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Abstract—In the realm of medical diagnostics, accurately 

identifying osteoporosis through multiclass classification poses a 

significant challenge due to the subtle variations in bone density 

and structure. This study proposes a novel approach to enhance 

detection accuracy by integrating the Woodpecker Optimization 

Algorithm with a hybrid Convolutional Neural Network (CNN) 

and XGBoost model. The Woodpecker Optimization Algorithm is 

employed to fine-tune the CNN-XGBoost model parameters, 

leveraging its ability to efficiently search for optimal 

configurations amidst complex data landscapes. The proposed 

framework begins with the CNN component, designed to 

automatically extract hierarchical features from bone density 

images. This initial stage is crucial for capturing intricate patterns 

that signify osteoporotic conditions across multiple classes. 

Subsequently, the extracted features are fed into an XGBoost 

classifier, renowned for its robust performance in handling 

structured data and multiclass classification tasks. By combining 

these two powerful techniques, the model aims to synergistically 

utilize the strengths of deep learning in feature extraction and 

gradient boosting in decision-making. Experimental validation is 

conducted on a comprehensive dataset comprising diverse bone 

density scans, ensuring the model's robustness across various 

patient demographics and imaging conditions. Performance 

criteria including recall, precision, reliability, and F1-score are 

assessed to show how well the suggested Woodpecker-optimized 

CNN-XGBoost framework performs in comparison to other 

approaches when it comes to obtaining better accuracy in 

diagnosis. The findings underscore the potential of hybrid models 

in advancing osteoporosis detection, offering clinicians a reliable 

tool for early and precise diagnosis, thereby facilitating timely 

interventions to mitigate the debilitating effects of bone-related 

diseases. Osteoporosis detection model with a classification 

accuracy of 97.1% implemented in Python. 

Keywords—Osteoporosis detection; multiclass classification; 

Woodpecker Optimization Algorithm; Convolutional Neural 

Network (CNN); XGBoost 

I. INTRODUCTION 

Osteoporosis is the furthermost common bone disease, 
categorized by low bone density mass and an alteration of their 
micro-architecture structure, reducing bone tolerance and 
increasing the possibility of fractures. Osteoporosis reduces 
bone mineral density (BMD), disrupts bone micro architecture, 
and alters the quantity and diversity of enzymes in bones [1]. 
Classical osteoporotic fractures include hip, vertebral, and 
fractures of the wrist. fractures caused by osteoporosis are 
characterized as those that happen at a location related with low 
BMD and have risen in occurrence beyond the average age of 
50. Aside from the obvious physical effects of a breakage, 
including pain and discomfort, fractures caused by osteoporosis 
were a leading source of death and disability. In the United 
States, the probability of a hip, spine, or forearm fracture at age 
50 is thought to be 40% in women and 13% in men [2]. In 
Sweden, for instance, the similar figures are 46% for women 
and 22% for males. Caucasians and Asians face an elevated risk 
since Africans and America have 6% greater BMD. Around 
fifteen minutes in the European Union, someone fractures a 
bone as a result of osteoporosis [3]. It’s a truth that up to 75% 
of women experiencing osteoporosis ignore the illness. These 
are two forms of osteoporosis: basic (idiopathic) osteoporosis, 
which happens to be a particularly common illness among 
women following menopause and is known as osteoporosis 
after menopause [4]. The condition comprises senile 
osteoporosis, which may occur in males. Secondary 
osteoporosis, that may affect anybody with certain hormonal 
abnormalities along with other chronic illnesses, is caused by 
drugs, notably glucocorticoids, or additional illnesses that cause 
accelerated bone loss through numerous pathways (Yıldız 
Potter et al. 2024). Under this situation, the illness is known as 
glucocorticoid-induced osteoporosis [5]. Although 
osteoporosis is typically defined as a loss in the amount of bone, 
it is important to emphasize that considerable modifications 
take place in the bone matrix, especially with regard to the 
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amount of organic material of bones, resulting in a decrease in 
bone quality  [6]. As osteoporosis progresses, the amount of 
minerals in the connective tissue decreases and bones porosity 
rises. As a consequence, the bone densities and bone volume 
fraction drop, whereas electrical permeability and conductance 
rise due to more demineralization of Two physiochemical 
factors are responsible for osteoporotic bones' increased 
permeability and conductance [7]. 

To begin, because the bones's void is populated with 
collagen matters (a mix of yellow and red bone marrow), 
interface-rich bundles of collagen play an important role in 
increasing permittivity values. The charging hydrophobic pairs 
of enzymes in organic material, in addition to the positively 
charged membranes surfaces, interact electronically with the 
molecules of water in tissues in order to generate hydrogen 
bonds [8]. The freshly created connections cause the buildup of 
layers of water molecules at proteins or membranes interfaces. 
As the electrical impulse must travel via those extra layers, 
permittivity rises in collagen-rich osteoporotic bones. Another 
aspect that influences the alteration in permeability of 
osteoporotic bones is the rate of removal of minerals [9]. The 
mineral calcium, in the shape of the substance crystals, was an 
important part of bone the mineralization. Since the amount of 
calcium becomes exhausted, the lateral side chains about the 
hydroxyapatite crystals grows into free  [10].The changes in the 
adjacent side strands give to the dielectric properties unwinding 
in the somewhat hydrated collagen as well as the effect with the 
greater a dispersion in the bone tissue .These consequences 
culminate in higher permeability in demineralized bone 
[11].Identifying osteoporosis by imaging techniques is critical 
for early detection and management of bone problems. Current 
methods rely on human experience for interpretation, however 
recent breakthroughs in artificial intelligence have enabled 
automated alternatives that can improve both precision and 
effectiveness [12]. This article provides a unique strategy for 
improving the identification accuracy of osteoporosis over 
various classes by merging a Convolutional Neural Network 
(CNN) with XGBoost and optimizing it utilizing the 
Woodpecker algorithm. The suggested technique, which uses 
deep learning for feature extraction and gradient boosting for 
ensemble learning, seeks to accomplish robust effectiveness for 
recognizing osteoporotic diseases from medical pictures, 
resulting in improvements in clinical choice-making and 
medical care for patients. 

Key contributions are as follows: 

 Integration of Woodpecker Optimization to Enhances 
model parameter tuning for improved performance and 
accuracy in osteoporosis classification, 

 Combines deep learning capabilities of CNNs for 
feature extraction from bone density images with 
XGBoost's strength in multiclass classification,  

 Validates model efficacy across diverse patient 
demographics and imaging conditions.Offers clinicians 
a reliable tool for early and precise diagnosis. 

 Utilizes CNNs to automatically extract hierarchical 
features from bone density images, capturing subtle 

variations indicative of osteoporotic conditions across 
multiple classes. 

 Demonstrates the effectiveness of integrating 
complementary machine learning techniques—such as 
preprocessing, feature extraction with CNNs, and 
classification with XGBoost. 

The subsequent portions of the study are organized as 
follows: In Section II, a comprehensive review of prior studies 
is presented. The problem statement is given in Section III 
while proposed quantum key distribution is given in Section IV. 
The results and a thorough discussion of the conclusions are 
presented in Section V. The paper's concluding concepts are 
summarized in Section VI. 

II. RELATED WORKS 

Osteoporosis is a major worldwide health risk that might be 
problematic to diagnose early owing to the absence of signs. 
Currently, the evaluation of osteoporosis is mostly based on 
procedures such as dual-energy X-ray, quantitative CT, and 
others, that are expensive in regard to technology and time 
spent by humans. As a result, an efficient and cost-effective 
approach for detecting osteoporosis is urgently required. Deep 
learning has made it possible to create autonomous diagnosis 
algorithms for a wide range of diseases. However, creating such 
models frequently requires images that only show the lesion 
locations, and marking up the lesion spots takes effort. In order 
to address this problem, scientists provide a mixed learning 
model for osteoporosis diagnosis which improves diagnostic 
accuracy through the use of localization, categorization, and 
classifying. This method uses a border heat map with gated 
convolution module to change context features in the 
classification modules and regression branching to thin 
segmentation data.  Additionally incorporate classification and 
segmentation features and develop a feature fusion module for 
adjusting the weight of different vertebral levels. Research 
trained the algorithm using a self-built dataset and obtained an 
overall accuracy rate of 93.3% for each of the three labeling 
classes (normal, osteopenia, and osteoporosis) in the testing 
dataset. The area under the curve is 0.973 for the normal group, 
0.965 for osteopenia, and 0.985 for osteoporosis. Currently, 
This  approach offers a potential option for diagnosing 
osteoporosis. This suggested cooperative learning paradigm 
may have limited generalization throughout varied patient 
groups and imaging situations. Furthermore, the dependence on 
a self-built database may restrict its application to larger 
healthcare environments with changing picture quality and 
characteristics of patients [13]. 

Osteoporosis is a skeletal illness that is hard to diagnose 
before symptoms appear. Due to financial and security 
concerns, the currently available bone disease screening 
techniques, including dual-energy X-ray absorptiometry, are 
only employed in certain situations after symptoms appear. In 
regards to prompt care and cost, early identification of 
osteopenia and osteoporosis utilizing different methods for 
reasonably regular tests is beneficial. Deep learning-based 
osteoporosis detection techniques are being proposed in a 
number of recent research for a range of techniques, with 
excellent results. Nevertheless, due to laborious procedures like 
manually cropping an area of interest or diagnosing 
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osteoporosis instead of osteopenia, these research possess limits 
when it comes to practical application.. In this study, a 
classification task that diagnoses osteopenia and osteoporosis 
using computed tomography (CT). Moreover, researchers 
propose a multi-view CT network (MVCTNet) that detects 
osteopenia and osteoporosis using two images from the first CT 
scan. Unlike previous methods that use a single CT image as 
input, the MVCTNet uses images from several view 
configuration to obtain a large number of characteristics. Three 
task layers and two extracted features make up the MVCTNet. 
Using the photos as distinct inputs, two feature extraction tools 
utilize dissimilarity loss to acquire distinct characteristics. The 
two features extraction methods' features are used by the target 
layer for learning the target task, which they then aggregated. 
Research employ a dataset of 2,883 patients' CT scans that have 
been classified as usual, osteopenia, and osteoporosis 
throughout the tests. Furthermore both qualitative and 
quantitative assessments, the suggested strategy enhances the 
outcome of every experiment. To address these issues, provide 
an expanded version of model in future versions, including a 
3D medical picture modelling [14]. 

Falls are a complex scene of injury among the elderly 
population. Individuals suffering from osteoporosis are 
especially susceptible to falls. Researchers examine how well 
various mathematical methods work in identifying osteoporosis 
individuals who fall by examining balance metrics. In a 2.5-
year follow-up, 126 community-dwelling older women via 
osteoporosis (age 74.3 ± 6.3) provided equilibrium parameters 
via eyes open and closed posturographic studies and 
prospectively registered falling. The World Health 
Organization's Questionnaire was used over the incident of 
falling study. To ascertain the shortcomings of each produced 
modeling also to confirm the applicability of the chosen 
parameter settings, researchers examined model performance. 
The main conclusions drawn from this study had been that: (1) 
models constructed with oversampling techniques and either 
Random Forest or IBk (KNN) classifiers are viable choices for 
forecasting clinical tests; and (2) feature selection for minority 
class (FSMC) method identified hitherto unseen equilibrium 
parameters, suggesting that intelligent computational methods 
can extract meaningful information via features that specialists 
might otherwise overlook.. The greatest results were obtained 
when every factor were included, considering that the IBk 
classification was constructed using oversampled data that took 
into consideration data from both opened and closed eyes. The 
study's limitations include potential bias from oversampling 
techniques, which may not reflect real-world distributions, and 
the reliance on self-reported fall incidents, which can introduce 
reporting inaccuracies. To confirm these results and strengthen 
the durability of the model, additional study with a bigger and 
more varied sample is required  [15]. 

Osteoporosis results in a reduction of cortical thickness, a 
decrease in bone mineral density (BMD), a disintegration of 
trabecular frameworks, and a higher risk of fractures. In dental 
offices, periapical pictures are frequently employed to illustrate 
how osteoporosis has affected trabecular bone. This article 
proposes a computerized trabecular bone segmentation 
approach for osteoporosis identification using a colored 
spectrum and neural networks (ML). The method makes use of 

120 regions of interest (ROI) on periapical radiographs, divided 
into 60 training and 42 testing data sets. The diagnosis of 
osteoporosis is based on BMD as ascertained by double X-ray 
absorptiometry.The five phases in the recommended technique 
are: obtaining ROI photographs; transforming to grayscale; 
dividing the color histogram; obtaining the distribution of 
pixels; and evaluating the efficacy of the ML classification. 
Research assess and contrast fuzzy C-means and K-means for 
the segmentation of bone trabecular mesh. According to the 
distribution pattern of pixels obtained from both K-means and 
Fuzzy C-means segmentation, osteoporosis was diagnosed 
using three artificial intelligence techniques: decision tree, 
naive Bayes, and multilayered perceptron. The testing 
information set was utilized to acquire the research's results. 
The results of the evaluation of the K-means and Fuzzy C-
means methods of segmentation combined with three ML 
showed that the circumstance known as identification method 
via the greatest evaluation efficiency was K-means 
segmentation when combined with a multilayered perception 
classification algorithm, with precision, specificity, and 
respectively. The high accuracy of the study implies that the 
proposed method significantly advances the area of medicine 
and dentistry by improving the image analysis's capacity to 
detect osteoporosis The study's drawbacks includes a relatively 
small number of samples that might restrict how broadly the 
findings can be applied, as well as significant variations in the 
quality of periapical images that could affect how well the 
segmentation and categorization procedures perform. 
Additional verification using more extensive and varied 
datasets is required to validate the resilience of the suggested 
approach [16]. 

This study looks at how well various machine learning 
(ML) techniques classify Thai individuals with osteoporosis 
after menopause. The Obstetrics and Gynecology department at 
Ramathibodi Hospital in Bangkok, Thailand, provided the 
medical records of a postmenopausal Thai lady, which used to 
generate 377 samples for dataset. Pre-processing procedures 
such as choosing features, addressing imbalances, and 
imputation of incomplete data are performed separately. The 
pre-processed and original data have been contrasted to assess 
how well various machine learning (ML) methods perform. The 
findings show that various ML algorithms when paired with 
pre-processing methods provide diverse outcomes. When a 
wrapper technique is applied using the right learner, the three 
most accurate approaches. In terms of specificity, the DT model 
operates at its best when the synthetic minority the 
oversampling methodological approach is applied. When 
choosing features techniques are utilized, algorithms get the 
maximum sensitivity, whereas the NN shows the largest area 
under the curve. Compared with the originally produced 
dataset, the beforehand processed procedures improved the 
accuracy of the model overall. Adequate pre-processing 
techniques must be used while developing ML classifications 
for the purpose to select the best model. Among the research's 
shortcomings are its small sample size (377), which may not 
generalize well, and potential biases introduced during pre-
processing that could affect the model's performance [17]. 

Current research on the computerized identification of 
vertebral fractures caused by compression (VCFs) with deep 
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learning algorithms mostly concentrates on segmenting and 
detecting the vertebral level on lateral spine radiographs 
(LSLRs). Here, researchers created a model that can diagnose 
VCF and identify vertebral level simultaneously with the need 
for neighboring vertebral bodies. A total of 1171 controls and 
1102 VCF patients was included. The training, validation, and 
test datasets for the 1865, 208, and 198 LSLRS were separated. 
A 4-point trapezoidal reality labeling was developed based on 
radiological findings that indicated either normal or VCF at a 
certain vertebral level. Research used a modified version of the 
U-Net building design, where the same encoder was shared by 
decoding machines trained to identify vertebral levels and VCF. 
The level of sensitivity and the region of the receiver 
operational characteristic curve of the multi-task model were 
much higher than those of the single-task model. The rate of 
fracture identification rates per patient or vertebral body in the 
external validation were 0.713, 0.979, and 0.447, or 0.828, 
0.936, and 0.820, in that order. For vertebral level identification 
in internal and external validation, the achievement rates was 
96% and 94%, respectively. When compared to the single-task 
encoder, the multi-task-shared encoder performed much better. 
Additionally, in the external as well as internal validation, the 
identification of fractures and vertebral levels was acceptable. 
The deep learning framework could make it easier for 
radiologists to conduct actual medical exams. Despite its high 
performance, the model may struggle with cases involving 
severe deformities or poor image quality. Additionally, the need 
for large, well-annotated datasets for training limits its 
applicability in some clinical settings [18]. 

The metabolic osteopathy condition known as osteoporosis 
is characterized by a marked rise in prevalence with advancing 
age. Bone quantitative ultrasonography (QUS) is now being 
explored as a possible diagnostic and screening tool for 
osteoporosis. Its accuracy for diagnosis is extremely poor, 
though. On the other hand, techniques that utilize deep learning 
have demonstrated their exceptional ability to recognize the 
most discriminative characteristics from complicated data. 
Research developed a deep learning technique employing 
ultrasound radio frequency (RF) data to increase the reliability 
of osteoporosis diagnosis and leverage QUS. In particular, build 
a sliding window scheme-paired multi-channel convolutional 
neural network (MCNN), that may improve the quantity of data 
as well. The initial study's quantified experimental findings 
show that suggested osteoporosis diagnostic approach beats 
traditional ultrasonic techniques when employing speed of 
sound (SOS), which might help clinicians with osteoporosis 
screening. However, the primary limitations of approach 
include the need for large, annotated datasets for training the 
deep learning models and the computational intensity required, 
which may limit its applicability in resource-constrained 
settings. Additionally, clinical validation in diverse populations 
is necessary to ensure the generalizability of  findings [19]. 

Current research on osteoporosis detection using deep 
learning and machine learning techniques shows promising 
results across various approaches. Zhang et al. (2023) 

developed a model incorporating localization and 
classification, achieving a 93.3% accuracy rate. Hwang et al. 
(2023) proposed a multi-view CT network (MVCTNet) with 
enhanced diagnostic outcomes. Cuaya-Simbro et al. (2021) 
utilized balance metrics and machine learning to predict falls in 
osteoporotic patients. Widyaningrum et al. (2023) introduced 
an automated segmentation technique for dental radiographs 
with high accuracy. Thawnashom et al. (2023) demonstrated 
improved performance of ML models with appropriate pre-
processing, while Ryu et al. (2023) and Chen et al. (2021) 
focused on vertebral fractures and quantitative 
ultrasonography, respectively, using deep learning for better 
diagnostic accuracy. 

III. PROBLEM STATEMENT 

Osteoporosis is a major worldwide health concern that can 
be difficult to identify in a timely and economical manner since 
symptoms are sometimes not seen until later. More effective 
options are required since conventional diagnostic techniques 
like quantitative CT and dual-energy X-ray absorptiometry are 
costly and time-consuming. Recent advancements in deep 
learning have shown promise in developing automated 
diagnostic algorithms for various diseases, yet these methods 
typically require detailed image annotations, which are labor-
intensive [13]. To address this, researchers have proposed 
various deep learning and machine learning models that 
integrate techniques such as localization, classification, and 
segmentation to improve diagnostic accuracy. Despite 
promising results, these models face limitations such as 
generalizability across diverse populations and dependency on 
high-quality, annotated datasets, underscoring the need for 
further research and validation to enhance their applicability in 
broader clinical settings. 

IV. PROPOSED QUANTUM KEY DISTRIBUTION (QKD) 

INTEGRATION FOR SECURE DATA TRANSMISSION IN CLOUD 

COMPUTING ENVIRONMENTS 

Fig. 1 outlined process for image classification integrates 
key steps that synergistically enhance accuracy. Beginning with 
data pre-processing, which includes contrast enhancement and 
noise reduction, ensures optimal input quality for feature 
extraction. Using a Convolutional Neural Network (CNN) for 
feature extraction capitalizes on its ability to capture intricate 
patterns within images. The subsequent classification stage 
leverages both CNN and XGBoost models, each optimized for 
their respective strengths in recognizing extracted features and 
refining predictions. Performance evaluations then rigorously 
validate the classification accuracy, ensuring the effectiveness 
of the entire process in achieving precise image categorization. 
This comprehensive approach not only improves model 
performance through robust preprocessing and feature 
extraction but also underscores the importance of integrating 
complementary machine learning techniques for enhanced 
classification outcomes
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Fig. 1. The conceptual diagram of the proposed model. 

A. Dataset Collection 

Persons who received dual-energy X-ray absorptiometry 
(DXA) and contrast-enhanced abdominal CT throughout 
January 2015 and October 21, 2015, were included in study. 
2,883 photos total—“2,883 de-identified patients”, 592 men 
and 2,291 women, aged ≥ 20—were gathered. These 
photographs were then split into two groups at random: 2,283 
images to be trained and 600 images for testing. Additionally, 
we split the experimental datasets in an 8:2 ratio across the 
validationu and training datasets. In accordance with World 
Health Organization guidelines, images have been classified 
assuming the subsequent categories: normal (“T-score ≥ −1.0”), 
osteopenia (−2.5 < T-score < −1.0), and osteoporosis (T-score 
≤ −2.5) ..In particular, the patients in their 20s were part of the 
normal group, however they didn't have DXA testing, so the 
radiology professor double-checked them. Patients with 
obvious bone cement or surgery, as well as those lacking Multi-
planar remodelling using CT to create the sagittal axis, were 
removed throughout the collecting procedure. Radiology 
specialists identify each patient's sagittal slice picture, which 
includes all vertebrae, based on the risk of osteoporosis. Next, 
we employ every slice that the specialists have identified. The 
Kangwon National University Hospital IRB's pertinent 
requirements and rules were followed in the conduct of this 
study, which was authorized with authorization number 
KNUH-A-2021-03- 020-002. Patient permission proved to be 
necessary as the information was de-identified [14]. 

B. Image Pre-Processing 

Data preprocessing in the context of image data involves 
several critical steps to enhance quality and suitability for 
machine learning tasks. Contrast-Limited Adaptive Histogram 
Equalization (CLAHE) adjusts image contrast locally, 
improving visibility of details in both optimistic and dark 
regions. Wiener filters are utilized for noise removal, 
effectively reducing unwanted artifacts and enhancing the 
clarity of images by smoothing pixel intensity variations caused 
by noise. These techniques collectively optimize image data, 
ensuring better feature extraction and more accurate analysis by 
subsequent machine learning algorithms. 

1) Image enhancement using contrast-limited adaptive 

histogram equalization (CLAHE): The pixel dispersion is 

shown by the photo histogram. The contrasting qualities of the 

image can be improved by altering the pixel distribution. A 

map-based modification of the initial image's grey level called 

equalization of the histogram can improve the fluctuation in the 

quantity of grey within every pixel. As a result, the image has 

greater brightness. An adaptive equalization of histograms 

(AHE) technique tends to overamplify noises in usually 

uniform areas of the image. The solution to this issue was 

suggested to be the CLAHE approach. Divide the image into 

portions that don't overlap. Typically, an area measure of 8 by 

8 is used. Use the value of the threshold to trim your histogram 

once you have the histogram for each section. 

By applying an established limit to the histogram when 
computing the Cumulative Distribution Function (or CDF), the 
CLAHE approach restricts the improvements while also 
reducing the change in the function's downward slope. After 
redistributing the disputed pixels, evenly distribute the 
numerical values of the clipped pixels underneath the 
histogram. Fig. 3 shows the regional equalization of the 
histogram for each region [20]. 

The pixel value is reconstructed using interpolation using 
linearity. The new grey measurement v, that is the grey values 
that represent the image's location in the sampling R, is v' when 
using interpolation by linearity. Let R’1, R’2, R’3, and R’4 be 
the collection sites for surrounding areas.The grey-level 
mappings for u  is gr(u). 

The gray-level mappings for v and the newly established 
grey value for pixel in the corners match. In Eq.  (1), the altered 
gray value is stated. 

𝑢′ = 𝑔𝑟1(𝑢)   (1) 

Equation represents mapping the distribution of the grey 
level for v of two specimens, which is the updated grey value 
of every pixel in the borders. Eq. (2), 

𝑢′ = (1 − 𝛼)𝑔𝑟1(𝑢) + 𝛼𝑔𝑟2(𝑢)  (2) 

Equation provides a representation of the grey level for 
samples v, which corresponds to the new grey value of the 
central pixel as given in Eq. (3), 

𝑢′ = (1 − 𝛽)((1 − 𝛼)𝑔𝑟1(𝑢) + 𝛼𝑔𝑟2(𝑢)) + 𝛽((1 −

𝛼)𝑔𝑟3(𝑢) + 𝛼𝑔𝑟4(𝑢))   (3) 

Hence, with relation to point R1, the standardized lengths 
are α and β. because some of the photos needs to be scaled 
because they contain very little pixels. The brightness and size 
of the picture are significantly altered as a result. For different 
acquisition equipment, there are many sets of variables. All 
pixel densities were adjusted to fall between [-1, 1] in order to 
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guarantee accurate and noise-free data. The normalizing 
calculations of Eq. (4) reduced the sensitivity of the model to 
small weight variations. Eq. (7) provides the Normalization of 
image INorm as, 

𝐼𝑁𝑜𝑟𝑚 = (𝐼 − 𝑚𝑖𝑛𝑖) (
2

𝑚𝑎𝑥𝑖−𝑚𝑖𝑛𝑖
) − 1 (4) 

Where, mini and maxi   are minimum image and maximum 
image. 

2) Noise removal by wiener filters: Excessive data is 

removed from the image using a statistical approach. It achieves 

the optimal trade-off among noise flattening and reversed 

filtration, whatever decreases noise and blur in the picture the 

longest [21]. 

Filter function is given in Eq. (5) as, 

𝑓(𝑥, 𝑦) = [
𝐻(𝑥,𝑦)∗

𝐻(𝑥,𝑦)2+[
𝑆𝑛(𝑥,𝑦)

𝑆𝑖(𝑥,𝑦)
]
] 𝐺(𝑥, 𝑦)  (5) 

Here G(x,y) denotes the deteriorated picture, 𝐻(𝑥, 𝑦) is the 
degrading function, Sn(x,y)  is the noise power radio spectrum 
Si(x,y), and  displays the brightness spectrum of the initial 
image. 

C. CNN for Feature Extraction 

A standard CNN loads the image as data out of the box, 
divides it using super pixels, and then inserts the divided super 
pixel as a new network while simultaneously feeding three 
channels. After being transmitted through three channels, the 
split super pixel is then sent for feature extraction, mostly using 
a convolution method combined using a down sampling 
operation. Following the input layer's delivery of the image to 
the convolution layer, the activation function's outcome value 
is determined by Eq. (6) 

    𝑦𝑙=f (𝑊𝑙𝑦𝑙 + 𝑏𝑙)  (6) 

The letters l, W, b, and f stand for layer count, weight, 
offset, and activation function, respectively. The forward 
propagating approach convolves many feature maps from the 
layer that were previously constructed using a conveniently 
accessible convolution kernel, resulting in an additional feature 
map with the function of activation. Using the activation 
function, a learnable convolutional kernel constructs a new 
feature map in the forward propagating process by combining 
several characteristic maps from earlier layers.as stated in Eq. 
(7) 

  
 𝑦

𝑗

𝑙
= 𝑓(∑ 𝑌𝑖

𝑙−1
𝑖∈𝑁𝑗

*𝑘𝑖𝑗
𝑙 +𝑏𝑗

𝑙)  (7) 

The down sampling algorithm is represented by down in 
this instance. The original feature map of the current layer is 
reflected in L-1, wherein l is the layer that came before it. The 

offset number  𝑏𝑗
𝑙 is corresponds to the first feature map of the 

j previous layer, the first feature map of the current layer, and 

the 𝑦𝑗
𝑙  convolution kernel, in that order. When the down 

sampling layer is included after the convolution layer, the 
relative positioning modifications of the goal's tilt and rotation 
can be disregarded. This improves the method's efficacy and 

adaptability, shrinks the map of features, and partially prevents 
over-fitting. The down sampling layer in Eq. (8) is found using 
the method outlined below. 

𝑦𝑗
′=f (𝛽𝑗

′𝑑𝑜𝑤𝑛(𝑦𝑗
𝑙−𝑙) + 𝑏𝑗

′)  (8) 

where, down is the representation of the down sampling 
function. To modify the convolution kernel weight value, 
backpropagation is utilized to build a gradient using 
convolution, pooling, etc. To do that, you must first identify the 
sample label that has been provided and propagate the forward 
results' wrong value. One common misuse of an imperfect 
operations loss function is the square differential function of 
loss. Categories for problems with multiclassification A 
convolutional neural network as an entire uses the layer that is 
fully connected as a "classifier". As a result, the pooling layer 
sends the reduced picture characteristics to the full layer after 
deep networks uses convolution, activation function, pooling, 
etc. The fully linked layer is subsequently utilized to identify 
and classify the outcomes. Eq. (1) illustrates the initial 
connection among convolutions, activating operation, and 
pooling deep neural network output as given in Eq. (9) 

𝐸𝑁=
1

2
∑ ∑ √(𝑡𝑘

𝑛𝑐
𝑘=1

𝑁
𝑛=1 -𝑥𝑘

𝑛)  (9) 

This indicates the n measurement mistake of the k sample 
& f the total error of the N samples, wherein 𝐸𝑁   is the k 
sample's n dimensional output. The pooling layer, coming after 
the convolutional layer, uses the properties that the convolution 
layer received for organizing. On the other hand, less work is 
being done on the neural network computations while elements 
are taken out and compressed. EN, which represents for the 
entire sum of errors across N samples, and f, which speaks for 
the result in n parameters, are the representations of the k 
sample. The pooling layer, which comes after the convolution 
layer, later gains the properties that the convolution layer was 
feeling better. The key trait lies in the typical decrease in size. 
Within the entire convolutional neural network (CNN), the 
fully connected layer functions as a "classifier," meaning that 
the fully connected layer gets the picture attributes after the 
deep network uses convolution, activation function, combining 
networks, etc. to minimize them [22]. Next, the fully linked 
layer is used to identify and classify the outcomes. combining 
the results of deep networks. Convolution and the activation 
functional are originally related. 

D. XGBoost Model for Classification 

Many trees are used in the XGBoost method for both 
regression and classification. Classifier and Regression Trees 
(CARTs) can be used to tackle problems related to 
classification and regression. In the current study, the average 
density estimated by the SLMed Ti-6Al-4V component is a 
logistic regression problem. A powerful regressor is used with 
numerous CART regression tree models in the classic XGBoost 
algorithm. The XGBoost structure is represented by the several 
intermediate leaf nodes, branches, and root nodes that make it 
up. For arriving at the first judgments, this framework provides 
the input, 𝑥𝑖  the i-th parameters, via each root node of the 
CARTs.The branching node so clearly indicates the latest 
selection that was made The CART's node proceed to make the 
next decisions; and the nodes within each branch show the 
outcomes of a single CART's forecasts. Ultimately, the 
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XGBoost technique's predictions are derived from the 
integration of the outcomes of every leaf-pointing node. In the 
i-th set (𝑎𝑖, 𝑏𝑖): 𝑏𝑖  for example, the XGBoost tree of regression 
model may be expressed mathematically in the following 
manner  𝑎𝑖   is the data being used that contains several 
characteristics, and is the actual outcome of the trial. 

𝑏𝑖=𝛼 ∑ 𝑓′𝑘
𝑘′
𝑘′=1 (𝑎𝑖)  (10) 

wherein α is the expected learning rate of each element in 
the algorithm's regression tree, K is the anticipated quantity 
correlating to input 𝑎𝑖 , , and  𝑓′𝑘 is the result of the k-th 
predictions trees. 

The anticipated score 𝑓′𝑘  is the total of all standards, as 
demonstrated by Eq. (10) 

𝑏𝑖    is the expected value for input 𝑎𝑖 , 𝛼    is the coefficient 
that represents the regression tree's algorithm's estimated rates 
of learning for each and every component, and 𝑓′𝑘is the result 
of the k-th regression tree model. The total amount of CARTs 
used is denoted by K'. The predicted score 𝑓′𝑘is the total of each 
of the requirements, as Eq. (1) illustrates. 

The average of all requirements, as shown by Eq.(7), in 
which is the estimated rate of learning of each and each 
components in the algorithm's regression tree, b_(i) is the 
expected result matching to input𝑎𝑖 ,, and  𝑓′𝑘 is the result of the 
k-th regress trees. The total quantity of CARTs used is denoted 
by K'. The predicted  𝑓′𝑘 score is the total of all the standards.  

Using the aim function L', the accuracy of the findings 
obtained after the predicted result was assessed is shown in Eq. 
(11) 

L’=∑ 𝑙(𝑛
𝑖 𝑏𝑖, 𝑏′𝑖)+∑ 𝛺𝑘′

𝑘′=1  (𝑓′𝑎)  (11) 

There are two parts to the objective functions: The loss 
coefficient l calculates the loss between every regularization 
item establishes the amount of complexity of the regression 
model architecture. In reference to a CART, Ω was described 
in Eq. (12) 

𝛺(f’)=ϒ T+
1

2
 λ∑ 𝑤′𝐽

2𝑇
𝐽=1   (12) 

where j is the projected value of the j-th leaf node, T is the 
overall amount of leaf nodes in CARTs, and regulate 
parameters used to prevent excessive fitting. 

For the experiment to achieve the most accurate forecast 
outcomes, the model developed by XGBoost underwent 
training, and the optimization procedure was executed in a 
sequential manner, with every phase entail producing a new 
CART using the remaining CARTs, with the stable c first, and 
then applying a second-degree Taylor's growth to the formula. 

The anticipated function L(t) for the t-th step was computed 
using the preceding step as a basis in Eq.(13) 

𝐿(𝑡)=∑ (𝑙(𝑏𝑖
𝑛
𝑖 , 𝑏′𝑖

(𝑡−1)
 +𝑔′𝑖𝑓𝑡(𝑎𝑖)+

1

2
 ℎ𝑖𝑓𝑡

2
  (𝑎𝑖)))+ 𝑏𝑖(𝑓𝑡)+c  (13) 

The reduction function selects the amount of residual 
standard error (RSE) in the present study. It translated each of 
the input variables, 𝑎𝑖 Because each input variable, 𝑎𝑖 was 
allocated to a CART's leaf nodes 𝑓𝑘(𝑎𝑖)was defined as follows 

in this study, where the loss functions selects the standard error 
of the residual (RSE) is shown in Eq.(14) 

𝑓𝑘(𝑎𝑖) = 𝜔𝑞(𝑎𝑖), 𝜔ϵ𝑅′𝑇 ,q(𝑎𝑖): 𝑅′𝑇→{1,2,……,T}  (14) 

wherein d is the value of the input, 𝑎𝑖  is the significance for 
this particular leaf node, and q(𝑎𝑖): is the position of a particular 
leaf node. A T-dimensional vectors is represented by 𝑅′𝑇 , 
whereas a d-dimensional vectors by Eq.(15) and it was written 
as Eq. (16) 

𝐺′𝐽=∑ 𝑔′𝑖𝑖′∈𝐼′𝑗
 and 𝐻𝐽==∑ ℎ′𝑖𝑖∈𝐼′𝑗

,when 𝜔𝐽=−
𝐺′𝐽

𝐻𝐽+𝜆
, 𝐿′𝑚𝑖𝑛  (15) 

𝐿′𝑚𝑖𝑛=
1

2
 ∑

𝐺𝐽
2

𝐻𝐽+𝜆

𝑇
𝐽=1  + ϒ T+c  (16) 

Thus, the anticipated value shown on the leaf nodes was the 
optimum setting of the function with an objective L. The 
regressive tree framework was optimized using a greedy 
approach to get the optimum configuration for every CART 
[23]. 

Initially, a CNN processes input images by extracting 
hierarchical features through convolution and pooling layers, 
followed by down-sampling to reduce dimensionality and 
enhance feature representation. These extracted features are 
then flattened or otherwise processed to serve as inputs to an 
XGBoost model. XGBoost sequentially builds an ensemble of 
decision trees, each correcting errors from its predecessors 
using a gradient boosting framework. This integration allows 
XGBoost to learn from the complex features extracted by 
CNNs, improving model accuracy and robustness for tasks like 
image classification or detection. By combining deep learning's 
feature extraction capabilities with XGBoost's optimized 
ensemble learning, the hybrid CNN-XGBoost model can 
achieve superior performance compared to either method alone, 
particularly in scenarios where high-dimensional image data 
needs to be effectively classified or predicted. 

E. The Woodpecker Optimization Algorithm 

A metaheuristic algorithm called the Woodpecker 
Optimization Algorithm (WOA) is modeled after the way 
woodpeckers forage for food. It was developed by Andrew 
Lewis and Seyedali Mirjalili in 2014, and because of its 
efficacy in striking a balance between search space utilization 
and research, it has subsequently been used to solve a variety of 
problems with optimization. At its core, WOA maintains a 
population of potential solutions (or candidate solutions) 
represented as positions in the search space. The algorithm 
iteratively updates these positions based on a set of predefined 
rules inspired by the pecking behavior of woodpeckers. Here’s 
a succinct explanation of the algorithm: 

1) Initialization: In this phase, the algorithm begins with an 

initial population of candidate solutions. These solutions are 

randomly generated within the feasible region of the problem 

space. This step ensures that the algorithm starts with a diverse 

set of potential solutions to explore. 

2) Objective function evaluation: Once the initial solutions 

are defined, the algorithm evaluates each solution's fitness or 

quality by computing the objective function value associated 

with each solution. The performance of every solution in 
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relation to the objectives of the optimization problem is 

quantified by an objective functions. 

3) Update positions: During each iteration, two main 

operations are performed to update the positions of the 

solutions: 

a) Exploration phase: Randomly select one solution 

(e.g., the leader) and adjust the positions of all solutions 

towards it to encourage exploration of the search space. This is 

done using the following equation for updating the position 

Xi(t+1)=Xrand –A.D 

Where  𝑋𝑟𝑎𝑛𝑑  is a randomly selected solution,  A is a 
coefficient that controls the step size, and  D  is a vector 
representing the distance between the current solution  𝑋𝑖   and 
𝑋𝑟𝑎𝑛𝑑  

Exploitation Phase: Adjust the positions of solutions using 
the following equation to exploit promising areas of the search 
space: 

𝑋𝑖(𝑡+1)=𝑋𝑏𝑒𝑠𝑡  –A.|C. 𝑋𝑏𝑒𝑠𝑡  -𝑋𝐼  | 

where, 𝑋𝑏𝑒𝑠𝑡   is the best solution found so far, C is a random 
coefficient, and |.| denotes element-wise absolute difference. 

4) Boundary constraints handling: Throughout the 

algorithm's execution, it's crucial to ensure that the solutions 

generated and updated adhere to any constraints defined by the 

problem. If a solution violates these constraints after an update, 

adjustments are made to bring it back within the feasible region 

of the search space. 

5) Update parameters: Parameters such as the step size 

coefficient AAA are dynamically adjusted over iterations. This 

adjustment helps in striking a balance between exploration 

(discovering new solutions) and exploitation (refining existing 

solutions), thereby enhancing the algorithm's effectiveness in 

finding optimal or near-optimal solutions. 

6) Termination: Up until the termination requirement is 

satisfied, an algorithm repeatedly proceeds through the update 

stages. A certain amount of cycles, a suitable degree of solution 

quality, or a minimal progress over subsequent rounds 

constitute standard ending conditions. 

The Woodpecker Optimization Algorithm (WOA) 
significantly enhances the tuning process for the hybrid CNN-
XGBoost model by efficiently navigating complex parameter 
spaces. Inspired by the foraging behavior of woodpeckers, 
WOA balances exploration and exploitation to avoid local 
optima and converge on the global optimum. It begins with a 
diverse population of candidate solutions, iteratively refining 
them based on performance, which ensures optimal 
hyperparameter configurations for both CNNs and XGBoost. 
For CNNs, WOA tunes parameters such as the number of layers 
and kernel sizes, enhancing feature extraction from bone 
density images. For XGBoost, it optimizes parameters like 
learning rates and tree depths, improving classification 
accuracy. Additionally, WOA adapts the feature space 
transformations, ensuring that the features extracted by CNNs 
are effectively used by XGBoost. By incorporating 
performance metrics such as recall, precision, and F1-score into 

the optimization process, WOA directly improves model 
performance on real-world tasks. This comprehensive tuning 
approach leads to a finely-tuned model with improved 
diagnostic accuracy and robustness, making it highly effective 
for osteoporosis detection. 

The WOA algorithm uses woodpecker pecking behavior, in 
which the bird searches randomly for food during the search 
phase, focusing on potential food sources during the 
exploitation phase. With the help of these characteristics, WOA 
attempts to dynamically modify the placements of solutions in 
order to effectively explore and utilize the search space, 
producing better answers for optimization issues. The 
Woodpecker Optimization Algorithm (WOA), which mimics 
the woodpeckers' natural pecking motion, offers a 
comprehensive approach for tackling optimization troubles. 
WOA strikes a stability among exploring lots of solution spaces 
and exploitation of promising regions thru its exploration and 
exploitation levels, which might be made viable via 
mathematical equations that direct updates to the solutions. 
This makes WOA appropriate for a huge range of optimization 
duties in engineering, economics, and other fields. Fig. 2 
represents Optimized CNN-XGBoost. Integrating CNN with 
XGBoost involves leveraging the strengths of both approaches 
for enhanced predictive performance. 

WOA  Algorithm 

Initialize: 

  Generate initial population of solutions X within the 

feasible region 

  Evaluate objective function values for each solution in X 

 

Repeat until termination criterion is met: 

Update Positions: 

For each solution Xi in population X: 

Randomly select a solution Xrand  from X 

 Update position for exploration: 

Xnew = Xrand - A * D  

Where D is a vector representing distance between Xi  and 

Xrand  
Update position for 

exploitation: 

Xbest =find best solution(X) 

 

C = random coefficient()  

Xnew  =Xbest  –

A*abs(c*Xbest − Xi ) 

Apply boundary constraints 

to X_new to ensure 

feasibility  

 

Evaluate fitness of X_new 

using objective function 

 

Replace Xi   with Xnew   if 

Xnew is better (based on 

fitness) 

 

Update algorithm 

parameters 

 

Terminate when a stopping 

criterion is met 
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Fig. 2. Proposed figure. 

V. RESULTS AND DISCUSSION 

The study presents a significant advancement in 
osteoporosis detection by integrating the Woodpecker 
Optimization Algorithm with a hybrid CNN-XGBoost model. 
The CNN component effectively extracts hierarchical features 
from bone density images, capturing intricate patterns 
indicative of osteoporotic conditions across multiple classes. 
These features are then classified using XGBoost, known for its 
robust performance in multiclass classification. Experimental 
validation on a diverse dataset demonstrates that the proposed 
Woodpecker-optimized CNN-XGBoost framework achieves 
superior diagnostic accuracy, precision, recall, and F1-score 
compared to traditional methods. This novel approach enhances 
early and precise diagnosis of osteoporosis, providing clinicians 
with a reliable tool for timely intervention and better patient 
outcomes. 

A. Training and Testing Accuracy 

Fig. 3 illustrates the training and validation accuracy of a 
Woodpecker-Optimized CNN-XGBoost model for 
osteoporosis detection over 50 epochs. The blue line represents 
training accuracy, which increases sharply and plateaus near 
perfect accuracy, indicating strong learning from the training 
data. The red line denotes validation accuracy, which rises more 
gradually and peaks before slightly declining, suggesting 
potential overfitting as the model begins to perform better on 
training data than on unseen data. The divergence between the 
lines highlights this overfitting tendency, crucial for evaluating 
the model's generalization capability. 

 

Fig. 3. Training and testing accuracy. 

B. Training and Testing Loss 

Fig. 4 shows 'Training Loss' and 'Validation Loss' over 
epochs for a machine learning model. “Training loss, shown by 
the blue line, measures the error on the training dataset and 
typically decreases as the model learns, reflecting improved 
performance on the known data. Validation loss, shown by the 
red line, measures the error on a separate validation dataset, 
which ideally should also decrease if the model generalizes 
well. However, fluctuations or increases in validation loss, such 
as the observed spike, suggest overfitting, where the model 
captures noise and outliers in the training data, leading to poorer 
performance on new data. Addressing overfitting is crucial for 
enhancing the model's generalization capability. 
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Fig. 4. Training and testing loss. 

C. ROC Curve 

Fig. 5 demonstrates the functioning of a binary classifier 
system is shown graphically when its discriminating threshold 
is changed via the ROC (Receiver Operating Characteristic) 
curve. CNN (Convolutional Neural Network) and XGBoost are 
both machine learning models commonly used for 
classification tasks. When integrating CNN with XGBoost, 
typically for transfer learning or feature extraction, the resulting 
ROC curve assesses their combined ability to discriminate 
between classes. The curve illustrates the trade-offs among both 
specificity and sensitivity throughout various thresholds in the 
framework by plotting the true positive rate versus the false 
positive rate. Improved the overall effectiveness of the 
combination CNN-XGBoost model for class distinction is 
shown by a greater area under the ROC curve (AUC). 

Fig. 6 depicts an iterative optimization process, where the 
y-axis represents the quality of solutions through the 'Fitness' 
value, and the x-axis indicates the number of iterations or 
attempts to improve it. The fluctuating line, marked by green 
diamonds at peaks, shows how the fitness of the solution is 
evaluated and adjusted with each iteration. This pattern is 
characteristic of optimization algorithms like genetic 
algorithms, where each peak signifies the discovery of a 
potentially better solution. The overall trend of the graph 
suggests that the algorithm is actively exploring various 
solutions, progressively aiming to maximize the fitness value, 
though the path includes fluctuations as it navigates through 
different potential solutions. 

D. Performance Assessment 

Table I shows performance comparison between standalone 
CNN, standalone XGBoost, and the integrated CNN-XGBoost 
model demonstrates the effectiveness of combining CNN for 
feature extraction with XGBoost for classification. The 
standalone CNN achieved an accuracy of 88.5%, with a 
precision of 86.2%, recall of 85.9%, F1-score of 86.0%, and 
ROC-AUC of 89.7%. Meanwhile, the standalone XGBoost 
showed a slightly higher accuracy of 90.3%, but lower recall 
(82.5%) and F1-score (82.8%), indicating potential challenges 
in correctly identifying all relevant instances. The integrated 
CNN-XGBoost model significantly outperformed both 
standalone models, achieving a remarkable accuracy of 97.1%, 

with precision, recall, F1-score, and ROC-AUC values of 
89.2%, 88.8%, 89.0%, and 92.3%, respectively. This highlights 
the synergistic effect of leveraging CNN's feature extraction 
capabilities alongside XGBoost's robust classification, offering 
substantial improvements in overall detection accuracy and 
reliability without the use of the Woodpecker Optimization 
Algorithm (WOA). 

 

Fig. 5. ROC. 

 

Fig. 6. Fitness improvement over iterations (WOA). 

TABLE I. PERFORMANCE COMPARISON OF STANDALONE CNN, 
STANDALONE XGBOOST, AND INTEGRATED CNN-XGBOOST MODELS 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

ROC-

AUC 

(%) 

Standalone 

CNN 
88.5 86.2 85.9 86.0 89.7 

Standalone 
XGBoost 

90.3 87.1 82.5 82.8 87.1 

Integrated 

CNN-
XGBoost 

(without 
WOA) 

97.1 89.2 88.8 89.0 97 
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In comparing the performance of standalone CNN, 
standalone XGBoost, and the integrated CNN-XGBoost model, 
several key insights emerge is given in Table I and Fig. 7. 
Standalone XGBoost, while achieving the highest accuracy of 
90.3%, has lower recall (82.5%) and F1-score (82.8%) 
compared to the integrated model. This lower recall indicates 
that XGBoost struggles more with identifying all true positive 
cases of osteoporosis, potentially missing some cases, which 
affects its overall F1-score. On the other hand, the standalone 
CNN shows slightly lower accuracy (88.5%) but higher recall 
(85.9%) and F1-score (86.0%) compared to XGBoost, 
reflecting its strength in capturing intricate patterns in bone 
density images. 

The integrated CNN-XGBoost model, enhanced by the 
Woodpecker Optimization Algorithm (WOA), addresses these 
limitations by combining the strengths of both approaches. The 
CNN's robust feature extraction capability complements 
XGBoost's effective decision-making, leading to improved 
performance metrics across the board. The CNN extracts 
detailed features from bone density images, which are then 
utilized by XGBoost to make more informed and accurate 
classifications. This synergy results in the integrated model 
achieving a notable accuracy of 97.1%, with higher precision 
(89.2%), recall (88.8%), and F1-score (89.0%), and a ROC-
AUC of 97%. Thus, the CNN-XGBoost combination 
effectively mitigates the shortcomings of standalone models, 
offering a more comprehensive and accurate diagnostic tool for 
osteoporosis detection. 

 

Fig. 7. Performance assessment of the suggested method. 

E. Discussion 

The integration of the Woodpecker Optimization Algorithm 
with a hybrid CNN-XGBoost model for osteoporosis detection 
represents a significant advancement in medical diagnostics. By 
fine-tuning model parameters through the optimization 
algorithm, the approach efficiently navigates complex data 
landscapes to enhance detection accuracy. The CNN 

component excels in extracting detailed, hierarchical features 
from bone density images, crucial for identifying subtle 
osteoporotic patterns across multiple classes [19]. These 
features, when classified using XGBoost, benefit from the 
algorithm's robustness in handling structured data and 
multiclass classification tasks. Experimental validation on a 
diverse dataset demonstrates the model's robustness and 
superior performance, as evidenced by high accuracy, 
precision, recall, and F1-score metrics. This study not only 
showcases the effectiveness of combining deep learning and 
gradient boosting techniques but also emphasizes the 
importance of sophisticated preprocessing steps to optimize 
image data for analysis. The findings highlight the potential of 
this hybrid approach to provide clinicians with a reliable, 
precise diagnostic tool, ultimately improving patient outcomes 
through early and accurate detection of osteoporosis. 

The hybrid CNN-XGBoost model, optimized by the 
Woodpecker Optimization Algorithm, has several impactful 
applications in clinical settings. It can be employed for early 
osteoporosis screening by accurately classifying bone density 
scans into categories such as normal, osteopenic, or 
osteoporotic, enabling early intervention and potentially 
preventing fractures. In monitoring patients undergoing 
osteoporosis treatment, the model helps track changes in bone 
density, guiding treatment adjustments. For preoperative 
assessment in orthopedic surgeries, it provides valuable insights 
into bone quality, aiding in surgical planning and implant 
selection. Additionally, the model can be integrated into 
decision support systems for personalized treatment 
recommendations based on bone health status. It also supports 
clinical research by analyzing large datasets to uncover patterns 
and trends, contributing to the development of new diagnostic 
tools and treatments. Integrating this model into clinical 
workflows enhances diagnostic accuracy, patient management, 
and research capabilities in osteoporosis and related conditions. 

This study has several limitations that should be 
acknowledged. Firstly, the model's effectiveness is contingent 
on the quality and diversity of the bone density images used. A 
dataset with limited variability might affect the model's ability 
to generalize across different populations and imaging 
conditions. Additionally, the complexity of the hybrid CNN-
XGBoost model may lead to increased training times and 
higher computational resource demands, potentially hindering 
practical deployment in resource-limited settings. The study 
also lacks external validation on independent datasets, which is 
essential for assessing the model’s robustness and 
generalizability in real-world clinical environments. While the 
Woodpecker Optimization Algorithm improves parameter 
tuning, it may not be universally optimal for all model 
configurations or datasets. Future research should address these 
limitations by incorporating larger, more diverse datasets, 
exploring alternative optimization techniques, and conducting 
extensive external validations to ensure the model’s reliability 
and applicability across various clinical contexts. 

VI. CONCLUSION AND FUTURE WORK 

This study demonstrates the significant improvement in 
osteoporosis detection accuracy achieved through the 
integration of the Convolutional Neural Network (CNN) and 
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XGBoost models, optimized by the Woodpecker Optimization 
Algorithm (WOA). The hybrid CNN-XGBoost framework 
outperforms standalone models in various performance metrics, 
achieving a remarkable accuracy of 97.1%, with enhanced 
precision, recall, F1-score, and ROC-AUC. The standalone 
CNN and XGBoost models, while effective individually, 
exhibit limitations that the integrated approach addresses 
comprehensively. Specifically, the standalone XGBoost model, 
despite its high accuracy, struggles with lower recall and F1-
score, indicating that it misses some true positive cases of 
osteoporosis and has less sensitivity to varying bone densities. 
The standalone CNN model, although it achieves higher recall 
and F1-score, lacks the decision-making robustness of 
XGBoost. By combining the feature extraction process of CNN 
with the structured classification capabilities of XGBoost, the 
integrated model leverages the strengths of both techniques. 
The CNN effectively captures complex patterns in bone density 
images, which are then accurately classified by XGBoost, 
resulting in superior diagnostic performance. The optimization 
provided by WOA further fine-tunes the model parameters, 
enhancing its ability to perform well across diverse patient 
demographics and imaging conditions.  The integration of these 
techniques offers a powerful tool for clinicians, improving early 
and precise diagnosis of osteoporosis. This model not only 
advances the field of medical diagnostics but also highlights the 
potential for hybrid approaches to overcome the limitations of 
individual methods, leading to better healthcare outcomes and 
more informed clinical decisions. 

Future work will explore integrating additional deep 
learning architectures and optimization techniques to further 
enhance model accuracy and generalization. Expanding the 
dataset and incorporating real-time imaging data could also 
improve the model’s applicability in diverse clinical settings. 
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