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Abstract—Chronic Venous Insufficiency (CVI) is a widespread 

condition marked by diverse venous system irregularities 

stemming from occlusion and varicosities. Factors like family 

history and lifestyle choices amplify CVI's economic 

consequences, emphasizing the need for proactive measures. The 

sedentary lifestyle of many individuals can contribute to various 

diseases, including CVI. Yoga is now endorsed as a multifaceted 

exercise to alleviate CVI symptoms, offering a holistic approach 

and complementary therapy for diverse medical conditions. This 

study developed a method for evaluating and classifying symptoms 

associated with varicose veins, utilizing the Venous Clinical Score 

(VCSS) data. A specific emphasis was placed on investigating the 

impact of yoga on these symptoms, and a comprehensive 

performance assessment was conducted based on data obtained 

from a cohort of 100 patients. This paper achieves optimal 

performance by employing the Gaussian Process Classifier (GPC) 

along with two optimizers, namely the Crystal Structure 

Algorithm (CSA) and the Fire Hawk Optimizer (FHO). The 

results indicate that in predicting VCSS-Pre (reflecting symptoms 

before engaging in yoga exercises), the GPFH exhibited superior 

performance with an F1-score of 0.872, surpassing the GPCS, 

which attained an F1-score of 0.861 by almost 1.26%. 

Additionally, the prediction for VCSS-1, reflecting symptoms 

after one month of yoga practices, revealed the GPFH 

outperforming the GPCS with respective F1-score values of 0.910 

and 0.901. 

Keywords—Chronic venous insufficiency; yoga; Gaussian 

Process Classifier; Crystal Structure Algorithm; Fire Hawk 
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I. INTRODUCTION 

Prolonged sitting, prevalent in contemporary office 
environments that have shifted from active to passive, poses a 
risk for cardio-metabolic diseases, type 2 diabetes, obesity, 
coronary artery disease, musculoskeletal conditions, certain 
cancers, and early death [1], [2]. Sedentary behavior, considered 
by an energy expenditure of ≤ 1.5 𝑀𝐸𝑇𝑠  while sitting or 
reclining, is a substantial issue in modern workplaces [3]. 
Extended periods of sitting have been correlated with elevated 
risks of obesity and diabetes, with studies indicating a 5% rise 
in obesity risk and a 7% increase in diabetes risk for every two-
hour increase in sitting time [4]. Moreover, prolonged sitting is 
linked to a heightened possibility of musculoskeletal disorders, 
particularly low back pain [5]. Other research has demonstrated 
that occupations requiring significant periods of sedentary 
behavior are associated with an increased risk of developing 

certain types of cancers, such as endometrial, prostate, and 
colorectal cancer [6], [7]. 

Inactive sitting behavior is closely associated with the risk of 
cardiovascular disease (CVD), irrespective of one's level of 
physical activity. This association arises from the impact of 
sedentary behavior on crucial inflammatory, hemodynamic, and 
metabolic processes, leading to compromised arterial health. 
Consequently, these vascular issues directly and indirectly 
contribute to the development of cardiovascular disease [8], [9]. 
Some studies have revealed a noteworthy correlation between 
the duration of individuals' sitting hours in the workplace and 
the incidence of Chronic Venous Insufficiency (CVI). This 
association underscores a substantial escalation in the risk of 
contracting such conditions [10], [11], [12]. 

CVI is widespread in both developing and developed nations 
[13]. As outlined in the American Venous Forum's consensus 
statement, CVI involves various morphological and practical 
irregularities in the venous system, from telangiectasias to 
venous ulcers [14]. The recognition of CVI lacks a specific date, 
but the historical understanding of venous insufficiency can be 
traced to ancient times when Egyptians, Greeks, and Romans 
described similar symptoms. In the 17th century, William 
Harvey, an English physician, significantly advanced the 
understanding of the circulatory system, though the term 
"Chronic Venous Insufficiency" is a more recent medical 
terminology. The precise historical origin of this term is unclear, 
yet the evolving comprehension and management of venous 
insufficiency have shaped current diagnostic criteria and 
treatment approaches [15], [16]. 

CVI refers to pathological changes in the lower extremities' 
tissues resulting from anomalies in venous blood flow. These 
glitches encompass popliteal or iliofemoral vein occlusion, 
incompetence, and varicosities, mainly in the greater saphenous 
system associated with valvular leakage or abnormal 
arteriovenous communications. In some cases, chronic venous 
insufficiency can arise from large acquired arteriovenous 
fistulae, certain congenital anomalies, or tumors of the blood 
vessels [17], [18]. CVI risk factors encompass factors such as 
family history, aging, long-standing, obesity, an inactive 
routine, smoking, lower extremity trauma, previous venous 
thrombosis, the existence of an arteriovenous shunt, high 
estrogen states, and pregnancy [19], [20], [21]. The economic 
consequences of CVI are evident through increased health care 
costs, potential productivity loss due to symptoms such as leg 
pain and swelling, and the potential threat of disability leading 
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to unemployment. These challenges have a double effect on 
individuals and society in general. Implementing effective 
preventive measures, timely interventions, and creating 
supportive facilities in the workplace appear as central strategies 
for reducing the economic burden associated with CVI [22], 
[23]. 

Diagnosing CVI relies on a comprehensive assessment 
encompassing medical history, observed signs and symptoms, 
and diagnostic tests. A crucial tool for quantifying disease 
severity is the Venous Severity Scoring system, introduced in 
2000 and refined in 2010 [24]. This system comprises three 
components: The Venous Clinical Severity Score (VCSS), 
which evaluates clinical symptoms; The Venous Segmental 
Disease Score (VSDS), which focuses on segment-specific 
aspects; and the Venous Disability Score (VDS), which provides 
insights into the functional impact of CVI. These scoring 
components collectively enhance the accuracy and thoroughness 
of clinical evaluations for individuals with CVI [25], [26]. 
Physicians use the VCSS to evaluate the impact of venous 
disease on a patient's clinical condition and to make informed 
decisions about appropriate treatment strategies [27]. 

Presently, yoga is recommended as one of the activities to 
alleviate symptoms associated with CVI [28]. Yoga, originating 
in ancient India, is a holistic practice encompassing physical, 
mental, and spiritual disciplines. It combines physical postures, 
breath control, meditation, and ethical principles to promote 
well-being, harmony, flexibility, strength, stress reduction, and 
mental clarity [29], [30]. Yoga is increasingly integrated into 
medical care as a complementary therapy, offering benefits for 
chronic pain, mental health issues, cardiovascular health, cancer 
care, respiratory conditions, and rehabilitation. 

II. OBJECTIVE 

Utilizing a machine learning (ML) approach, this article 
delves into the effectiveness of yoga exercises in alleviating 
symptoms among individuals with chronic venous 
insufficiency. ML, a subset of artificial intelligence (AI), entails 
creating algorithms and statistical models that empower 
computers to execute tasks without explicit programming. It 
constitutes a field of study wherein systems acquire knowledge 
and enhance performance through experience, enabling pattern 
recognition, predictions, and adaptation to new data. These 
algorithms utilize training data to identify inherent patterns, 
enabling them to make decisions or predictions without explicit 
programming for each task. The exploration includes predicting 
and categorizing these symptoms into distinct classifications 
using the Gaussian Process Classifier (GPC). For the ultimate 
optimization, the article incorporates two optimizers, namely, 
the Crystal Structure Algorithm (CSA) and the Fire Hawk 
Optimizer (FHO), to achieve optimal performance. 

III. METHODOLOGY AND MODELING APPROACH 

A. Gaussian Process Classifier (GPC) 

The Gaussian Process (GP) classifier, grounded in Bayesian 
theory, operates by establishing a Gaussian prior distribution 
over the estimated function, represented as 𝑝(𝑥) = 𝑤𝑇𝑥 +  𝑏. 
This initial distribution forms the basis for the probabilistic 
estimation process, and the classifier further incorporates a 

sigmoid function to construct a probabilistic estimator as 
outlined in Eq. (1): 

𝑝(𝑦 = 1|𝑥) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑓(𝑥)) (1) 

Determining the distribution of the latent variable y for a test 
sample involves two key steps. Firstly, it is computed by 
leveraging the posterior over the latent variables, denoted as 
𝑝(𝑓|𝑋, 𝑦). Following this, the second step entails calculating a 
posterior using Eq. (2), which builds upon the outcomes from 
the initial step. This sophisticated method enables the 
probabilistic estimation of the latent variable y, providing 
nuanced insights and accurate predictions. 

𝑝(𝑦 = 1|𝑋, 𝑦, 𝑥) (2) 

𝑋 and 𝑌 denote the training samples, with 𝑥 representing the 
test sample. While conducting this inference is generally a 
complex task, there are existing approximations that tend 
towards an optimal solution with larger datasets. Furthermore, 
kernel versions of this process offer a more straightforward 
approach [31]. 

B. Fire Hawk Optimizer (FHO) 

The FHO algorithm replicates the foraging patterns of Fire 
Hawks, involving the initiation and expansion of fires to capture 
prey. It commences by generating a set of potential solutions (X) 
inspired by the position vectors of fire hawks and their prey. The 
initial positioning of these vectors within the search space is 
determined randomly, imitating the initial locations of fire 
hawks and prey, laying the foundation for subsequent 
optimization stages [32]. 

𝑥 =

[
 
 
 
 
 
𝑥1

𝑥2

⋮
𝑥𝑖

⋮
𝑥𝑛]

 
 
 
 
 

=

[
 
 
 
 
 
 𝑥1

1 𝑥1
2 ⋯ 𝑥1

𝑗
⋯ 𝑥1

𝑑

𝑥2
1 𝑥2

2 ⋯ 𝑥2
𝑗

⋯ 𝑥2
𝑑

⋮
𝑥𝑖

1

⋮
𝑥𝑁

1

⋮
𝑥𝑖

2

⋮
𝑥𝑁

2

⋮
⋯
⋮
⋯

⋮

𝑥𝑖
𝑗

⋮

𝑥𝑁
𝑗

⋮
⋯
⋮
…

⋮
𝑥𝑖

𝑑

⋮
𝑥𝑁

𝑑
]
 
 
 
 
 
 

 , 

{
𝑖 = 1,2,3, … , 𝑁.
𝑗 = 1,2,3, … , 𝑑.

 

(3) 

𝑥𝑖
𝑗(0) = 𝑥𝑖 ,𝑚𝑖𝑛

𝑗
+ 𝑟𝑎𝑛𝑑. (𝑥𝑖 ,𝑚𝑎𝑥

𝑗

− 𝑥𝑖 ,𝑚𝑖𝑛
𝑗

) , {
𝑖 = 1,2,3, … , 𝑁.
𝑗 = 1,2,3, … , 𝑑.

 
(4) 

𝑋𝑖  represents solution candidates, 𝑑  is the problem 

dimension, 𝑁 is the total number of candidates, 𝑥𝑖
𝑗
 is a decision 

variable, 𝑥𝑖
𝑗
(0)  is the initial position, 𝑥𝑖 ,𝑚𝑎𝑥

𝑗
 , 𝑥𝑖 ,𝑚𝑖𝑛

𝑗
 are 

variable bounds, and 𝑟𝑎𝑛𝑑 is a random number (0, 1). The goal 
is to identify Fire Hawks in the search space based on higher 
objective function values. Selected Fire Hawks spread flames 
around prey, aiding hunting. The primary fire, initially used by 
Fire Hawks, is assumed to represent the best global solution. 
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𝐹𝐻 =
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⋮
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 , 𝑖 = 1,2,3, … , 𝑛 (6) 

𝑃𝑅𝑖  signifies the 𝑖𝑡ℎ  fire hawk, and 𝐹𝐻𝑖  denotes the 𝑖𝑡ℎ 
prey, where n is the total number of prey. The subsequent step 
involves calculating the distance between Fire Hawks and their 

prey, with 𝐷𝑙
𝑘  expressed by the following equation: 

𝐷𝑙
𝑘 = √(𝑥2 − 𝑥1)

2 + (𝑦2 − 𝑦1)
2 , {

𝑘 = 1,2,3, … , 𝑛.
𝑙 = 1,2,3, … ,𝑚.

 (7) 

The exploration space's total count of prey and fire hawks is 
denoted by n and m, respectively. The cumulative distance 

among the 𝑖𝑡ℎ Fire Hawk (𝐹𝐻) and prey, represented by 𝐷𝑙
𝑘 , is 

determined by the coordinates (𝑥1 , 𝑦1) for 𝐹𝐻 and (𝑥2 , 𝑦2) for 
prey. The birds establish territories by classifying the nearest 
prey and calculating total distances. Gathering hot coals from 
the main fire to ignite specific spots and engaging in behaviors 
such as using burning sticks from other territories serve as 
position updates in the 𝐹𝐻𝑂′𝑠 primary search loop. 

𝐹𝐻𝑖
𝑛𝑒𝑤 = 𝐹𝐻𝑖 + (𝑟1 × 𝐺𝐵 − 𝑟2 × 𝐹𝐻𝑛𝑒𝑎𝑟), 𝑖

= 1,2,3, … , 𝑛 
(8) 

The primary fire, denoted as 𝐺𝐵, signifies the global best 
solution in the search space. 𝐹𝐻𝑖

𝑛𝑒𝑤  represents the new location 
vector of the 𝑖𝑡ℎ 𝐹𝐻, while 𝑟1 and 𝑟2 are uniformly distributed 
random numbers in the range (0, 1) representing movements 
towards the primary fire and other Fire Hawks' 
territories.  𝐹𝐻𝑛𝑒𝑎𝑟  designates one of the 𝐹𝐻  within the 
exploration space. The algorithm's next stage involves prey 
movements during fires and guiding position updates. An 
equation is employed for these actions during place updates to 
incorporate the importance of territory in animal behavior. 

𝑃𝑅𝑠
𝑛𝑒𝑤 = 𝑃𝑅𝑠 + (𝑟3 × 𝐹𝐻𝑖 − 𝑟4

× 𝑆𝑃𝑖) , {
𝑖 = 1,2,3, … , 𝑛
𝑠 = 1,2,3, … , 𝑟

 
(9) 

The new position vector of the 𝑆𝑡ℎ prey (𝑃𝑅𝑠), surrounded 
by the 𝑖𝑡ℎ  Fire Hawk ( 𝐹𝐻𝑖 ), is represented as 𝑃𝑅𝑠

𝑛𝑒𝑤 . 𝑆𝑃𝑖  
signifies a safe place under the 𝑖𝑡ℎ  Fire Hawk territory. To 
monitor prey movements toward Fire Hawks and their retreat to 
safe zones, 𝑟3 and 𝑟4 are uniformly distributed random integers 
from 0 to 1. Prey may venture into other 𝐹𝐻  territories or 
approach those trapped by flames. 𝐹𝐻 might seek safer areas 
beyond their territory. The provided equations accommodate 
these actions in position updates. 

𝑃𝑅𝑖
𝑛𝑒𝑤 = 𝑃𝑅𝑖 + (𝑟5 × 𝐹𝐻𝐴𝑙𝑡𝑒𝑟 − 𝑟6

× 𝑆𝑃) , {
𝑖 = 1,2,3, … , 𝑛
𝑠 = 1,2,3, … , 𝑟

 
(10) 

The updated position vector of the 𝑖𝑡ℎ prey (𝑃𝑅𝑖), positioned 
between the 𝑖𝑡ℎ  Fire Hawk (𝐹𝐻𝑖 ), is denoted as 𝑃𝑅𝑖

𝑛𝑒𝑤 . SP 
represents a secure area beyond the 𝑖𝑡ℎ  𝐹𝐻  territory. 
𝐹𝐻𝐴𝑙𝑡𝑒𝑟  signifies one of the 𝐹𝐻  in the search space. The 
movements of prey toward other 𝐹𝐻  and the secure region 
beyond their territories are determined by the uniformly 
distributed values of 𝑟5 and 𝑟6 in the range (0,1). 

The mathematical expression for 𝑆𝑃𝑖  and 𝑆𝑃 is derived with 
the acknowledgment that, in the natural environment, a secure 
location is where most animals gather for protection during 
threats. 

𝑆𝑃𝑖 =
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𝑟
 , {
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 (11) 

𝑆𝑃 =
∑ 𝑃𝑅𝑞

𝑚
𝑞=1

𝑚
 , 𝑞 = 1,2,3, … ,𝑚 (12) 

𝑃𝑅𝑠 represents the prey positioned around the 𝑆𝑡ℎ fire hawk 
(𝐹𝐻𝑖), while 𝑃𝑅𝑞 denotes the 𝑞𝑡ℎ prey within the search space. 

C. Crystal Structure Algorithm (CSA) 

Solid minerals, comprised of atoms and particles arranged in 
a crystalline form known as crystals, derive their Grecian 
meaning from the concept of solidification by cold. Interior 
particles were initially discovered in 1619 by Kepler, 1665 
Hooke, and 1690 Hogens [33]. Crystals display a repeating 
pattern of atoms in defined spaces, forming a lattice that not only 
dictates the crystal's shape but also inspires geometric figures 
derived from infinite natural shapes. The discontinuous crystal 
structure is crafted by considering an infinite lattice, with each 
lattice point linked to its position through a vector [34]: 

𝑟 = ∑𝑚𝑖 𝑑𝑖 (13) 

The variables in the model are defined as follows: 𝑚𝑖 is an 
integer, 𝑑𝑖  represents the shortest vector along the central 
crystallographic directions, and 𝑖 corresponds to the number of 
crystal corners. The mathematical model of CryStAl is then 
introduced in this section, incorporating fundamental crystal 
concepts with notable modifications. The crystal number is 
initialized as a random number in this model. 
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(14) 
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(15) 

In this model, 𝑛 and d denote the number of crystals and the 

problem's dimension, respectively. The variables 𝑥𝑖
𝑗
(0), 𝑥𝑖,𝑚𝑎𝑥

𝑗
 

and 𝑥𝑖,𝑚𝑖𝑛
𝑗

 determine the initial positions and permissible values 

for each decision variable of candidate solutions, while 𝜉 is a 
random number within [0,1] . Following crystallography 
principles, primary crystals 𝐶𝑟𝑚  are corner crystals randomly 
chosen, and the main crystal is selected in each step, excluding 
the current one. 𝐹𝑐  represents the mean merit of randomly 
chosen crystals and  𝐶𝑟𝑏 is the best-arranged crystal. Based on 
fundamental lattice cross-section standards, four types of 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 8, 2024 

832 | P a g e  

www.ijacsa.thesai.org 

improvement processes are specified for upgrading candidate 
arrangements in this crystal model. 

Cubicles; 

Simple: 

𝐶𝑟𝑛 = 𝐶𝑟𝑜 + 𝑎𝐶𝑟𝑚 (16) 

With the finest crystals: 

𝐶𝑟𝑛 = 𝐶𝑟𝑜 + 𝑎1𝐶𝑟𝑚 + 𝑎2𝐶𝑟𝑏  (17) 

With the mediocre crystals: 

𝐶𝑟𝑛 = 𝐶𝑟𝑜 + 𝑎1𝐶𝑟𝑚 + 𝑎2𝑓𝑐 (18) 

With the finest and mediocre crystals:  

𝐶𝑟𝑛 = 𝐶𝑟𝑜 + 𝑎1𝐶𝑟𝑚 + 𝑎2𝐶𝑟𝑏 + 𝑎3𝐹𝑐 (19) 

The set of four equations illustrates the transition between 
new and old positions, denoted as 𝐶𝑟𝑛  and 𝐶𝑟𝑜 , respectively, 
incorporating fortuitous numbers 𝑎, 𝑎1, 𝑎2  and  𝑎3 . The 
algorithm employs exploration and extraction features, 
calculated using Eq. (16) to Eq. (19). The optimization process 
concludes upon reaching the maximum iteration, adhering to a 
predefined termination criterion with a fixed number of 
repetitions. A mathematical flag is utilized for solution variables 

𝑥𝑖
𝑗

, indicating the exterior of factors range and setting a 

boundary change order. 

𝑇ℎ𝑒 𝐶𝑆𝐴 𝑝𝑠𝑒𝑢𝑑𝑜
− 𝑐𝑜𝑑𝑒 𝑖𝑠 𝑠ℎ𝑜𝑤𝑛 𝑏𝑒𝑙𝑜𝑤: 𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝐶𝑟𝑦𝑠𝑡𝑎𝑙 𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 (𝐶𝑟𝑦𝑆𝑡𝐴𝑙) 

𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑐𝑟𝑒𝑎𝑡𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑜𝑟 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 (𝑥𝑖
𝑗
) 𝑜𝑓 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑐𝑟𝑦𝑠𝑡𝑎𝑙𝑠 (𝑪𝒓𝒊) 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐𝑟𝑦𝑠𝑡𝑎𝑙 
𝑤ℎ𝑖𝑙𝑒 (𝑡 <  𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠) 
𝑓𝑜𝑟 𝑖 = 1: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑟𝑦𝑠𝑡𝑎𝑙𝑠 
𝐶𝑟𝑒𝑎𝑡𝑒 𝑪𝒓𝒎 
𝐶𝑟𝑒𝑎𝑡𝑒 𝑛𝑒𝑤 𝑐𝑟𝑦𝑠𝑡𝑎𝑙𝑠 𝑏𝑦 𝐸𝑞. (16) 
𝐶𝑟𝑒𝑎𝑡𝑒 𝑪𝒓𝒃 
𝐶𝑟𝑒𝑎𝑡𝑒 𝑛𝑒𝑤 𝑐𝑟𝑦𝑠𝑡𝑎𝑙𝑠 𝑏𝑦 𝐸𝑞. (17) 
𝐶𝑟𝑒𝑎𝑡𝑒 𝑭𝒄 
𝐶𝑟𝑒𝑎𝑡𝑒 𝑛𝑒𝑤 𝑐𝑟𝑦𝑠𝑡𝑎𝑙𝑠 𝑏𝑦 𝐸𝑞. (18) 
𝐶𝑟𝑒𝑎𝑡𝑒 𝑛𝑒𝑤 𝑐𝑟𝑦𝑠𝑡𝑎𝑙𝑠 𝑏𝑦 𝐸𝑞. (19) 
𝑖𝑓 𝑛𝑒𝑤 𝑐𝑟𝑦𝑠𝑡𝑎𝑙𝑠 𝑣𝑖𝑜𝑙𝑎𝑡𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 
𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑡ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑓𝑜𝑟 𝑛𝑒𝑤 𝑐𝑟𝑦𝑠𝑡𝑎𝑙𝑠 𝑎𝑛𝑑 𝑎𝑚𝑒𝑛𝑑 𝑡ℎ𝑒𝑚. 
𝑒𝑛𝑑 𝑖𝑓 
𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑡ℎ𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑜𝑟 𝑛𝑒𝑤 𝑐𝑟𝑦𝑠𝑡𝑎𝑙𝑠 
𝑈𝑝𝑑𝑎𝑡𝑒 𝐺𝑙𝑜𝑏𝑎𝑙 𝐵𝑒𝑠𝑡 (𝐺𝐵) 𝑖𝑓 𝑎 𝑏𝑒𝑡𝑡𝑒𝑟 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑠 𝑓𝑜𝑢𝑛𝑑 
𝑒𝑛𝑑 𝑓𝑜𝑟 
𝑡 = 𝑡 + 1 
𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒 
𝑅𝑒𝑡𝑢𝑟𝑛 𝐺𝐵 
𝐸𝑛𝑑 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 

IV. MATERIAL 

A. Data Description and Analysis 

Data mining, acknowledged as a crucial element in the 
Knowledge Discovery from Databases (KDD) process [35], is 
progressively gaining significance within the healthcare system. 
It plays a vital role in precisely predicting medical conditions by 
automating the extraction of knowledge from extensive datasets 
[36] and employing a spectrum of techniques, including 

statistical analysis, machine learning, and database 
methodologies, to facilitate informed decision-making [37]. 

The dataset provides an extensive and diverse collection of 
variables, each with the potential to influence the symptoms 
associated with varicose veins. This well-rounded dataset 
includes key variables such as Body Mass Index (BMI), Systolic 
Blood Pressure Type A (SBPA), Systolic Blood Pressure Type 
B (SBPB), Ankle-Brachial Pressure Index (ABPI), Diabetes 
Blood Pressure Type A (DBPA), Diabetes Blood Pressure Type 
B (DBPB), Pulse Rate (PR), Chronic Fatigue Syndrome (CFS), 
Hyperhomocysteinemia (HCY), Calf Circumference (CALF-
CIR), the Chronic Venous Insufficiency Questionnaire (CVIQ), 
and the Chalder Fatigue Scale (CFS). In addition to these 
primary variables, the dataset includes two supplementary 
variables: VCSS-Pre, which represents symptoms observed 
before the initiation of yoga practices, and VCSS-1, which 
captures symptoms observed after one month of participation in 
yoga sessions. These variables provide a unique opportunity to 
analyze the potential impact of yoga on varicose vein symptoms 
over time. To facilitate analysis, the dataset has been categorized 
into four distinct groups based on the severity of the condition: 
Absent condition (0-5), Mild (6-10), Moderate (11-20), and 
Severe (21-30). This classification allows for a more structured 
examination of the relationship between the various factors and 
the severity of varicose vein symptoms, offering insights that 
can inform treatment approaches and patient care strategies. 

In this research, Fig. 1 illustrates a correlation matrix that 
provides a detailed and comprehensive view of the intricate 
interrelationships among the investigated input and output 
variables. The matrix reveals how the input data not only 
significantly influences the output but also affects the 
relationships between other input variables. For example, the 
Diabetes Blood Pressure indicators, specifically DBPA 
(Diabetes Blood Pressure Type A) and DBPB (Diabetes Blood 
Pressure Type B), show a pronounced effect on both SBPA 
(Systolic Blood Pressure Type A) and SBPB (Systolic Blood 
Pressure Type B). This highlights the critical role that blood 
pressure variations, influenced by diabetes, play in shaping 
systolic blood pressure outcomes. Additionally, the correlation 
matrix underscores the significant impact of the Chalder Fatigue 
Scale's physical and mental components (CFS PHY-Pre and 
CFS MEN-Pre) on the overall CFS-Pre score. These findings 
suggest that fatigue, as captured by the Chalder scale, is a crucial 
predictor of overall chronic fatigue syndrome (CFS) severity. 
The Chronic Venous Insufficiency Questionnaire (CVIQ) is also 
identified as a key contributor, influencing both the CFS PHY-
Pre and CFS-Pre parameters, further emphasizing the complex 
interplay between chronic venous insufficiency and fatigue 
symptoms. Moreover, the analysis identifies other highly 
influential input parameters, such as the number of standing and 
sitting hours, the number of working days, CALF-CIR (calf 
circumference), and HCY (homocysteine levels), which all play 
significant roles in determining the outcomes. Conversely, the 
PR (pulse rate) parameter is highlighted as having one of the 
least impacts on the output, suggesting its relatively minor role 
in the context of this study. This comprehensive understanding 
of variable interrelationships provides valuable insights for 
targeting specific areas in future research and potential 
interventions. 
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Fig. 1. Correlation matrix to examine how input and output variables are 

related to one another Evaluation of Model Suitability. 

In the realm of classification challenges, Accuracy emerges 
as a frequently employed metric for evaluating overall model 
performance, taking into account True Positives (𝑇𝑃) , True 
Negatives (𝑇𝑁),  False Positives (𝐹𝑃) , and False Negatives 
(𝐹𝑁). Despite its widespread use, Accuracy faces limitations in 
scenarios with imbalanced data, as it tends to favor the majority 
class, providing limited insights. The mathematical expression 
for Accuracy is defined in Eq. (20): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (20) 

To overcome this restriction, three more measures are used: 
𝐹1 − 𝑆𝑐𝑜𝑟𝑒, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 , and 𝑅𝑒𝑐𝑎𝑙𝑙 . To reduce False 
Negatives, recall measures a model's capacity to accurately 
identify every pertinent instance inside a given class. By 
quantifying the precision of positive predictions, False Positives 
are decreased. Combining Precision and Recall, the F1-Score 
offers a balanced evaluation that is particularly helpful in 
situations when the data is unbalanced. Together, these metrics 
which are represented by mathematical formulae (Eq. 21–23) 

help to provide a more complete picture of the efficacy of a 
categorization model. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (21) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑅 =
𝑇𝑃

𝑃
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (21) 

𝐹1_𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑅𝑒𝑐𝑎𝑙𝑙 ×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (23) 

V. RESULTS 

To improve the accuracy of classifying and predicting VCSS 
before and after one month of yoga exercises, this study utilized 
two optimization algorithms: Crystal Structure Algorithm 
(CSA) and Fire Hawk Optimizer (FHO). The data, involving 
100 patients, underwent careful evaluation in both training and 
testing phases following the implementation of these algorithms. 
The main objective is to refine and optimize model parameters 
using the mentioned algorithms. 

Fig. 2 shows the convergence of developed hybrid models. 
VCSS-Pre, the GPCS, and GPFH models commenced iterations 
with nearly identical Precision. Eventually, the GPCS model 
achieved optimal accuracy in 100 iterations (with 0.860 value), 
while the GPFH model took 110 iterations (in 0.870). In 
contrast, in VCSS-1, the GPFH model started with lower 
accuracy than GPCS, reaching higher accuracy in the 80th 
iteration (in 0.910 accuracy value), while GPCS reached 
convergence in the 120th iteration (with 0.900). 

Table I showcases extensive metrics, encompassing 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙, and 𝐹1 𝑆𝑐𝑜𝑟𝑒, across all models 
for the training and test phases. Notably, the GPFH model 
exhibits excellent performance in both VCSS-Pre and VCSS-1. 
Specifically, for VCSS-Pre, the model achieves a Precision of 
0.870, Accuracy of 0.877, Recall of 0.870, and F1-score of 
0.872. Similarly, in the case of VCSS-1, the GPFH model 
attains 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑅𝑒𝑐𝑎𝑙𝑙 , and 𝐹1 − 𝑠𝑐𝑜𝑟𝑒  values of 0.910, 
along with a Precision value of 0.916. Fig. 3 presents a bar plot 
that visually assesses the performance of the advanced models. 
Furthermore, it provides additional insights into the achieved 
results. For instance, it is observable that the GPFH, GPCS, and 
GPC models showcase optimal performance. 

  
Fig. 2. Convergence curve of hybrid models. 
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TABLE I.  RESULT OF PRESENTED MODELS 

 Model Part 
Metric value 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝑹𝒆𝒄𝒂𝒍𝒍 𝑭𝟏 _𝑺𝒄𝒐𝒓𝒆 

𝑽𝑪𝑺𝑺 − 𝑷𝑹𝑬 

𝑮𝑷𝑪 

𝑇𝑟𝑎𝑖𝑛 0.900 0.913 0.900 0.901 

𝑇𝑒𝑠𝑡 0.733 0.759 0.733 0.737 

𝐴𝑙𝑙 0.850 0.868 0.850 0.853 

𝑮𝑷𝑭𝑯 

𝑇𝑟𝑎𝑖𝑛 0.929 0.937 0.929 0.930 

𝑇𝑒𝑠𝑡 0.733 0.739 0.733 0.735 

𝐴𝑙𝑙 0.870 0.877 0.870 0.872 

𝑮𝑷𝑪𝑺 

𝑇𝑟𝑎𝑖𝑛 0.900 0.915 0.900 0.900 

𝑇𝑒𝑠𝑡 0.767 0.771 0.767 0.767 

𝐴𝑙𝑙 0.860 0.871 0.860 0.861 

𝑽𝑪𝑺𝑺 − 𝟏 

𝑮𝑷𝑪 

𝑇𝑟𝑎𝑖𝑛 0.957 0.958 0.957 0.957 

𝑇𝑒𝑠𝑡 0.733 0.733 0.733 0.733 

𝐴𝑙𝑙 0.890 0.890 0.890 0.890 

𝑮𝑷𝑭𝑯 

𝑇𝑟𝑎𝑖𝑛 0.957 0.969 0.957 0.959 

𝑇𝑒𝑠𝑡 0.800 0.800 0.800 0.798 

𝐴𝑙𝑙 0.910 0.916 0.910 0.910 

𝑮𝑷𝑪𝑺 

𝑇𝑟𝑎𝑖𝑛 0.914 0.926 0.914 0.917 

𝑇𝑒𝑠𝑡 0.867 0.871 0.867 0.867 

𝐴𝑙𝑙 0.900 0.903 0.900 0.901 
 

 

 

 

Fig. 3. Bar plot to visually evaluate the created models' performance. 
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Based on VCSS scores, patients are classified into four 
groups: Absent (0-5), Mild (6-10), Moderate (11-20), and 
Severe (21-30) condition. Concerning Precision in VCSS-Pre, 
as presented in Table II, the GPFH and GPCS models exhibit 
similar and close performance. Notably, for the Severe 
condition, both models achieved a value of 1. The GPFH model 
demonstrates superior performance for Mild and Moderate 
conditions with values of 0.841 and 0.950, respectively. 

However, for the Absent condition, the GPCS model 
outperforms with a value of 0.733. In Table III, considering the 
Precision values for VCSS-1, both the GPFH and GPCS models 
exhibit identical values for Severe conditions at 1. However, for 
Mild (0.912) and Moderate conditions (0.957), the GPFH model 
outperforms. Notably, akin to VCSS-Pre, in Absent conditions, 
the GPCS model demonstrates superior performance with a 
value of 0.813.

TABLE II.  PERFORMANCE EVALUATION INDICES FOR THE DEVELOPED MODELS FOR VCSS-PRE 

𝑴𝒐𝒅𝒆𝒍 𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 
𝑴𝒆𝒕𝒓𝒊𝒄 𝒗𝒂𝒍𝒖𝒆 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝑹𝒆𝒄𝒂𝒍𝒍 𝑭𝟏 − 𝒔𝒄𝒐𝒓𝒆 

𝑮𝑷𝑪 

𝑨𝒃𝒔𝒆𝒏𝒕 0.688 0.917 0.786 

𝑴𝒊𝒍𝒅 0.804 0.881 0.841 

𝑴𝒐𝒅𝒆𝒓𝒂𝒕𝒆 0.972 0.796 0.875 

𝑺𝒆𝒗𝒆𝒓𝒆 1.000 1.000 1.000 

𝑮𝑷𝑭𝑯 

𝑨𝒃𝒔𝒆𝒏𝒕 0.714 0.833 0.769 

𝑴𝒊𝒍𝒅 0.841 0.881 0.861 

𝑴𝒐𝒅𝒆𝒓𝒂𝒕𝒆 0.950 0.864 0.905 

𝑺𝒆𝒗𝒆𝒓𝒆 1.000 1.000 1.000 

𝑮𝑷𝑪𝑺 

𝑨𝒃𝒔𝒆𝒏𝒕 0.733 0.917 0.815 

𝑴𝒊𝒍𝒅 0.826 0.905 0.864 

𝑴𝒐𝒅𝒆𝒓𝒂𝒕𝒆 0.946 0.796 0.864 

𝑺𝒆𝒗𝒆𝒓𝒆 1.000 1.000 1.000 

TABLE III.  PERFORMANCE EVALUATION INDICES FOR THE DEVELOPED MODELS FOR VCSS-1 

𝑴𝒐𝒅𝒆𝒍 𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 
𝑴𝒆𝒕𝒓𝒊𝒄 𝒗𝒂𝒍𝒖𝒆 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝑹𝒆𝒄𝒂𝒍𝒍 𝑭𝟏 − 𝒔𝒄𝒐𝒓𝒆 

𝑮𝑷𝑪 

𝑨𝒃𝒔𝒆𝒏𝒕 0.867 0.929 0.897 

𝑴𝒊𝒍𝒅 0.861 0.838 0.849 

𝑴𝒐𝒅𝒆𝒓𝒂𝒕𝒆 0.915 0.915 0.915 

𝑺𝒆𝒗𝒆𝒓𝒆 1.000 1.000 1.000 

𝑮𝑷𝑭𝑯 

𝑨𝒃𝒔𝒆𝒏𝒕 0.778 1.000 0.875 

𝑴𝒊𝒍𝒅 0.912 0.838 0.873 

𝑴𝒐𝒅𝒆𝒓𝒂𝒕𝒆 0.957 0.936 0.946 

𝑺𝒆𝒗𝒆𝒓𝒆 1.000 1.000 1.000 

𝑮𝑷𝑪𝑺 

𝑨𝒃𝒔𝒆𝒏𝒕 0.813 0.929 0.867 

𝑴𝒊𝒍𝒅 0.865 0.865 0.865 

𝑴𝒐𝒅𝒆𝒓𝒂𝒕𝒆 0.956 0.915 0.935 

𝑺𝒆𝒗𝒆𝒓𝒆 1.000 0.100 1.000 
 

Fig. 4 shows a 3D drop line plot illustrating the difference 
between measured and forecast values for 𝑉𝐶𝑆𝑆 − 𝑃𝑟𝑒  and 
𝑉𝐶𝑆𝑆 − 1 . Separate graphs are included for each category 
(𝐴𝑏𝑠𝑒𝑛𝑡,𝑀𝑖𝑙𝑑,𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 , and 𝑆𝑒𝑣𝑒𝑟𝑒),  which 
comprehensively assesses the models' efficacy in classifying. 

Upon reviewing the VCSS-Pre diagram, it becomes evident 
that 12 individuals fall under the Absent category, 42 in Mild, 
44 in Moderate, and 2 in Severe. Significantly, the GPC and 
GPCS models stand out for their remarkable accuracy in 
classifying the Absent section. In this section, the models 
demonstrate exceptional Precision in predictions, with a one-
unit difference, highlighting the capability to categorize 

individuals accurately. In Mild and Moderate conditions, the 
GPCS and GPFH models showcase superior performance with 
subtle distinctions. In the Severe section, three models 
demonstrate identical performance. 

As illustrated in the figure for VCSS-1, the recorded counts 
for patients in the 𝐴𝑏𝑠𝑒𝑛𝑡,𝑀𝑖𝑙𝑑,𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒,  and 
𝑆𝑒𝑣𝑒𝑟𝑒 categories are 14, 37, 47, and 2, individually. Notably, 
the GPFH model exhibits superior performance in the Absent 
and Moderate conditions, particularly in the Absent category, 
where it achieves error-free predictions. The GPCS model 
performs best in Mild conditions, and for Severe conditions, all 
utilized models demonstrate superior performance.
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Fig. 4. 3D drop line plot for the difference between measured and forecast values. 
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Fig. 5 shows the confusion matrix. A confusion matrix 
summarizes the predictions of the ML model, offering a detailed 
assessment of its performance in terms of 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙, and 𝐹1 − 𝑠𝑐𝑜𝑟𝑒  measures for 
evaluating effectiveness. Table III displays the confusion matrix 
corresponding to VCSS-Pre and VCSS-1. In VCSS-Pre, the 
GPFH model correctly classified 87 patients, breaking down 
into 10 Absent, 37 Mild, 38 Moderate, and 2 Severe conditions, 
while 13 patients were misclassified. The GPCS model takes the 

second position, with 86 patients correctly classified and 14 
misclassified. The GPC model ranks third, with 15 patients 
misclassified; in the context of VCSS-1, the GPFH model 
successfully classified 91 patients (14 in Absent, 31 in Mild, 44 
in Moderate, and 2 in Severe conditions) with only nine 
misclassifications. The GPCS model secured 90 accurate 
predictions and 10 incorrect ones, while the GPC model claimed 
the third rank with 89 correct predictions and 11 incorrect ones.

  

  

  

Fig. 5. Confusion matrix for each model's accuracy.

The Receiver Operating Characteristic (𝑅𝑂𝐶)  is a visual 
tool employed in classification to assess a model's performance 
by mapping the interplay between its false positive rate and true 
positive rate across diverse thresholds. Illustrating the 
discriminative capacity of a model, the ROC curve provides a 
comprehensive overview of its ability to distinguish between 
classes. Based on the top-performing GPFH model in Fig. 6, the 
ROC curve analysis indicates that this model serves as a 

classifier with acceptable performance in predicting VCSS-Pre 
for Moderate conditions. Within the VCSS-1 framework, the 
GPC model demonstrates superior performance for Absent and 
Mild conditions, with curves approaching 1 for each. Finally, it 
is noteworthy that the Micro Average, drawn for both VCSS-Pre 
and VCSS-1, supports the best performance in VCSS-1. 
Consequently, it can be inferred that one month of yoga practice 
affects CVI.
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Fig. 6. The outcome is derived from the ROC curve. 

 
(a) VCSS.PRE 

 
(b) VCSS.1 

Fig. 7. Impact of input features on model outputs based on SHAP values. 

Fig. 7, visually represents the impact of input features on 
model outputs for predicting symptoms related to CVI based on 
SHAP (Shapley Additive exPlanations) values. SHAP values 
are used to interpret the output of machine learning models, 
providing insights into how much each feature contributes to the 
prediction. The figure is divided into two plots: (a) VCSS.PRE 
and (b) VCSS.1, each showing the influence of various input 
features on the VCSS-Pre and VCSS-1 outcomes, respectively. 
The VCSS-Pre captures the symptoms observed before the 

initiation of yoga practices, while VCSS-1 reflects the 
symptoms after one month of participating in yoga sessions. In 
plot (a), the features are ranked by their influence on the VCSS-
Pre output, with BMI_pre (Body Mass Index before yoga) and 
PR_pre (Pulse Rate before yoga) showing significant impacts 
across all severity levels—Severe, Absent, Moderate, and Mild. 
The RIGHT CALF-CIR-PRE (right calf circumference before 
yoga) and other physical indicators like the ABPI_pre (Ankle-
Brachial Pressure Index before yoga) also contribute 
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substantially to the prediction outcomes. Plot (b) of the figure 
highlights the impact of input features on the VCSS-1 outcome. 
Notably, HCY_Pre (Homocysteine levels before yoga) and 
CFS_Pre (Chronic Fatigue Syndrome before yoga) emerge as 
the most influential features, particularly in the Severe category. 
Other factors, such as CVIQ_social_pre (Chronic Venous 
Insufficiency Questionnaire-social before yoga) and SBPA_Pre 
(Systolic Blood Pressure Type A before yoga), also show 
notable contributions to the model's predictions post-yoga 
intervention. The colored bars represent different severity levels, 
with each feature influencing these categories to varying 
degrees. This detailed analysis helps identify which features are 
most critical in predicting varicose vein symptoms and how 
these influences change after yoga intervention. The visual 
breakdown provides a clear understanding of how input 
variables contribute to the model's outputs, offering valuable 
insights for future research and potential therapeutic strategies 
in managing CVI. 

VI. CONCLUSION 

Chronic Venous Insufficiency (𝐶𝑉𝐼)  is characterized by 
impaired blood flow to the heart due to damaged or weakened 
valves in the leg veins, resulting in symptoms such as swelling, 
pain, skin alterations, and, more severe instances, persistent 
ulcers. This article aims to assess the impact of yoga exercises 
on alleviating symptoms in individuals with CVI. Employing a 
machine learning technique, the study predicts and categorizes 
symptoms before and one month after participating in yoga 
exercises. To ensure optimal performance, the selected model, 
Gaussian Process Classifier (GPC), for this study went through 
final optimization utilizing two optimizers, namely the Crystal 
Structure Algorithm (CSA) and the Fire Hawk Optimizer 
(FHO). A comprehensive evaluation was performed on 100 
patients diagnosed with CVI. This assessment employed key 
criteria, including 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙 , and 𝐹1 −
𝑠𝑐𝑜𝑟𝑒 . The resulting outcomes are presented as follows. In 
VCSS-Pre, concerning the F1-Score criterion, the GPFH model 
outperforms the GPCS and GPC models by 1.26% and 2.18%, 
respectively. Additionally, this superiority in Recall quality 
translates to 1.15% and 2.3%, respectively. Moreover, In the 
prediction of VCSS_1, the GPFH model demonstrates superior 
performance in F1_Score and Recall criteria compared to the 
GPCS (1% and 1.1%, respectively) and GPC (2.2% for both 
criteria) models. 

Future studies on CVI and its management through yoga and 
machine learning-driven prediction models could explore 
several promising avenues. First, expanding the study to include 
a larger and more diverse patient cohort would enhance the 
generalizability of the findings, allowing for a more 
comprehensive understanding of the effectiveness of yoga in 
various demographic groups and across different stages of CVI. 
Additionally, longitudinal studies tracking patients over an 
extended period could provide valuable insights into the long-
term effects of yoga on CVI symptoms, as well as any potential 
cumulative benefits. Another important area for future research 
is the integration of other complementary therapies with yoga, 
such as dietary modifications, physical therapy, or mindfulness 
practices. Investigating the combined impact of these 
approaches could lead to a more holistic treatment framework, 
addressing not only the physical but also the psychological 

aspects of CVI. On the machine learning front, future studies 
could explore the application of more advanced models, such as 
deep learning or ensemble methods, to enhance prediction 
accuracy and robustness. Additionally, incorporating real-time 
monitoring and data collection through wearable devices could 
provide more granular data, enabling more precise symptom 
tracking and personalized intervention strategies.  
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