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Abstract—The integration of cutting-edge technology in 

agriculture has revolutionized traditional farming practices, 

paving the way for Smart Agriculture. This research presents 

a novel approach to enhancing the cultivation of orchard crops 

by combining deep-stream algorithms with drone technology. 

Focusing on pomegranate farming, the study employs a drone 

system with four specialized cameras: thermal, optical RGB, 

multi-spectral, and LiDAR. These cameras facilitate 

comprehensive data collection and analysis throughout the crop 

growth cycle. The thermal camera monitors plant health, yield 

estimation, fertilizer management, and irrigation mapping. The 

optical RGB camera contributes to crop management by 

analyzing vegetation indices, assessing fruit quality, and detecting 

weeds. The multi-spectral and hyperspectral cameras enable early 

detection of crop diseases and assessment of damaged crops. 

LiDAR aids in understanding crop growth by measuring plant 

height, tracking phenology, and analyzing water flow patterns. 

The data collected is processed in real-time using Deep Stream 

algorithms on an NVIDIA Jetson GPU, providing predictive 

insights into key farming characteristics. Our model demonstrated 

superior performance compared to four established models—

MDC, MLP, SVM, and ANFIS—achieving the highest accuracy 

(95%), sensitivity (94%), specificity (96%), and precision (91%). 

This integrated method offers a robust solution for precision 

agriculture, empowering farmers to optimize crop management, 

enhance productivity, and promote sustainable agriculture 

practices. 

Keywords—Smart agriculture; crops; cultivation; deep stream 

algorithms; drone and technology 

I. INTRODUCTION 

Modern agriculture is undergoing a significant shift as a 
result of technological developments that promise to increase 
production, sustainability, and efficiency. One such innovative 
strategy is the use of deep stream algorithms and drone 
technology to revolutionise pomegranate farming. With their 
high nutritional content and rising demand, pomegranates stand 
to gain a lot from these cutting-edge methods. The use of 
drones outfitted with a variety of specialised cameras and 
cutting-edge data processing techniques is presented in this 

study as a comprehensive framework for automating the 
cultivation of pomegranates [1]. The four onboard cameras—
thermal, optical RGB, multi-spectral, and LiDAR—provide an 
abundance of real-time data that gives producers priceless 
insights into numerous facets of crop health and growth 
dynamics. A key component of this system is the thermal 
camera, which makes exact plant health assessments, precise 
irrigation mapping, effective fertiliser control, and yield 
estimation possible. This camera assists in the early diagnosis 
of stressed or unhealthy plants by collecting temperature 
fluctuations, enabling prompt treatments and optimising 
resource allocation. The optical RGB camera completes this 
functionality by measuring vegetation indices, evaluating the 
quality of the fruit, and even spotting weeds. This helps users 
make better decisions [2]. Multi-spectral and hyper-spectral 
cameras are essential for a more detailed analysis of crop 
conditions. They can recognize physical and biological traits 
that can point to underlying problems in pomegranate 
harvests to spot disease symptoms [3]. This ability 
guarantees early disease identification, enables individualized 
treatment plans, and reduces possible yield losses. 

To maintain crop health and yield, UAVs mounted with 
thermal cameras could be used to monitor temperature 
differences in orchard crops. This allows for the early detection 
of plant stress, disease, or water inadequacies. Optical RGB 
cameras monitor crops’ visual health and growth stages by 
taking high-resolution pictures for the analysis of vegetation 
indicators, fruit quality evaluation, and weed detection. 
Multispectral and hyperspectral cameras offer extensive 
spectral information to identify disease signs, nutrient deficits, 
and other physiological characteristics. This information 
enables precise, focused treatments to improve crop health and 
decrease losses. LiDAR technology provides vital insights into 
growth dynamics and optimizes irrigation techniques for more 
effective water use and improved orchard crop management. 
Navigating UAVs mounted with such 

LiDAR could also measure plant height, track crop 
phenology, and examine water flow patterns. 

*Corresponding Author. 
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A. Related Works 

Authors in study [4] used UAVs in apple orchards using 
thermal and RGB imagery to detect frost damage, evaluate 
fruit sets, predict yields, and monitor bloom stages to improve 
thinning practices. Similarly, in study [5], the authors installed 
multi-spectral cameras over UAVs to navigate the citrus groves 
to identify diseases such as citrus greening, allowing for 
targeted therapies to minimize the spread of the disease. Drones 
are used in vineyards [6] to monitor vine health, evaluate grape 
quality, identify illnesses, and plan precise fertilization by using 
multi-spectral imagery to pinpoint nutrient deficiencies. Very 
recently, Sanchez et al. [7] used drones in olive orchards to 
improve irrigation schedules, map canopy structure, monitor 
water stress, and evaluate tree health using LiDAR data. In 
this work, we especially focus on pomegranate orchard 
management, building on the wide-ranging uses of UAVs in 
different orchard crops. With deep stream algorithms and drone 
technology, this extension seeks to optimize pomegranate 
agriculture and improve crop sustainability, productivity, and 
health. 

The LiDAR camera provides crucial information on crop 
phenology, water flow patterns, and plant height. This new 
information improves our comprehension of pomegranate 
growth dynamics. It helps us make the best irrigation decisions, 
resulting in more effective water use and sustainable farming 
methods [8]. The investigation uses the potent NVIDIA Jetson 
GPU for data processing to take advantage of the enormous 
amount of data these cameras have acquired. The system 
analyses the acquired data in real-time while utilizing deep-
stream algorithms, allowing precise forecasts in key 
pomegranate cultivation areas. This entails monitoring crop 
health, analysing how dry the soil and vegetation are, 
determining how much fertilizer is needed, finding and 
controlling weed infestations, and quickly spotting instances 
of crop damage and disease. 

The use of mechatronics, sensors, and IoT in agriculture 
is now essential, with drones emerging as a viable tool for 
mapping field variability and optimizing input applications. 
Drones have applications across various stages of plant growth 
and sectors such as livestock, horticulture, and forestry, 
enhancing field monitoring and decision-making [9], [10]. The 
survey in [11] examines various UAV applications, types, 
sensors, and architectures, comparing them with traditional 
technologies and highlighting their benefits and challenges in 
precision agriculture. The article [12] reviews the use of 
UAVs for crop monitoring and pesticide spraying, which 
helps improve crop quality and mitigate health risks associated 
with manual pesticide application. Conventional weed 
management methods are inefficient for integration with smart 
agricultural machinery, whereas automatic weed identification 
significantly improves crop yields. The study in [13] evaluates 
deep learning techniques (AlexNet, GoogLeNet, InceptionV3, 
Xception) for weed identification in bell pepper fields, with 
InceptionV3 achieving the highest accuracy of 97.7%, 
demonstrating the potential for integration with image-based 
herbicide applicators for precise weed management. UAV-
based sprayers precisely target hard-to-reach areas, as 

demonstrated in a cotton field study [14] using advanced 
imaging and optimization techniques, achieving effective 
droplet deposition with a GWO-ANN model showing high 
prediction accuracy. UAV imagery with an in-house web 
application, “DeepYield,” [15] uses deep learning models like 
SSD, Faster RCNN, YOLOv4, YOLOv5, and YOLOv7 to 
measure citrus orchard yields. Here, YOLOv7 excelled with 
a mAP, Precision, Recall, and F1-Score of 86.48%, 88.54%, 
83.66%, and 86.03%, respectively, and the solution was 
integrated into DeepYield for automated yield estimation. 

Water flow mapping, crop phenology monitoring, and plant 
height measurement have all benefited from the use of LiDAR 
technology. Prominent research, like [16], has shown how 
important it is for comprehending development dynamics and 
making the most use of water. Deep Stream Algorithm with 
NVIDIA Jetson GPU: The combination of these two 
technologies has proved essential for data processing. The 
effectiveness of this arrangement in real-time analysis was 
demonstrated by research by [17], allowing predictions in crop 
health, soil dryness, fertilizer needs, weed identification, and 
disease detection [18]. The literature has recognized that 
there are challenges with calibration, data quality, and system 
scalability [19]. Further developments will involve improving 
algorithms, adding meteorological information, and 
customizing systems for certain crops and geographical areas. 
Table I-B summarizes recent studies on applying drones and 
various sensors in orchard crops, covering yield estimation and 
the learning model used in the works. 

B. Motivation 

Agriculture is undergoing a technological transformation 
with the integration of unmanned aerial vehicles (UAVs), 
commonly known as drones, and advanced algorithms [20]. 
This literature survey explores the state-of-the-art in the 
automation of pomegranate cultivation, focusing on the use 
of drones equipped with thermal, optical RGB, multi-spectral, 
and LiDAR cameras. The processing of collected data is 
facilitated by the NVIDIA Jetson GPU using deep-stream 
algorithms, enabling real-time predictions for various aspects 
of crop management. The capacity of drone technology to 
deliver high-resolution, real-time data for precision farming has 
made it more and more popular in the agricultural sector. Prior 
research, such as that done by [21], showed how useful 
drones are for determining crop health, maximizing resource 
utilization, and increasing production. Plant health inspections 
have made considerable use of thermal cameras. Thermal 
imaging is useful in identifying stress factors, refining irrigation 
plans, and calculating crop yields, according to research by 
Messina et al. [22]. Optical RGB Imaging for Vegetation 
Indices and Quality: Research, such as the work by Devi et 
al. [23], highlights the application of optical RGB cameras 
for weed detection, fruit quality evaluation, and vegetation 
index measurement. This all-inclusive method helps to create 
accurate crop plans. Hyper- and Multi-Spectral Imaging for 
Illness Detection: Researchers have looked at the use of hyper- 
and multi-spectral cameras for illness detection [24]. These 
cameras can analyze both biological and physical parameters 
and identify damaged crops based on spectral fingerprints. 
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TABLE I. DRONE AND SENSOR APPLICATIONS IN ORCHARD CROPS 

Authors Crop Type Work Description Type of Sensor Used Methodology 
Model 

Developed 
Accuracy 

He et al. [25] Apple 
Yield estimation, 
health monitoring 

RGB, 
Cameras 

Thermal 
Image analysis, temperature 
mapping 

Regression 
Model 

92% 

Jemaa 
al. [26] 

et Apple Health prediction 
RGB, 
Cameras 

Thermal 
Health index calculation, stress 
mapping 

SVM 89% 

Chandel 
al. [27] 

et Apple Irrigation scheduling 
Thermal, 
Cameras 

RGB 
Soil moisture mapping, 
temperature analysis 

Regression 
Model 

90% 

Sun 
al. [28] 

et Citrus 
Yield prediction, soil 
dryness detection 

Multi-Spectral 
Camera 

Spectral reflectance analysis SVM, KNN 87%, 85% 

Modica 
al. [29] 

et Citrus 
Irrigation 
optimization 

Multi-Spectral 
Camera 

Spectral reflectance analysis SVM 87% 

Lan 
al. [30] 

et Citrus Yield prediction 
Multi-Spectral 
Camera 

Spectral reflectance analysis SVM 89% 

Marques 
al. [31] 

et Olive 
Water 
monitoring 

stress 
LiDAR, 
Cameras 

RGB 
Canopy structure analysis, 
water stress indexing 

ANN 88% 

Ferro 
al. [32] 

et Vineyard 
Yield prediction, 
health monitoring, 
weed presence 

RGB, Multi-Spectral 
Vegetation index calculation, 
clustering, weed mapping 

K-Means, 
ANN 

91%, 90% 

Jones 
al. [33] 

et Vineyard Yield prediction RGB, Multi-Spectral 
Vegetation index calculation, 
clustering 

K-Means, 
ANN 

94% 

Miranda 
al. [34] 

et Pomegranate 
Yield monitoring, 
irrigation optimization 

RGB, 
LiDAR 

Thermal, Multi-modal data analysis 
Deep 
Learning 

95% 

Zhang 
al. [35] 

et Pomegranate 
Disease 
crop 
detection 

detection, 
damage 

RGB, 
LiDAR 

Thermal, Multi-modal image analysis 
Deep 
Learning 

93% 

Olorunfemi 
et al. [36] 

Pomegranate Yield monitoring 
RGB, 
LiDAR 

Thermal, Multi-modal image processing 
Deep 
Learning 

95% 
 

The literature review highlights the increasing amount 
of research on automated crop production, especially with 
pomegranates, using deep-stream algorithms and drone 
technology. All of the research included in the survey 
demonstrates how this strategy may be used to maximize the 
use of available resources, increase crop productivity, and 
support sustainable agriculture. However, despite significant 
advancements, there remain notable gaps in the integration 
and application of these technologies, specifically for orchard 
crops such as pomegranates. This research addresses these gaps 
by proposing a comprehensive approach combining drone 
technology with deep-stream algorithms to optimize 
pomegranate cultivation. 

Previous studies have examined the application of UAVs 
with different sensors in agriculture. Still, there is a lack 
of research specifically addressing the customization of these 
technologies for orchard crops such as pomegranates. Previous 
studies have primarily focused on general crop management, 
neglecting the specific needs of orchard farming. This field 
requires more precise and specialized approaches that have 
yet to be thoroughly explored. In addition, there is still much 
to be explored regarding integrating real-time data processing 
with deep-stream algorithms. Specifically, there is a need to 
understand how this integration can improve decision-making 
in pomegranate farming. This study addresses the existing gaps 
in the field by presenting a fresh approach that utilizes advanced 
cameras (thermal, optical RGB, multi-spectral, and LiDAR) 
installed on drones. These cameras are combined with the high-
speed processing capabilities of deep stream algorithms on an 
NVIDIA Jetson GPU. With this integration, you can closely 
monitor and manage every stage of the pomegranate growth 
cycle. This provides valuable insights for enhancing yield, 
promoting plant health, and ensuring high-quality crops. 
Focusing on pomegranates, a crop boasting high nutritional 
value and growing demand, this research tackles a specific 
need in the agricultural sector. 

Moreover, it contributes to advancing sustainable and 
precision agriculture. The study’s findings highlight the 
immense potential for transforming orchard farming and offer 
a solid foundation that can be applied to other crops. This has 
the potential to expand the advantages of Smart Agriculture 
practices to a wider range of crops. 

A game-changing strategy for modernizing pomegranate 
production is presented via the combination of drone 
technology with deep stream algorithms. In the dynamic 
environment of pomegranate farming, this work aims to 
provide farmers with a cutting-edge toolkit that enables them 
to make data-driven decisions, improve production, and support 
sustainable agricultural practices. The following are key 
contributions of this research article: 

 Introduces a pioneering approach combining drone 
technology and deep stream algorithms for pomegranate 
production. 

 Provides farmers with advanced tools for data-driven 
decision-making in pomegranate farming. 

 Enhances pomegranate yield and quality through precise 
monitoring and analysis. 

 Promotes sustainable agricultural practices in 
pomegranate cultivation. 

The rest of the article is organized as follows: Section II 
provides the methodology of how UAVs operate, particularly 
for agricultural applications, and how their built-in sensors 
are utilized for crop management in orchards. It also focuses on 
how the Deep Streaming technique is deployed for 
pomegranate cultivation. Section III shows how the processing 
power of the NVIDIA Jetson GPU is used for the automated 
cultivation of pomegranates. Finally, Section IV summarizes 
the key findings of the work with the conclusion of the 
proposed work. 
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II. METHODOLOGY 

This section focuses on the methodology used for the 
investigation in terms of data collection, camera analysis and 
the implications and association of deep streaming framework 
applied over the UAV data of pomegranate cultivation. In Fig. 
1, the present investigation illustrates a revolutionary approach 
to enhance pomegranate farming that combines deep-stream 
algorithms and drone technology. The drone system has four 
specialized cameras: a LiDAR camera, a thermal camera, an 
optical RGB camera, and a multi-spectral camera. These 
cameras are effective tools for comprehensive data gathering 
and analysis throughout the pomegranate growing cycle. For 
yield estimation, fertilizer  management, irrigation mapping, 
and plant health assessment,     the thermal camera is crucial. By 
detecting variations in plant temperature, the thermal camera 
helps identify stressed or ill plants and allows for quick 
response. The optical RGB camera’s capability to monitor 
vegetation indices, assess fruit quality, and detect weeds 
further enhances crop management techniques [37]. The multi-
spectral and hyperspectral cameras allow for the identification 
of harmed crops and the examination of their biological and 
physical characteristics. The multi-spectral analysis enables 
early diagnosis of agricultural diseases, enabling customized 
treatments. The LiDAR camera aids researchers in their 
understanding of how plants grow by measuring plant height, 
monitoring crop phenology, and looking at water flow patterns. 
The NVIDIA Jetson GPU and deep stream algorithms are 
employed to process the camera data. This processing pipeline 
allows for real-time analysis of the gathered data, giving 
predictive insights into several essential aspects of pomegranate 
cultivation. The use of technology facilitates crop health 
monitoring, evaluates soil and plant moisture, establishes the 
demand for fertiliser, finds weeds, and scans for disease and crop 
damage indicators [38]. Overall, this work provides an 
integrated approach to pomegranate cultivation that combines 
deep stream algorithms and drone technology to enable 
accuracy and data-driven decision-making. 

A. Brief Mechanism of Drones and its Associated Sensors 

UAVs are becoming indispensable instruments in 
contemporary agriculture, especially for precision farming. 
Multiple sensors can be carried by them, enabling thorough 
monitoring and analysis of crop productivity, growth, and 

health. Here, we go over how drones work and how their built-
in sensors are utilized for crop management in orchards. 

UAVs used in agriculture could be integrated with multiple 
essential parts to enable them to carry out certain jobs 
efficiently [39]. UAVs can hover, navigate, and gather data 
over wide distances because of the flying system’s stability and 
maneuverability, which is provided by a lightweight frame, 
motors, propellers, and battery. GPS, accelerometers, 
gyroscopes, and magnetometers are examples of navigation and 
control components that provide precise navigation and flight 
path maintenance, enabling pre-planned missions and real-time 
modifications. The communication system enables remote 
operation through ground control stations and real-time data 
transfer via radio frequencies or cellular networks [40]. 

UAVs’ sensors greatly increase their efficacy in precision 
agriculture because each one gives vital information for 
thorough crop management. For example, infrared radiation 
released by plants fluctuates with temperature and may be 
detected by thermal cameras [41]. This radiation can be used to 
identify stress factors such as pest infestation, disease, or water 
shortage. Thermal cameras are used in agricultural applications 
to detect temperature differences within the crop canopy. This 
allows for the monitoring of general health, early identification 
of plant stress, and watering requirements. With the aid of these 
cameras, temperature fluctuations inside the crop canopy can be 
identified, facilitating the early identification of plant stress, the 
need for irrigation, and general health monitoring. To create 
high-resolution images of the crop canopy, optical RGB 
cameras collect visible light in the red, green, and black 
wavelengths [42]. These images are then used to monitor fruit 
quality, identify weeds, and assess vegetation indices, which 
helps farmers make decisions about crop health and 
management techniques. 

Beyond the visible spectrum, multispectral and 
hyperspectral cameras record information in a variety of 
wavelengths, such as ultraviolet and near-infrared. To provide 
comprehensive spectral information necessary for identifying 
certain crop situations including nutrient deficits, disease signs, 
and physiological stress, hyperspectral cameras gather data in 
hundreds of small spectral bands. Precision medicine and 
targeted interventions are made possible [43]. 

 

Fig. 1. Core functional modules in the proposed methodology. 
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Fig. 2. Thermal imaging for plant health assessment. 

LiDAR cameras measure plant height, track crop 
phenology, examine water flow patterns, and produce precise 
3D maps of the landscape and vegetation structure using laser 
pulses. Understanding the dynamics of plant growth, improving 
irrigation techniques, and improving crop management 
generally all depend on this data. 

Yield prediction integrates data from thermal, RGB, and 
multi-spectral sensors to estimate possible yields [44]. Water 
use is optimized by irrigation management through the use 
of thermal and LiDAR data. Through multispectral and 
hyperspectral analysis, health monitoring identifies nutritional 
inadequacies and early indicators of disease. Using accurate 
data, resource optimization effectively handles inputs such as 
fertilizers. With the help of these cutting-edge technologies, 
orchard crop management, and productivity may be fully 
monitored and managed, improving agricultural sustainability 
and production. 

B. Thermal Camera Analysis 

To evaluate the health of pomegranate plants, identify stress, 
and track temperature changes, thermal images of the plants 
should be taken. Maps of temperature distribution made from 
thermal data can be used to find possible problem locations. 
Use the heat data to calculate yields, control fertilizer 
applications, and map irrigation. Technological developments 
have made it possible for creative methods of crop management 
and optimization in modern agriculture [45]. Utilizing thermal 
imaging to evaluate plant health, identify stress, and track 
temperature swings in pomegranate plants is one such ground-
breaking method. Farmers and agronomists can enhance 
irrigation techniques, control fertilizer use, and predict crop 
production by utilizing the potential of thermal data. 

1) Thermal imaging for plant health assessment: 

Radiometric temperature readings from pomegranate plants are 

obtained using thermal cameras. Stressed or ill plants show 

temperature anomalies, whereas healthy plants have rather 

consistent thermal fingerprints. Areas of possible concern can 

be located by analyzing these thermal images, enabling 

focused intervention and mitigation as shown in Fig. 2. 

2) Stress detection and temperature variations: Thermal 

imaging is a non-invasive method for identifying signs of stress 

in pomegranate trees. Temperature changes inside the plant 

canopy can emphasize stress brought on by things like a lack 

of water, an unbalanced diet, or pest infestations as shown 

in Fig. 3. Knowing these stress patterns allows for early 

detection and prompt intervention. 

3) Temperature distribution maps for precise insights: The 

generation of maps showing the spread of temperature in 

pomegranate orchards is made easier by processing the thermal 

data that was gathered. These maps give farmers a visual 

representation of temperature differences throughout the entire 

field, allowing them to locate “hot” or “cold” areas that might 

be signs of unequal irrigation, drainage problems, or other 

specific problems as shown in Fig. 4. 

4) Accurate irrigation mapping: Thermal data reveals 

regions with high temperatures, indicating potential water 

stress, which aids in precise irrigation mapping. Farmers can 

adjust their watering schedules to maintain consistent moisture 

distribution and reduce water-related stressors by associating 

these temperature differences with particular irrigation zones as 

shown in Fig. 5. 

 

Fig. 3. A Sample stress detection in an agricultural land observed through 

thermal camera. 

 

Fig. 4. Temperature distribution maps for precise insights. 

C. Optimal Fertilizer Management 

The use of thermal imaging helps handle fertiliser more 
effectively. Temperature variations can reveal changes in the 
absorption and utilization of nutrients. Farmers may 
strategically apply fertilizers where they are most required, 
saving waste and fostering healthy development, by merging 
heat data with soil nutrient analysis. 

1) Yield estimation and harvest planning: More precise 

yield estimation is made possible by the thermal data insights. 

Variations in fruit development and maturation may be 

correlated with anomalies in temperature distribution. Farmers 

can predict production swings and adjust their harvest date 

by taking into account this information. Precision agriculture 

has essentially advanced thanks to the use of thermal imaging 
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technology in pomegranate farms. Farmers are better able to 

proactively solve problems, maximize resource use, and 

improve the general health of their crops thanks to the capacity 

to record, process, and analyze thermal data. The agricultural 

sector may get closer to sustainable practices by utilizing 

thermal insights for irrigation, fertilization, and yield 

management. These techniques maximize productivity while 

reducing their negative effects on the environment. The 

incorporation of thermal imaging into agricultural practices is 

poised to revolutionize how we grow and maintain our crops as 

technology advances. 

 

Fig. 5. Accurate irrigation mapping through drone-mounted thermal 

cameras. 

2) Optical RGB camera analysis: Utilizing RGB (Red-

Green-black) photography in modern agriculture has become a 

potent and adaptable tool for a variety of tasks, from 

determining weed presence to evaluating fruit quality and 

vegetation health [46]. Researchers and farmers may improve 

crop management tactics, quantify key indices, and make 

educated decisions to maximize production and sustainability 

by utilizing modern image processing tools. 

3) Quantify vegetation indices for health assessment: 

Important vegetation indices, like the widely used NDVI 

(Normalised Difference Vegetation Index), can be calculated 

using RGB photos. By comparing the reflectance of visible red 

and near-infrared light, NDVI acts as a quantitative indicator 

of plant health. This knowledge makes it easier to spot possible 

stressors and allows for tailored crop-growth-promoting actions 

as shown in Fig. 6. 

4) Assessing fruit quality with image analysis: Color, size, 

and shape are some examples of fruit quality factors that 

can be evaluated using RGB imaging. Farmers can assess fruit 

maturity and harvest readiness by examining the color 

spectrum. In addition to quantifying variations in fruit size and 

form, image processing algorithms may also grade and 

categorize products based on their quality as shown in Fig. 7. 

5) Weed detection and classification: It is possible to use 

the RGB imagery to look for weeds in crop fields. For 

advanced algorithms to distinguish between crops and 

undesirable vegetation, color, shape, and texture features are 

examined. Farmers can develop tailored weed control methods 

and increase yields by minimizing resource competition by 

automating weed detection as shown in Fig. 8. 

 

Fig. 6. Vegetation indices for health assessment. 
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Fig. 7. Image analysis of pomegranate for fruit quality assessment. 

6) Color analysis for pest and disease identification: When 

it comes to identifying pests and illnesses that impact crops, 

RGB images can be useful. Leaf color and pattern changes may 

be a sign of an infection or an infestation. 

 

Fig. 8. Weed detection for optimal irrigation. 

 

Fig. 9. Color analysis for pest and disease identification. 

 

Fig. 10. Multi-spectral and hyper-spectral camera analysis. 

Potential problems can be identified early by the analysis 
of RGB images, allowing for prompt intervention and loss 
mitigation. High-resolution maps that highlight spatial 
variations within fields can be made using remote sensing 
technology in conjunction with RGB images. These maps can 
be used to direct precision farming techniques, enabling the 
targeted use of resources like water, fertilizer, and pesticides. 
RGB photos can be used to train machine learning algorithms 
to recognize patterns and features as shown in   Fig. 9. 

It is possible to fine-tune these algorithms to recognize 
particular plant species, weed varieties, or disease symptoms. 
The effectiveness and precision of decision-making in crop 
management are improved by these skills. Agriculture 
transforms from reactive to proactive practices with the 
integration of RGB photography and image processing 
technology [47]. Farmers can make data-driven decisions that 
optimize resource use, decrease waste, and advance sustainable 
agricultural practices thanks to the capacity to measure indices, 
assess quality, detect weeds, and identify problems in real time. 
Analyse biological and physical traits while collecting data in 
the multi- and hyper-spectral range to spot disease symptoms. 
Use spectral analysis to find irregularities in plant reflectance 
patterns that could be signs of stress or disease [48]. Create 
machine learning models for spectral signature-based illness 
classification as shown in Fig. 10. 

D. LiDAR Camera Analysis 

Obtain LiDAR data to assess water flow patterns, track 
agricultural phenology, and evaluate plant height. 

Create accurate digital elevation models (DEMs) and three-
dimensional representations of the pomegranate orchards using 
LiDAR data processing. To measure agricultural growth stages, 
gather data on plant height and examine height changes over 
time as shown in Fig. 11. 

 

Fig. 11. Drone-mounted LiDAR camera analysis of agricultural lands. 
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E. Data Processing and Deep Stream Algorithm 

Send the cameras’ acquired data to the NVIDIA Jetson GPU 
so it can be processed. Use deep stream algorithms to 
analyze all camera data streams in real-time [49]. Use image 
recognition, machine learning, and pattern recognition 
techniques to forecast crop health, soil dryness, fertilizer needs, 
the presence of weeds, and instances of crop damage and 
disease. The object detection method is known as YOLOv5, or 
“You Only Look Once version 5,” is recognized for its 
quickness and precision. It is made to recognize and locate 
several items simultaneously in a video or picture stream. The 
“Deep Stream” variation is especially well suited for 
applications like monitoring agricultural fields because it 
concentrates exclusively on processing continuous data streams 
effectively. The earlier YOLOv3, YOLOv4, and other networks 
served as the foundation for the development of the YOLOv5 
network. YOLOv5 offers the advantages of being quicker and 
more precise than prior-generation networks. An adaptable 
anchor box and adaptive picture scaling are two examples. 
These methods efficiently decrease the amount of network 
computation by calculating the scaling factor using the ratio of 
the current picture size, W to H, and then obtaining the filled 
scaling size. The backbone network and neck layer of YOLOv5 
are mapped to the cross-stage partial (CSP) concept of 
YOLOv4, which improves the capacity of network feature 
fusion in terms of feature extraction. 

The four network models in YOLOv5 are categorized 
as s, m, l, and x, according to smallest to biggest. The network’s 
breadth and depth are the primary areas of variation in size. 
The lightest among them is YOLOv5. The primary parts of the 
network are the input, neck, head, and backbone. The Mosaic 
data improvement module is used in the input to enrich 
datasets. To speed up network training, the backbone 
leverages the CSPDarknet53 backbone network to extract rich 
information from input photos, such as the focus module and 
the spatial pyramid pooling (SPP) module neck core fuses 
feature information at various sizes using feature pyramid 
network (FPN) and path aggregation network (PAN) 
architectures. Concat later connects the top-down and bottom-
up feature maps, enabling the feature fusion of various deep and 
shallow scales. This enhances the network’s expressive 

capacity. The YOLOv5 detecting structure is the head. Conv 
produces feature maps in three sizes: big, medium, and tiny. 
These sizes correlate to the targets that are detected—small, 
medium, and large. YOLOv5 increases the precision of network 
prediction based on NMS by using three loss functions to 
compute the location, confidence, and classification losses. The 
foundation of this investigation is the YOLOv5s network. Fig. 
12 illustrates the network structure of YOLOv5. 

1) Object detection and monitoring: It is possible to 

train the YOLOv5 Deep Stream Algorithm to recognise and 

differentiate a variety of components important to pomegranate 

agriculture, including pomegranate plants, fruits, and potential 

pests [50]. By implementing this method in the field, it is 

possible to monitor the crop in real time and identify problems 

like pest infestations, disease outbreaks, or nutrient deficits 

early on. 

2) Precise yield estimation: The system helps with yield 

estimation by precisely classifying and counting pomegranate 

fruits. Farmers can maximize overall productivity and resource 

management by using this data to make informed decisions 

about harvesting schedules, labor allocation, and post-harvest 

logistics [51]. 

3) Weed detection and management: Pomegranate yield 

can be severely impacted by weed competition. The ability to 

recognize objects with the YOLOv5 Deep Stream Algorithm 

also allows for the classification and identification of weeds in 

pomegranate orchards. Utilizing these details makes it easier to 

deploy targeted weed control strategies, reduce resource waste, 

and increase crop yield. 

4) Resource allocation and sustainability: Real-time 

insights provided by the algorithm provide a foundation for 

effective resource management. Farmers can use precision 

irrigation strategies by recognizing places that need attention or 

stress, including dry areas. This encourages the use of 

sustainable agricultural techniques while simultaneously 

conserving water [52]. 

 

Fig. 12. Block diagram of YOLOv5 used in the experimentation. 
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TABLE II. DEEP STREAM ALGORITHM OUTPUT FOR VARIOUS APPLICATIONS 

Application Sample Output 

Predict crop health 

 

Soil dryness 

 

Fertilizer requirements 

 

Weed presence 

 

Crop damage and disease 

 
 

5) Disease and pest management: Effective treatment of 

illnesses and pests depends on early detection. The YOLOv5 

Deep Stream Algorithm can quickly recognize visual signs 

linked to a reduction in plant health, enabling prompt action. By 

controlling the spread of illnesses, farmers can cut back on 

the requirement for heavy pesticide use. 

6) Integration with automation and drones: Drones with 

cameras can be integrated with the YOLOv5 Deep Stream 

Algorithm. With the help of this integration, drones may fly 

over the orchard by themselves while taking pictures in real-

time and sending them to the algorithm for quick analysis. This 

method offers an unmatched vantage point for effectively 

monitoring vast agricultural fields as shown in Table II. 

7) Prediction and decision support: Create forecasts and 

insights for various pomegranate agriculture characteristics 

based on the processed data. Create a dashboard or user-

friendly interface so that farmers may get real-time data and 

advice. Give specific advice on how to manage pests and 

diseases, apply fertilizer, and schedule irrigation, among other 

cultivation techniques [53]. 

8) Validation and refinement: By gathering real-world data 

and making field observations, confirm the veracity of 

predictions and advice. Based on ongoing learning from field 

data and farmer comments, improve the deep stream algorithms 

[54]. Improve the process iteratively depending on practical 

implementation issues and real-world performance. 

9) Scaling and adoption: Increase the automated system’s 

coverage area to larger pomegranate orchards and perhaps 

modify the approach for use with other crops. Educate farmers 

on how to use the automated system and how to understand 

the forecasts for wise decision-making. By supplying precise, 

timely, and data-driven insights that can improve crop yield, 
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optimize resource use, and promote sustainable agricultural 

practices, the integration of drone technology and deep-stream 

algorithms into pomegranate cultivation has the potential to 

transform conventional farming practices. 

Our research employs a combination of advanced UAV-
based cameras to enhance agricultural monitoring and 
outcomes, effectively addressing the specific challenges of each 
camera type. Thermal cameras, which detect infrared radiation 
to measure temperature variations and identify plant stress, face 
issues such as temperature sensitivity, lower resolution, and 
frequent calibration needs. Optical RGB cameras capture high-
resolution images to analyze vegetation indices, fruit quality, 
and weed detection but are impacted by varying lighting 
conditions, large data volumes, and subtle color 
differentiation challenges. Multi-spectral cameras provide 
detailed insights into crop health and disease but are costly, 
complex, and sensitive to environmental factors like cloud 
cover. LiDAR cameras generate high-resolution 3D maps for 
measuring plant height and analyzing water flow patterns but 
require significant data processing power, are expensive, and 
struggle with dense vegetation obstructing laser pulses. Our 
approach integrates deep learning algorithms and NVIDIA 
Jetson GPU for data processing, addressing these challenges 
and enabling real-time analysis to improve data accuracy and 
reliability. By leveraging the strengths and mitigating the 
limitations of each camera, we facilitate precise crop 
management decisions, enhancing yield and sustainability in 
pomegranate orchards. 

III. RESULTS AND DISCUSSIONS 

The automated cultivation of pomegranates using deep-
stream algorithms and drone technology has produced 
encouraging results, suggesting a revolutionary method for 
modern agriculture. Combining the processing power of the 
NVIDIA Jetson GPU with the capabilities of a drone with 
four specialized cameras—thermal, optical RGB, multi-
spectral, and LiDAR—has allowed for comprehensive data 
collection, real-time analysis, and predictive insights in various 
pomegranate cultivation-related areas. 

TABLE III. DATA COLLECTION WITH ACCURACY 

Camera Data Collection 
Accuracy 

(%) 

Thermal camera 

Plant health inspection, 
Irrigation mapping, fertilizer 
management, yield 
estimation 

95 

Optical RGB camera Vegetation index 91 

Multi-spectral and hyper-
spectral cameras 

Biological and physical 
characteristics, diseased crop 

93 

LiDAR camera 
Plant height, water flow, 
crop phenology 

95 

TABLE IV. PLANT HEALTH INSPECTION AND STRESS DETECTION 

Crop Focus ANN CNN ANFIS YOLO 

Plant Health Inspection 75 82 88 95 

Stress Detection 76 81 85 93 

A. Data Collection and Analysis 

The pomegranate growth cycle has been thoroughly 

investigated using drones equipped with various cameras. To 
properly detect stressed areas and enable focused actions, the 
thermal camera was essential for plant health inspection. To 
improve overall crop management techniques, the optical RGB 
camera effectively measured vegetation indices, assessed fruit 
quality and found the presence of weeds [55]. The multi-
spectral and hyper-spectral cameras were excellent at spotting 
damaged crops and examining biological and physical traits, 
which helped to identify and treat diseases early on. Furthering 
our understanding of crop growth dynamics, the LiDAR camera 
produced accurate measurements of plant height, tracked crop 
phenology, and mapped water flow patterns as shown in Table 
III. 

B. Deep Stream Algorithm Processing 

The automated pomegranate production system showcased 
notable progress in data-driven precision farming by using 
deep-stream algorithms and drone technology. Together with 
the NVIDIA Jetson GPU’s processing power, the four 
specialized cameras—thermal, optical RGB, multi-spectral, 
and LiDAR—produced extensive data collecting and real-time 
analysis. The findings are displayed about important crop 
management topics [56]. Plant Health Inspection and Stress 
Detection: To inspect the health of plants, the thermal camera 
was essential in precisely locating stressed regions. The ability 
to precisely identify stressed or ill plants was made possible 
by real-time data processing, which made it easier to detect 
temperature differences [57]. Plant health was improved by the 
proactive actions made possible by this capacity as shown in 
Table IV. 

1) Vegetation indices and fruit quality assessment: Fruit 

quality was evaluated and vegetation indices were 

successfully measured using the optical RGB camera. The 

technology provided insights into the health of the vegetation 

by quantifying metrics like NDVI using image processing 

techniques [58]. Evaluations of the quality of the fruit and 

the identification of weeds enhanced cultivation techniques, 

increasing both production and quality as shown in Table V. 

TABLE V. VEGETATION INDICES AND FRUIT QUALITY ASSESSMENT 

Crop Focus ANN CNN ANFIS YOLO 

Vegetation health 81 85 89 94 

Fruit quality assessments 78 85 88 95 

Weed detection 71 76 84 89 

TABLE VI. DISEASE DETECTION AND CHARACTERIZATION 

Crop Focus ANN CNN ANFIS YOLO 

Disease Detection 78 85 91 95 

Biological Characterization 74 78 81 87 

Physical Characterization 75 79 82 89 

2) Disease detection and characterization: Analyzing 

biological and physical properties and identifying damaged 

crops were made possible by the use of multi- and hyper-

spectral cameras [59]. Early disease detection by the system 

enabled targeted treatments, reducing the possibility of output 

losses and enhancing crop health overall as shown in Table VI. 
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3) LiDAR-Based plant height and water flow analysis: 

Important information on plant height, crop phenology, and 

water flow patterns was provided by the LiDAR camera. This 

data improved knowledge of the dynamics of growth and led to 

optimal water use [60]. Precise assessments of plant height 

enabled the tracking of agricultural phenology, resulting in 

enhanced cultivation tactics as shown in Table VII. 

4) Real-time predictive insights: Real-time data analysis 

was made possible by the combination of deep stream 

algorithms and the NVIDIA Jetson GPU. Quick predictions 

were produced about crop health, vegetation and soil dryness, 

fertilizer needs, weed presence, and incidences of crop damage 

and illness [61]. This reduced possible hazards, maximized 

resource utilization, and enabled quick decision-making as 

shown in Table VIII. 

All four cameras’ data could be processed and analyzed 
in real-time thanks to the NVIDIA Jetson GPU and deep stream 
algorithms. This processing pipeline played a key role in 
providing forecasts and insights for important pomegranate 
cultivation issues. The system accurately forecasted fertilizer 
needs, analyzed soil and vegetation dryness, tracked weed 
infestations, and quickly picked up instances of crop damage 
and illness [62]. Real-time data analysis enabled prompt 
decision-making, which ultimately optimized resource use and 
increased crop output as shown in Table IX and Fig. 13. 
Subsequently, performance analysis over different applications 
for evaluating the effectiveness of the proposed system is 
presented in Table X. 

The automated system’s prognostic insights greatly aided 
farmers in making well-informed decisions. The system’s 
capacity to suggest ideal irrigation plans, exact fertilizer 
dosages, and prompt disease treatment techniques resulted in 
increased resource efficiency and less environmental impact 
as shown in Table IX and Fig. 14 - 17. Through the use of 
spectral analysis, growers were able to identify diseases and 
weeds early and take preventative action, potentially reducing 
yield losses [63]–[67]. Although the results are encouraging, 
certain difficulties were experienced when the automated 
system was put in place. For precise forecasts, camera 
calibration and maintaining consistent data quality are still 
essential. Integration of weather and climatic data may 
further improve the system’s accuracy. Additionally, the 
system may operate differently in various geographic and 
environmental settings, necessitating ongoing improvement 
and adaptation. 

C. Discussion 

The results underscore the transformative potential of 
integrating drone technology and deep-stream algorithms in 
pomegranate cultivation. The system not only automates data 
collection but also provides actionable insights across multiple 
facets of cultivation, empowering farmers to make informed 
decisions. 

The following discussions delve into the broader 
implications and considerations: 

1) Precision agriculture for sustainable farming: The 

automated system minimizes its impact on the environment 

while optimizing resource utilization per precision agricultural 

principles. The technology helps to promote effective and 

sustainable farming practices by accurately adjusting the 

irrigation, fertilization, and pest control strategies [68]. 

TABLE VII. LIDAR-BASED PLANT HEIGHT AND WATER FLOW 

ANALYSIS 

Crop Focus ANN CNN ANFIS YOLO 

Plant Height 81 82 85 92 

Crop Phenology 78 82 84 91 

Water Flow Patterns 81 82 85 86 

TABLE VIII. REAL-TIME PREDICTIVE INSIGHTS 

Crop Focus ANN CNN ANFIS YOLO 

Crop Health 81 85 88 93 

Vegetation 82 84 86 89 

Soil Dryness 74 78 82 88 

Fertilizer Requirements 71 75 85 91 

Weed Presence 72 74 86 87 

Crop Damage 78 81 84 92 

TABLE IX. RESULT COMPARISON OF PROPOSED SYSTEM WITH 

EXISTING METHOD 

Parameters (%) MDC MLP SVM ANFIS YOLO 

Accuracy 70 75 80 85 95 

Sensitivity 72 77 81 83 94 

Specificity 69 73 85 81 96 

Precision 74 76 79 84 91 

 

Fig. 13. Result comparison of proposed system with existing method. 

TABLE X. PERFORMANCE ANALYSIS FOR VARIOUS APPLICATIONS 

Crop Focus 
Accuracy 

(%) 
F1 score 

(%) 
Recall (%) 

Precision 
(%) 

Predict crop health 95 93 91 96 

Soil dryness 88 87 85 84 

Fertilizer 
requirements 

81 83 81 82 

Weed presence 91 86 90 88 

Crop damage and 
disease 

94 91 93 92 
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Fig. 14. Performance analysis of plant health inspection and stress detection. 

 
Fig. 15. Performance analysis of vegetation indices and fruit quality 

assessment. 

 
Fig. 16. Performance analysis of disease detection and characterization. 

 

Fig. 17. Performance analysis of real-time predictive insights. 

2) Early disease detection for crop protection: A 

breakthrough has been made with the use of spectral analysis 

for early disease identification. Farmers who recognize disease 

symptoms early on can take prompt action to stop the spread 

of the illness and maintain crop quality and output. 

3) Scalability and adaptability: Although the system 

appears promising, it is important to take into account its 

scalability and adaptation too many environmental situations. 

Continuous development of calibration processes, data quality 

control, and system robustness are necessary to guarantee 

consistent performance in a variety of agricultural contexts. 

The accuracy of disease identification and prediction 
modeling can be considerably improved in the future thanks 
to developments in machine learning and AI algorithms. An 
expanded perspective on crop health trends may be obtained 
by combining historical data and satellite photography. 
Collaboration with extension agencies and agricultural 
professionals can help to better adapt the system to local 
farming practices and spread its benefits [69]. Pomegranate 
cultivation could transform due to the merging of drone 
technology and deep-stream algorithms. The automated system 
provides real-time insights and suggestions for crop health, 
resource management, and disease identification by merging 
data from thermal, optical RGB, multi-spectral, and LiDAR 
cameras and utilizing the processing capability of the 
NVIDIA Jetson GPU. While there are still issues, the system 
represents a big step towards data-driven, sustainable 
agriculture by enabling farmers to optimize pomegranate yield 
and quality [70]. Further developments and widespread 
acceptance in contemporary agriculture are anticipated as a 
result of ongoing research and development in this field. The 
following investigations need to concentrate on improving the 
algorithms, adding more environmental factors, and broadening 
the system’s crop suitability. To guarantee broad acceptance 
and applicability, partnerships with extension agencies and 
agricultural specialists can further customize the system to 
regional farming methods. 
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Conclusively, the automated technique for cultivating 
pomegranates shows promise for transforming conventional 
agricultural methods. This system provides farmers with real-
time information, promotes sustainable agriculture, and 
improves overall crop output and quality by utilizing deep-
stream algorithms, modern cameras, and drone technology. 
This novel strategy will surely advance toward wider 
acceptance and implementation in international agriculture 
with continued study and improvement. 

IV. CONCLUSION 

Integrating drone technology and deep-stream algorithms 
represents a notable breakthrough in modernizing agricultural 
practices, particularly in pomegranate cultivation. This study 
showcases a thorough and evidence-based approach to farming, 
employing advanced technology such as a drone equipped with 
a thermal camera, optical RGB camera, multi-spectral camera, 
and LiDAR camera. These cutting-edge tools are powered by 
the computational capabilities of the NVIDIA Jetson GPU, 
enabling precise data collection and analysis. This approach 
has demonstrated its effectiveness in improving different 
aspects of pomegranate farming. It has been used to evaluate 
plant health, map irrigation, manage fertilizer usage, and 
calculate yields. As a researcher, I have observed significant 
advancements in the optical RGB camera’s capabilities. It 
has proven to be a valuable tool for analyzing vegetation 
indices, assessing fruit quality, and detecting weeds. These 
improvements have positively impacted decision-making, 
leading to better crop management practices and, ultimately, 
higher yields. In this field, multi-spectral and hyperspectral 
cameras have revolutionized how we detect crop diseases, 
assess damage, and respond proactively. Furthermore, the 
LiDAR camera has provided valuable insights into growth 
dynamics and resource utilization, leading to more sustainable 
farming practices. 

Nevertheless, in light of these advancements, it is essential 
to consider the limitations associated with this approach 
carefully. The system’s effectiveness relies heavily on the 
availability and quality of advanced drone equipment, which 
may not be easily accessible to all farmers, especially in 
regions with limited resources. This hinders the widespread 
adoption of the technology and can potentially create 
disparities in agricultural productivity. Furthermore, processing 
extensive datasets in real time presents significant 
computational challenges, particularly in environments with 
limited resources. These constraints emphasize the importance 
of conducting additional research to enhance the system’s 
accuracy, scalability, and adaptability to different 
environmental conditions. 

Further research should prioritize overcoming these 
limitations by creating more affordable drone solutions and 
enhancing the computational efficiency of deep-stream 
algorithms. Establishing collaborations between scientists, 
agricultural experts, and farmers will be essential to 
customizing the system to local conditions and promoting its 
wider use. By addressing these obstacles, this groundbreaking 
method holds promise for substantially impacting precision 
agriculture and aiding in developing more sustainable and 
efficient farming techniques. 
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comprehensive review of cold chain logistics for fresh agricultural 
products: Current status, challenges, and future trends,” Trends in Food 
Science & Technology, vol. 109, pp. 536–551, 2021. 

[56] R. H. Heim, I. J. Wright, P. Scarth, A. J. Carnegie, D. Taylor, and 
J. Oldeland, “Multispectral, aerial disease detection for myrtle rust 
(austropuccinia psidii) on a lemon myrtle plantation,” Drones, vol. 3, 
no. 1, p. 25, 2019. 

[57] S. Khanal, J. Fulton, and S. Shearer, “An overview of current and 
potential applications of thermal remote sensing in precision agriculture,” 
Computers and electronics in agriculture, vol. 139, pp. 22–32, 2017. 

[58] W.-C. Wu and E. C. Wong, “Feasibility of velocity selective arterial 
spin labeling in functional mri,” Journal of Cerebral Blood Flow & 
Metabolism, vol. 27, no. 4, pp. 831–838, 2007. 

[59] Y. Li, C. Guo, J. Yang, J. Wei, J. Xu, and S. Cheng, “Evaluation of 
antioxidant properties of pomegranate peel extract in comparison with 
pomegranate pulp extract,” Food chemistry, vol. 96, no. 2, pp. 254–260, 
2006. 

[60] T. P. Magangana, N. P. Makunga, O. A. Fawole, and U. L. Opara, 
“Processing factors affecting the phytochemical and nutritional properties 
of pomegranate (punica granatum l.) peel waste: A review,” Molecules, 
vol. 25, no. 20, p. 4690, 2020. 
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