

A. Implementation Setup 

For the training of our lightweight network designed to 
classify normal and abnormal bags in an automatic bagging 
machine, we employed a high-performance computing setup. 
The network was trained on a system equipped with an Intel(R) 
Core(TM) i7-11700K CPU, 32GB of RAM, and an Nvidia 
RTX 4080 GPU. This hardware configuration, supported by 
the CUDA 10.1 Toolkit, provided the necessary computational 
power to effectively train our model using TensorFlow, a 
popular deep learning framework known for its flexibility and 
extensive support for CNNs. 

The training process lasted for 50 epochs. A batch size of 
64 was chosen to balance the trade-off between memory usage 
and the granularity of the gradient update, ensuring efficient 
use of the GPU's resources. For optimization, we employed the 
Stochastic Gradient Descent (SGD) algorithm with a 
momentum of 0.9 and a weight decay of 0.0001. The initial 
learning rate was set to 0.01. The learning rate was scheduled 
to decrease after certain epochs based on performance metrics 
on the validation set, helping the model to fine-tune its weights 

more precisely as training progressed. The loss function chosen 
for this task was cross-entropy, a common choice for 
classification problems as it quantifies the difference between 
the predicted probabilities and the actual distribution, driving 
the model to make more accurate predictions over time. 

B. Evaluation Metrics 

In the task of classifying normal and abnormal bags, 
evaluating the performance of the model accurately is crucial 
to ensure its effectiveness in real-world applications. To 
achieve this, we employ several evaluation metrics, including 
accuracy, precision, recall, number of parameters, and FLOPs 
(Floating Point Operations), each offering unique insights into 
the model's capabilities and areas for improvement. 

Accuracy is the simplest and most intuitive metric, 
representing the proportion of correctly classified instances 
(both normal and abnormal bags) to the total number of 
instances in the dataset. It is calculated using the following 
formula: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  

where, TP (True Positives) and TN (True Negatives) are 
the correctly identified abnormal and normal bags, 
respectively, while FP (False Positives) and FN (False 
Negatives) represent the incorrectly classified instances. 

Precision, or positive predictive value, measures the 
proportion of correctly identified abnormal bags out of all bags 
predicted as abnormal. This metric is particularly important in 
scenarios where the cost of falsely identifying a bag as 
abnormal (when it is not) is high. Precision is defined as the 
following formula: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
  

Recall, also known as sensitivity, indicates the proportion 
of actual abnormal bags that were correctly identified by the 
model. High recall is essential in ensuring that as many 
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abnormal bags as possible are detected. The formula for recall 
is defined as the following formula: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
   

In addition to these classification metrics, we also evaluate 
the model's complexity and efficiency using parameters and 
FLOPs. Parameters refer to the total number of trainable 
weights in the model. A lower count indicates a more 
lightweight model, which is beneficial for deployment on 
devices with limited computational resources, such as the 
Raspberry Pi 4. On the other hand, FLOPs provide a measure 
of the computational workload associated with a single forward 
pass through the model. It is calculated by adding up all the 
floating-point operations (additions, multiplications, etc.) 
involved in generating a prediction. 

C. Main Results 

1) Comparison with other CNNs models: In our study, we 

compared the performance of our proposed model against a 

range of established CNN architectures, including MobileNet-

V1, MobileNet-V3, ResNet-50, ShuffleNet-V2, and VGG16 

on the test dataset. This comparative analysis aimed to 

benchmark our model's effectiveness in classifying normal 

and abnormal bags against these well-known CNNs, with a 

particular focus on the balance between accuracy and 

computational efficiency as reflected in the model's precision, 

recall, parameters, and FLOPs. The comparison results are 

shown in Table V. The results show that our proposed model 

significantly outperforms the other architectures in terms of 

accuracy, achieving a remarkable 93.5%. This indicates a 

superior ability to correctly classify bags, which is critical in 

practical applications where misclassification can lead to 

operational inefficiencies or quality control issues. In terms of 

precision and recall, our model also leads with scores of 

93.0% and 94.0%, respectively. These metrics suggest not 

only a high rate of correctly identifying abnormal bags but 

also an impressive capability to detect the majority of actual 

abnormal bags present in the dataset. 

Despite its high performance, the proposed model 
maintains a moderate number of parameters and FLOPs, 
illustrating an efficient balance between computational cost 
and effectiveness. Notably, VGG16, with the largest model 
size and the highest computational cost, demonstrates lower 
performance metrics, highlighting the inefficiency of larger 
models in terms of computational resources versus accuracy 
gain. On the other hand, MobileNet-V3 and ShuffleNet-V2, 
known for their high efficiency, show remarkable performance 
with significantly fewer parameters and FLOPs, emphasizing 
the effectiveness of architectures designed for operational 
efficiency. ResNet-50, while having a substantial number of 
parameters and FLOPs, offers competitive performance 
metrics, which highlights the balance it strikes between depth 
and computational efficiency. However, our proposed model's 
performance, with its comparatively modest computational 
requirements, suggests that careful optimization and 
architectural choices can result in models that not only achieve 
superior accuracy but are also viable for deployment in 
resource-constrained environments. The results emphasize the 
importance of optimizing for both model size and 
computational efficiency without compromising on the task-
specific performance, a key consideration for practical 
applications, especially in environments with limited 
computational resources like the Raspberry Pi 4. 

TABLE V.  COMPARISON RESULTS ON THE TEST DATASET OF DIFFERENT MODELS 

Model Accuracy (%) Precision (%) Recall (%) Parameters (Millions) FLOPs (Billions) 

MobileNet-V1 89.5 88.7 90.2 4.2 0.57 

MobileNet-V3 91.0 90.5 91.5 2.9 0.22 

ResNet-50 92.3 91.8 92.7 25.6 4.1 

ShuffleNet-V2 90.2 89.9 90.6 2.3 0.15 

VGG16 88.0 87.5 88.5 138 15.5 

Our Proposed Model 93.5 93.0 94.0 4.5 1.4 

TABLE VI.  CLASSIFICATION RESULTS OF DIFFERENT COMBINATIONS ON THE VALIDATION DATASET 

Model Accuracy (%) Precision (%) Recall (%) Parameters (Millions) FLOPs (Billions) 

Original ResNet-18 89.1 88.6 89.2 11.6 1.8 

ResNet-18 + IICL 91.6 91.2 91.8 8.4 1.6 

ResNet-18 + IICL + MCN 91.4 90.9 92.9 4.5 1.4 

ResNet-18 + IICL + MCN + 

KD (Our Proposed Model) 
94.2 93.7 94.3 4.5 1.4 

 

2) Ablation analysis: To illustrate the impact of various 

modifications and modules on the performance of our 

architecture, an ablation study was conducted comparing 

different variants of the ResNet-18 model on the validation 

dataset. These variants include the original ResNet-18 model, 

ResNet-18 with an improved initial convolutional layer 

(IICL), ResNet-18 with IICL and modified channel numbers 

(MCN), and finally, the complete proposed model which also 

incorporates knowledge distillation (KD). The comparison 

results are shown in Table VI. Starting with the original 
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ResNet-18, we observe a solid baseline with an accuracy of 

89.1%, precision of 88.6%, and recall of 89.2%. This model, 

despite its relatively high computational cost (11.6 million 

parameters and 1.8 billion FLOPs), sets a foundation for 

further optimization. The introduction of an IICL, which 

includes increasing the stride and decreasing the kernel size, 

along with the addition of a Ghost Convolution layer, 

significantly boosts performance. This first modification 

enhances the model's efficiency in feature extraction and 

reduces computational requirements, resulting in improved 

accuracy (91.6%), precision (91.2%), and recall (91.8%), with 

a notable reduction in parameters (8.4 million) and FLOPs 

(1.6 billion). Interestingly, the third variant, which combines 

IICL with MCN, shows a slight decrease in accuracy and 

precision but a notable increase in recall (92.9%). This 

suggests that adjusting the number of channels effectively 

improves the model's sensitivity in detecting abnormal bags, a 

critical aspect of the classification task. This modification also 

significantly lowers the computational cost, halving the 

parameters to 4.5 million and reducing FLOPs to 1.4 billion, 

indicating a substantial increase in efficiency. Our proposed 

model, which further incorporates KD alongside IICL and 

MCN, achieves the best performance across all metrics: 

accuracy (94.2%), precision (93.7%), and recall (94.3%). This 

impressive improvement is achieved with the lowest 

complexity, featuring only 4.5 million parameters and 1.4 

billion FLOPs. The addition of KD allows the model to learn 

more refined representations and decision boundaries, which 

is evident in its superior performance metrics. This indicates 

that knowledge distillation is highly effective in enhancing 

model performance, especially in tasks requiring high 

precision and recall. 

Overall, the ablation study demonstrates the effectiveness 
of our targeted modifications in not only improving the model's 
accuracy, precision, and recall but also in significantly 
enhancing its computational efficiency. The final proposed 
model stands out as highly optimized for the specific task of 
classifying bags, making it ideal for deployment in resource-
constrained environments such as the Raspberry Pi 4, where 
efficiency and performance are paramount. 

3) Heatmap visualization: Fig. 7 visualizes heatmap 

results from the last convolution layer of the last block of the 

proposed model. The heatmaps offer valuable insights into the 

regions within the images that the proposed model focuses on 

when making classifications. These heatmaps are derived from 

the last convolutional layer of the last block of the model, 

highlighting the areas with the highest activations, typically 

the regions most significant for the model's decision-making 

process. 

 

Fig. 7. Heatmap visualization of the proposed model. 

In the first row, the heatmap is intensely focused on the 
area where part of the bag is missing, indicating that the model 
identifies this as the most informative region for classifying the 
bag as normal or abnormal. The high-intensity area represents 
a strong response, which suggests a distinctive feature or 
pattern that the model has learned to recognize as indicative of 

the bag's status. In the second row, we see a similar pattern of 
focus. The model's attention is concentrated around the center 
of the bag, but with a more elongated spread along the vertical 
axis. This reflects the model's detection of abnormalities that 
have a more linear orientation or a change in the bag's texture 
or structure in that specific region. The third row presents a 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 8, 2024 

717 | P a g e  

www.ijacsa.thesai.org 

narrower focus in the heatmap. The activation is concentrated 
in a smaller region, which suggests that the model has detected 
a very specific feature of interest that is highly relevant to the 
classification task. The tight clustering of high activation 
corresponds to a localized abnormality. 

In summary, these heatmaps provide a clear representation 
of where the model is looking and what it considers critical for 
its classification decisions. The results show that the model is 
not distracted by the periphery of the images and consistently 
focuses on the central parts of the bags, where textual and logo 
features are most prominent. This consistent focus across 
different bags suggests that the model has learned a generalized 
understanding of where relevant features are likely to appear. 
Crucially, these heatmaps can be used not only to understand 
the model's behavior but also to validate whether the model is 
considering the right features when making a classification. If 
the model were focusing on irrelevant areas, it might indicate 
an overfitting to noise or a misalignment in the learned 
features. However, the heatmaps in this figure confirm the 
model's appropriate focus areas, thus supporting its reliability 
and robustness in identifying normal and abnormal bags. 

4) Deployment: For deploying the proposed model from a 

powerful training environment to a resource-constrained 

platform in the Raspberry Pi 4, we perform several steps to 

ensure that the model retains its accuracy and efficiency in a 

production setting. The first step is to convert the model into a 

TensorFlow Lite model. TensorFlow Lite is a set of tools that 

enables on-device machine learning by optimizing the 

TensorFlow model for performance on lightweight devices. 

By converting the model to TensorFlow Lite model, we 

substantially reduce its size while maintaining critical aspects 

of its performance. The converted model is further optimized 

using post-training quantization technique, which not only 

decreases the model's size but also potentially speeds up 

inference times by using lower-precision calculations. This is 

particularly important for the Raspberry Pi 4, as it has less 

computational power and memory compared to the original 

training environment. 

Following optimization, the TensorFlow Lite model is 
deployed onto the Raspberry Pi 4, which involves transferring 
the model file to the device and setting up the necessary 
inference libraries. Once in place, the model is integrated into 
the automatic bagging machine's control software, where it will 
process input images captured by the machine's cameras in 
real-time. The software preprocesses the input data according 
to the model's requirements, then feeds it into the model for 
inference. The inference libraries, optimized for the Raspberry 
Pi 4's ARM architecture, facilitate the execution of the model 
efficiently, ensuring that classification decisions are made 
swiftly to keep pace with the operational speed of the bagging 
machine. The lightweight nature of the TensorFlow Lite model 
allows for rapid inference, which is essential for the model to 
be practical in a production environment. 

Finally, we conduct extensive testing to confirm that the 
model's performance on the Raspberry Pi 4 aligns with the 
results observed during its initial development and validation. 
This involves monitoring accuracy, speed of inference, and 

resource utilization under real-world conditions. Table VII 
provides results of the deployment of the proposed model on 
the Raspberry Pi 4. The results in Table VII indicate that the 
proposed model delivers a solid performance in an operational 
environment. An inference time of 500 ms per bag suggests 
that the model is performing real-time analysis at a viable 
speed for the automatic bagging machine, considering the 
balance between speed and the complexity of the task. Power 
consumption stands at 4 W, which is a testament to the 
Raspberry Pi's energy efficiency and the lightweight nature of 
the optimized TensorFlow Lite model. Such low power draw is 
ideal for continuous, long-term operation in industrial settings. 
The CPU utilization of 48% indicates that the model is 
utilizing less than half of the CPU's capabilities, which is 
significant as it leaves room for the Raspberry Pi 4 to handle 
other tasks concurrently, if necessary, without overloading the 
system. The memory usage is moderate at 350 MB, which falls 
well within the Raspberry Pi 4's RAM capabilities, ensuring 
that the model runs smoothly without memory bottlenecks. 
This level of resource usage supports the notion that the model 
is indeed lightweight and suitable for embedded systems. The 
model's accuracy, precision, and recall rates are exceptionally 
high at 94.2%, 93.7%, and 94.3%, respectively. These metrics 
almost mirror the performance during the training phase, which 
indicates a successful model optimization and conversion 
process with negligible loss in model efficacy. Such high 
values suggest that the model is highly reliable, making correct 
decisions most of the time, and is able to identify the majority 
of abnormal bags correctly. An inference throughput of two 
bags per second may seem modest but is generally sufficient 
for automatic bagging operations, suitable for the speed of the 
conveyor and the number of bags processed in a given 
timeframe. 

TABLE VII.  RESULTS OF THE DEPLOYMENT OF THE PROPOSED MODEL ON 

THE RASPBERRY PI 4 

Metric Value Comments 

Inference time 500 ms Time taken for a single inference 

Power consumption 4 W Average power during model inference 

CPU utilization 48% CPU usage during model inference 

Memory usage 350 MB 
RAM used by the model during 

operation 

Model accuracy 94.2% Percentage of correctly classified bags 

Model precision 93.7% 
Proportion of true positives over total 

positives 

Model recall 94.3% 
Proportion of true positives over actual 

positives 

Inference 

throughput 

2 

bags/sec 
Number of bags classified per second 

V. CONCLUSION 

In conclusion, our research has successfully demonstrated 
the efficacy of a deep learning and computer vision-based 
system designed for the classification of normal and abnormal 
bags within an automatic bagging machine. Through the 
strategic integration of a sophisticated data collection system 
directly on the production line, we have created a rich dataset 
that accurately reflects the variability inherent in real-world 
manufacturing processes. The implementation of both offline 
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and online data augmentation methods has significantly 
enhanced the robustness of our dataset, preparing our model to 
handle diverse operational scenarios. Our modifications of the 
ResNet-18 architecture into a lightweight deep learning model 
have proven to be particularly well-suited for deployment on 
the resource-limited Raspberry Pi 4, maintaining high accuracy 
and efficiency in bag classification tasks. The extensive 
comparative analysis with other CNN models and the thorough 
ablation studies have underscored the advantages of our 
proposed model. Overall, the contributions of this work not 
only lie in the novel application of a deep learning-based 
approach to a specific industrial challenge but also in the 
advancement of deploying complex models to edge devices. 
The success of this project opens avenues for future research 
into similar applications across different sectors, fostering the 
integration of AI in industrial automation. 
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