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Abstract—Low power and Lossy Networks (LLNs) are 

essential components of the Internet of Things (IoT) 

environment. In LNNs, the Routing Protocol for LLN (RPL)-

based Internet Protocol Version 6 (IPv6) routing protocol is 

regarded as a standardized solution. However, the existing 

models did not account for the issues with congestion and 

security when modeling the RPL. Thus, to resolve these issues, 

this paper proposes a novel Exponential Poisson Distribution–

Fuzzy (EPD-Fuzzy) model and Kullback Leibler Divergence-

based Tunicate Swarm Algorithm (KLD-TSA) for developing a 

reliable RPL model. The hash codes are first generated for the 

registered nodes at the network end in order to achieve security; 

the hash codes are subsequently compared via requests with the 

immediate nodes. Each node sends a request to its neighbors 

using the hash value; if the hash value matches, a path is formed. 

The parent nodes are then chosen and ranked using the Pearson 

Correlation Coefficient-Spotted Hyena Optimization Algorithm 

(PCC-SHOA) technique to minimize latency. To avoid 

congestion, the EPD-Fuzzy is employed to predict congestion; 

then, a genitor node is introduced in the congested scenarios. The 

big data and videos are split, compressed, and sent via multiple 

paths to reduce the losses in the RPL. Moreover, to avoid 

network traffic, a novel KLD-TSA load balancing is introduced 

at the user end. The experiential outcomes exhibited the 

proposed technique’s effectiveness regarding Packet delivery 

ratio (PDR). 

Keywords—Low power and Lossy Network (LLN); Routing 

Protocol for LLN (RPL); load balancing; Internet of Things (IoT); 

Internet Protocol Version 6 (IPv6) 

I. INTRODUCTION 

A platform for extending the communication paradigm to 
novel along with varied levels is provided by the IoT for 
researchers. In the IoT, computing, as well as sensor devices, 
are related to the internet that provides services anywhere and 
anytime [1]. The devices in the IoT are connected over the 
internet via a gateway node. In various applications like smart 
homes, smart farming, smart healthcare, et cetera, the IoT is 
wielded [2]. A network layer in the IoT architecture that 
utilizes diverse standards and protocols is required by the 
devices in those applications. Such standards and protocols are 
Wireless Personal Area Network (WPAN), Internet Protocol 
Version 4 (IPv4), IPv6 over Low Power WPAN (6LoWPAN), 
IPv6 and Transmission Control Protocol (TCP) [3]. However, 
the devices utilized in IoT are deployed as LLNs. The LLN, 
which features restrictions on processing speed, power, and 

storage capacity make up an interconnected network of 
resource-constrained IoT devices [4]. 

Owing to the quality of radios and the minuscule size of 
LLN, the wireless links in LLN are lossy when analogized 
with other wireless networks; also, poor routing is provided by 
the weak routing protocols in LLN owing to the limitations 
like higher energy consumption as well as higher data loss 
within the network [5]. Thus, choosing the best routing 
protocol, which considers lower transmission range, lower 
power, along lower hardware capabilities, is significant in 
LLN [6]. Considering these issues, the IPv6 Routing Protocol 
for LLNs was standardized as a consequence of the working 
group efforts of the Internet Engineering Task Force (IETF), 
which identified RPL as the leading option to handle the 
routing requirements of a variety of LLN-centric applications 
[7]. 

A multi-hop routing tree rooted at a single LLN Border 
Router (LBR), also known as the sink node or gateway node, 
is constructed by the RPL, a distance-vector routing protocol, 
by creating Destination-Oriented Directed Acyclic Graphs 
(DODAGs) between nodes [8]. A sorted pair of nodes is 
chosen in the RPL to serve as a data packet source along with 
a target. Data packets are transmitted via intermediate nodes 
from one to another [9]; lastly, the data is passed to the 
internet via LBR. Although the RPL has the possible to 
enhance and prosper, it has limitations like load imbalance and 
disregard for stability [10]. Moreover, the network traffic is 
mounted by the load imbalance on the user side while 
accessing the data from the internet. Thus, to resolve these 
problems, a novel KL-TSA model is proposed for load 
balancing. Also, to enhance the RPL, a modified PCC-SHOA 
model is proposed for parent selection with an EPD-Fuzzy 
congestion prediction. 

A. Problem Statement 

Despite developing multiple measures for efficiently 
transferring data in the RPL, several problems are still 
unnoticed and need to be resolved. Some of such problems 
are, 

 In prevailing works, energy efficiency is mostly 
concentrated on the RPL network and is not 
concentrated on node security and congestion. 
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 As reliability is affected by rate-limiting, optimum 
solutions are required by load balancing as well as 
congestion control. 

 For example, collecting a substantial quantity of data 
leads to mounted traffic congestion in the network. The 
network’s unpredictable and unreliable performance is 
yielded by the network traffic. 

By considering these problems, the proposed technique 
aims to develop a reliable load-balancing model at the user 
end and develop a reliable congestion mitigation technique 
with optimal parent nodes at the network end. The major 
contributions of the work are as follows: 

 The study introduces a genitor node-centric method 
with the PCC-SHOA-based parent node selection, 
offering a novel strategy for congestion control in the 
RPL. 

 To identify parent node congestion during data 
transfer, a novel EPD-Fuzzy is used.  

 Kullback-Leibler Divergence-Time Series Analysis 
(KLD-TSA) is a novel load-balancing model that is 
proposed to alleviate user congestion and enhance 
network performance. 

 Effective network load balancing at the user results in a 
4675 ms latency for 250 requests from users, 
demonstrating effective data handling and quick access 
time. 

B. Motivation and Benefits of the Proposed Approach 

The motivation of the proposed approach comes from the 
issues that currently exist in the RPL protocol: Energy 
efficiency, load balancing, congestion control, and reliability. 
Although various improvements have been made, most of the 
current solutions consider only one-by-one problems and 
ignore some very critical factors that bring performance 
degradation, latency, and instability, mainly in IoT 
environments with heavy traffic. This work gives a holistic 
solution to dynamic user-centric load balancing through the 
introduction of a KLD-TSA model, a method of selecting 
parent nodes using PCC-SHOA for the optimization of traffic 
distribution, and an EPD-Fuzzy congestion prediction 
mechanism in an effort to reduce energy waste and enhance 
stability. It reduces latency and improves access times, hence 
making the network more reliable with better energy 
efficiency to meet a more scalable, flexible, and sustainable 
IoT network that will help different types of applications, 
including mission-critical services like healthcare and smart 
city infrastructure. 

The paper’s formation is systematized as: Section II 
implies the recent related works of RPL for IoT. Section III 
states the proposed approaches. Section IV elaborates on the 
experimental outcomes. Section V ends the paper conclusion 
and a better suggestion for future enhancement. 

II. RELATED WORKS 

This section examines current research on load balancing, 
congestion, and the RPL network routing mechanism. 

Safara et al., (2020) [11] established a priority-centric 
energy-efficient routing (PriNergy) technique for IoT systems. 
The RPL model developed its own routing protocol, which 
determined routing method through contents with an emphasis 
on energy consumption. The results showed that the PriNergy 
mechanism decreased the overhead on the use of energy. 
However, the energy consumption increased when the speed 
of nodes increased, this influenced the PriNergy model’s 
performance. 

Conti et al., (2020) [12] presented a strong multicast 
communication protocol for LLNs. A lower-overhead cluster-
centric multicast routing mechanism was wielded on the RPL 
protocol’s top by the presented technique. The implementation 
outcomes proved the protocol’s efficacy over conventional 
protocols regarding Packet Delivery Ratio (PDR) to 25%. But 
the model’s overall energy consumption was more than the 
prevailing techniques. 

Mutalemwa & Shin, (2020) [13] employed secure routing 
protocols for safeguarding source nodes in wireless networks 
with multiple hops of communication. Two phantom-centric 
source location privacy routing protocols were developed by 
the presented technique. The outcomes exhibited that the 
protocols had better performance features with controlled 
energy consumption as well as PDR. However, the model’s 
complexity reduced data transmission reliability. 

Hassan et al., (2020) [14] introduced a Control layer-
centered trust mechanism for supporting secure routing in 
RPL-grounded IoT applications. The technique was named 
CTrust-RPL, which assessed the nodes’ trust grounded on the 
forwarding behaviors. The presented model’s outcomes 
proved the superiority of the model with 35% more energy 
efficiency. Yet, CTrust-RPL could be confronted with energy 
preservation, scalability, along decentralization issues. 

Preeth et al., (2020) [15] deployed a proficient parent 
selection approach in the RPL by utilizing Ant Colony 
Optimization (ACO) along with coverage-centric dynamic 
trickle systems. For parent selection, an energy-efficient RPL 
protocol with ACO-grounded multi-factor optimization was 
generated by the study. The outcomes exposed that the E-RPL 
had 90% of PDR over 30 node topologies. Although it was a 
better model, the E-RPL could not achieve better routing 
overhead when the DODAG was increased. 

Seyfollahi & Ghaffari, (2020) [16] explored a Lightweight 
Load balancing and Route Minimizing solution for RPL 
(L2RMR). The L2RMR scheme encompassed an Objective 
Function (OF) together with a routing metric grounded on the 
path route minimization. The outcomes exhibited that the 
developed model could enrich the energy consumption, End-
to-End delay, along average Packet Loss Ratio (PLR). 
However, the L2RMRscheme could not perform reliably 
during high traffic betwixt the nodes. 

Manikannan & Nagarajan, (2020) [17] propounded a 
framework for the RPL/6LoWPAN-centric IoT network with 
the firefly approach. An RPL-based firefly optimization 
algorithm was developed to establish a stable and dependable 
protocol mobility management framework. The experiment 
proved that the mPRL-firefly optimizer enhanced the PDR by 
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an average of 2.31% more than the other prevailing 
algorithms. Nevertheless, the average power consumption in 
the developed system increased when contrasted with the 
conventional RPL model. 

Chiti et al., (2021) [18] implemented a green routing 
protocol with power transfer for IoT. An OF for RPL 
grounded on a composite metric, which considered the parent 
node’s remaining power together with the child node, could 
handover to the parent node as per the Wireless Power 
Transfer (WPT) concept. The performance evaluation 
exhibited remarkable energy saving, which prolonged the 
network lifetime. Yet, for a long-range, the model could not 
perform routing efficiently. 

Bidai, (2022) [19] enriched the RPL for supporting video 
traffic for Internet of Multimedia Things (IoMT) applications. 
A multi-Path version of RPL (MP-RPL), which leveraged the 
multi-parent feature provided by RPL for constructing various 
end-to-end paths of diverse qualities regarding radio link 
quality, was wielded by the enhanced model. The simulations 
exhibited that feasible and acceptable Quality of Service 
(QoS) was provided by the presented model when contrasted 
with the conventional single-path RPL. Since the conventional 
RPL performs better, the model is limited to the average end-
to-end delay. 

Karami and Derakhshanfard, (2020) [20] illustrated a 
Routing Protocol grounded on Remaining Time to encounter 
nodes with Destination nodes (RPRTD) utilizing an Artificial 
Neural Network (ANN). The routing was carried out by 
identifying the contact node with more effective conditions. 
The results showed that the RPRTD model efficiently and 
with higher accuracy anticipated the time needed for 
interacting nodes with the destination node while requiring 
less storage. However, with the ANN model, the RPRTD 
framework took more time for training in the LLNs. 

Royaee et al., (2021) [21] demonstrated a context-aware 
system for RPL load balancing of LLNs in the IoT. Therefore, 
load balancing and Automata-ant colony-centric Multiple 
Recursive RPL (AMRRPL) were developed to prevent 
congestion. The Cooja simulator experiments showed that the 
AMRRPL algorithm significantly improved with increased 
PDR and network lifetime. Nevertheless, the node ranking 
took more time to converge, which could cause a delay. 

Sahraoui & Henni, (2021) [22] developed a Secure and 
Adaptive Multi-Path RPL (SAMP-RPL) for enriched security 
along with reliability in the heterogeneous IoT. For IPv6 RPL, 
the SAMP-RPL relied on three variants of adaptive together 
with safe multipath routing. The outcomes of the Cooja 
simulator exhibited the SAMP-RPL model’s efficacy for 
enhanced dependability and security of communication at 
lower costs. The simulation on the Cooja platform triggered 
the inaccuracy issues. 

Yassien et al., (2021) [23] developed the RPL and Load 
Balancing Time-Based (LBTB) model to optimize the load 
balancing procedure with the capability for attaining superior 
network reliability as well as service time. The LBTB was 
employed with the modification of the trickle Timer 
algorithm. The outcomes displayed that higher performance 

was achieved regarding time-saving and power-saving. 
However, the imbalance among the nodes caused a congestion 
problem. 

Musaddiq et al., (2020) [24] employed an RPL for the 
heterogeneous traffic network. Here, various RPLs under 
heterogeneous traffic were evaluated; also, a protocol named 
Queue and Work-Load-based RPL (QWL-RPL) was 
introduced. The outcomes displayed that QWL-RPL could 
enhance the heterogeneous traffic network’s performance 
concerning the amount of overhead, jitter, along average 
delay. However, for scheduling, the control messages as well 
as service discovery had issues associated with overhead and 
convergence time. 

Hadaya & Alabady, (2021) [25] designed an enhanced 
RPL protocol for the IoT environment. An enhancement in the 
RPL OF is suggested by the presented work that considered 3 
metrics, namely Expected Transmission count (ETX), residual 
energy, and load. The outcomes exposed that the RPL 
protocol was enhanced by the model concerning total power 
consumption, PLR, along PDR. However, the nodes’ data 
security was not efficiently maintained since it was learned 
with only a limited number of Cognitive Packet Network’s 
features. 

A. Research Gap 

Literature research gaps in the improvement of RPL 
protocols for IoT networks are based on some key challenges. 
While energy efficiency, scalability, and security have 
improved, there are related trade-offs that need to be 
addressed. On the other hand, energy efficiency improvements 
mostly come at a cost in terms of performance under different 
conditions, including high traffic or node mobility. On their 
part, scalability issues are manifested with increased network 
size, contributing to increased routing overhead. The 
reliability is poor, and security enhances the complexity under 
high traffic for the architecture. Current context-aware and 
adaptive protocols are overload with long convergence times, 
having computational overhead. Multimedia support suffers 
due to end-to-end delays. Decentralized approaches that 
extend the lifetime of the network remain underdeveloped. 
There is also a need for better support of multimedia services 
and QoS to reduce latency, particularly in real-time IoT 
applications. Other challenges include decentralize and 
efficiently manage over long distances. A critical research gap 
is thus the development of scalable, reliable, energy-efficient 
RPL-based solutions that ensure efficient handling of high 
traffic, enhanced security, support for real-time multimedia, 
and uniform performance across different IoT environments. 

III. PROPOSED ROUTING APPROACHES IN THE RPL 

The RPL concept was promoted by the rapid development 
of the IoT. However, in prevailing models, secure packet 
delivery and traffic congestion control were hardly performed; 
also, much importance was not given to the user-side traffic. 
Thus, to overcome these issues, a novel EPD-Fuzzy-centric 
congestion control in the RPL is proposed with the KL-TSA 
load balancing technique. Fig. 1 depicts the architecture of the 
proposed RPL. 
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Fig. 1. Framework of the proposed RPL. 

A. Node Registration 

The proposed model begins with the registration of nodes 
participating in the network. All the nodes are registered in the 
network with their ID(𝐼𝐷), IP(𝐼𝑃), and MAC(𝑀) Address. 
The registered details are mathematically represented in Eq. 
(1), 

𝑟𝑒𝑔 ← ⟨𝐼𝐷, 𝐼𝑃,𝑀⟩       (1) 

Here, 𝑟𝑒𝑔specifies node registration. 

B. Hash Code Generation 

During the registration, the hash code is generated for 
nodes utilizing the hybrid Diffie Hellman Secret Key-based 
Anchor Hashing (DHSK-Anchor Hash). In the DHSK-Anchor 
Hash, the keys are generated with the Diffie Hellman 
Algorithm (DHA), and then the generated keys are hashed 
with the Anchor hash. The DHSK-Anchor Hash procedure is 
explicated further. 

1) Key generation: During the node registration, the keys 

are generated for every single node utilizing the DHA. 

 Public and private key generation 

The sender and the receiver side agree on a prime (𝑒)and 
generator(𝑟) in DHA. After that, the private keys𝑘and 𝑧are 
chosen by the sender and the receiver side. With these values, 
the public keys generated at both sides are expressed in Eq. (2) 
and Eq. (3), 

𝑝 = 𝑟𝑘𝑚𝑜𝑑 𝑒   (2) 

𝑎 = 𝑦𝑧𝑚𝑜𝑑 𝑒   (3) 

Where, 𝑝, 𝑎portray the public key generated at the sender 
side and receiver side, correspondingly. Afterward, 𝑝, 𝑎are 
shared betwixt the sender and receiver. 

 Shared secret key calculation 

After the public key is exchanged, the symmetric secret 
key(𝑠) is generated at both sides, which is expressed in Eq. 
(4), 

𝑠 = 𝑎𝑘𝑚𝑜𝑑 𝑒 = 𝑝𝑧𝑚𝑜𝑑 𝑒        (4) 

Here, 𝑎𝑘𝑚𝑜𝑑 𝑒 is assessed at the sender's side, 
𝑝𝑧𝑚𝑜𝑑 𝑒and is assessed at the receiver’s side. 

2) Anchor hash: After the keys are generated, the hash 

value is computed utilizing the anchor hashing technique 

which 𝐼𝐷𝑠𝑒𝑛𝑑𝑒𝑟 , 𝐼𝐷𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 , 𝑝, 𝑎and𝑠 are considered the key 

values(𝜛). Hence, the anchor hashing is given as follows, 

a) Anchor representation: In the anchor hashing, a set 

of integer arrays(𝜗) is utilized for representing the anchors, 

which is mathematically represented as in Eq. (5), 

𝜗 = [0,1, . . . . . , 𝑑]   (5) 

where the size of the array is portrayed as𝑑. After that, a 
bucket(𝐵) of size 𝑑 − 1 is selected from the integer set𝜗. 
Here, the bucket encloses𝐼𝐷𝑠𝑒𝑛𝑑𝑒𝑟 , 𝐼𝐷𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 , 𝑝, 𝑎and 𝑠. The 
current working buckets 𝜗 is symbolized as 𝑊, where 𝑊 ⊆ 𝜗. 
Therefore, the bucket within the integer set is signified 
as𝜗[𝐵], which is expressed as in Eq. (6), 

𝜗[𝐵] = {
0𝑖𝑓𝐵 ∈ 𝑊

|𝑊𝐵|𝑖𝑓𝐵 ∈ ℵ
     (6) 

Where, ℵrepresents the stack of the removed bucket and 
𝑊𝐵indicates the size of the working set. 

b) Hashing: In anchor hashing, a hashing function 𝐻is 

wielded to map the key values of the buckets, which is 

mathematically denoted in Eq. (7), 

𝑢𝐵(𝜛) ≡ 𝛻(𝐵,𝜛)𝑚𝑜𝑑 𝜗 [𝐵]  (7) 

Here, 𝑢𝐵(𝜛)denotes the hashed output. During the path 
creation, each node sends a request to neighboring nodes with 
the 𝑢𝐵(𝜛). A path will be created between such nodes if the 
neighboring nodes give the same hash value. 

C. Optimal Parent Node Selection Using PCC-SHOA 

During the path creation, the parent nodes are selected 
through which the data packets are forwarded. Here, utilizing 
the PCC-SHOA, the parent nodes get selected. In the 
conventional SHOA, position updation has more variation 
betwixt the prey and the hyena. Therefore, the Pearson 
Correlation Coefficient (PCC) technique is included in the 
SHOA model. Spotted hyena optimizer (SHO) is a recently 
created popular metaheuristic algorithm that draws its main 
inspiration from social ties between hyenas. The females in 
the family of spotted hyenas are the dominant ones. The 
spotted hyenas follow their prey using their inherent senses of 
sight, hearing, and scent. Spotted hyenas make a sound to 
interact with one another while searching for a new food 
source. They rely on a pack of about 100 hyenas who are their 
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closest companions for hunting. Thus, the working steps of 
PCC-SHOA are given further. 

1) Initialization: The PCC-SHOA’s input parameters are 

initialized in which the Spotted Hyena (SH) population(𝐻) is 

the node involved in the path creation that can be 

mathematically formulated as in Eq. (8), 

𝐻 = {ℎ1, ℎ2, . . . . , ℎ𝑙}𝑜𝑟ℎ𝑥 , 𝑥 = 1,2, . . . . . , 𝑙  (8) 

Where, ℎ𝑙specifies the position of𝑙𝑡ℎSH, 𝑙signifies the 
population size. Also, the SH has four behaviors, namely 
Encircling, hunting, attacking, and searching for prey. 

2) PCC-based encircling prey: In the PCC-SHOA 

algorithm, the best SH has obtained whose position is near the 

prey. The ability to locate their prey and encircle them is 

possessed by spotted hyenas. Since the search space is 

unknown in advance, the best contender at this time is 

assumed to be the spotted hyena that is closest to the target or 

prey. Once the optimal search solution has been determined, 

the locations of the other search agents are updated. By 

calculating the fitness function, the best position is attained. In 

the proposed model, the lower Residual energy, Transmission 

count, Distance, and bandwidth are considered as the fitness 

function. Afterward, during encircling, the distance between 

ℎ𝑥 and the prey position (𝛼𝑝𝑜𝑠)is calculated utilizing the PCC 

as in Eq. (9) and Eq. (10), 

𝜆𝑑𝑖𝑠𝑡 = |𝐶.
∑(�⃗⃗⃗�𝑝𝑜𝑠

𝐼 −𝛼𝑝𝑜𝑠
′ )(ℎ⃗⃗⃗𝑥

𝐼−ℎ𝑥
′ )

√∑(�⃗⃗⃗�𝑝𝑜𝑠
𝐼 −𝛼𝑝𝑜𝑠

′ )
2
∑(ℎ⃗⃗⃗𝑥

𝐼−ℎ𝑥
′ )
2
|      (9) 

ℎ⃗⃗𝑥
𝐼+1 = �⃗�𝑝𝑜𝑠

𝐼 − �⃗⃗�. 𝜆𝑑𝑖𝑠𝑡      (10) 

where, 𝜆𝑑𝑖𝑠𝑡specifies the distance betwixt SH and the prey, 

𝐶, �⃗⃗�symbolizes the vector coefficients,ℎ⃗⃗, ℎ′
indicates the 

current and the mean position of SH,ℎ𝑥
𝐼+1

implies the position 
of SH 𝑥in the iteration 𝐼 + 1, and iteration is signified as 

𝐼.𝛼, 𝛼 ′represent the current and the mean position of prey. The 

𝐶, �⃗⃗�values are mathematically expressed as Eq. (11) and Eq. 
(12), 

𝐶 = 2 ∗ �⃗⃗�1   (11) 

�⃗⃗� = 2 ∗ �⃗⃗⃗�. �⃗⃗�2 − �⃗⃗⃗�      (12) 

Here, �⃗⃗�1, �⃗⃗�2symbolizes the random vectors and �⃗⃗⃗� portrays 
the reduction vector, which is computed as in Eq. (13), 

�⃗⃗⃗� = 5 − (𝐼 ×
5

𝐼𝑚𝑎𝑥
())      (13) 

where the maximum iteration is notated as 𝐼𝑚𝑎𝑥 . To ensure 
that exploration and exploitation are properly balanced, �⃗⃗⃗� falls 
linearly from 5 to 0 for the maximum iterations. With an 
increase in the number of iterations (MaxIteration), this 
method allows for further development. By modifying the 

values of 𝐶and �⃗⃗�, spotted hyenas can update their position in 
relation to the location of their prey. 

3) Hunting prey: Spotted hyenas can detect prey, hunt in 

packs, and depend on a network of reliable companions. 

Assume that the prey is known to the best search agents, 

whichever is optimal, in order to define spotted hyena 

behaviour mathematically. Other search agents should update 

their location in accordance with the best solution and move in 

the direction of the best search agent. Here, the mathematical 

model is constructed by considering the best SH that knows 

the optimal position, whereas the other SHs update their 

corresponding position towards the best positions. This 

mathematical model is specified in Eq. (14), 

�⃗⃗�𝒅𝒊𝒔𝒕 = |�⃗⃗⃗�. �⃗⃗⃗�𝒙
∗ − �⃗⃗⃗�𝒙|      (14) 

ℎ⃗⃗𝑥 = ℎ⃗⃗𝑥
∗ − �⃗⃗�. 𝜆𝑑𝑖𝑠𝑡  (15) 

Where, ℎ⃗⃗𝑥
∗
specifies the first best spotted SH position, 

ℎ⃗⃗𝑥denotes the other SH positions near ℎ⃗⃗𝑥
∗
 which is defined in 

Eq. (15). Therefore, the cluster(ℜ⃗⃗⃗⃗)with the number of the 

optimal solution is represented in Eq. (16), 

ℜ⃗⃗⃗ = ℎ⃗⃗𝑥 + ℎ⃗⃗𝑥+1+. . . . . . +ℎ⃗⃗𝑥+ℓ  (16) 

Here, ℓ indicates the number of SH in the best position and 
is defined in Eq. (17), 

ℓ = 𝑐𝑜𝑢𝑛𝑡𝑛𝑜𝑠(ℎ⃗⃗𝑥
∗ , ℎ⃗⃗𝑥+1

∗ , ℎ⃗⃗𝑥+2
∗ , … , (ℎ⃗⃗𝑥

∗ + �⃗⃗⃗�)  (17) 

where 𝑛𝑜𝑠 indicates the number of solutions and counts all 

candidate solutions after addition with �⃗⃗⃗�, which are 
significantly close to the best optimal solution in the search 

space and  �⃗⃗⃗� is a random vector with a value of [0.5, 1]. 

4) Attacking: For performing the attacking behavior, �⃗⃗⃗� is 

reduced. Moreover, the variation in the �⃗⃗�is reduced to change 

the value of�⃗⃗⃗�. The SH attacks the prey when |𝑄| < 1and the 

prey attacking is equated as in Eq. (18), 

ℎ⃗⃗𝑥
𝐼+1 =

ℜ⃗⃗⃗

ℓ
   (18) 

Updateℎ⃗⃗𝑥
𝐼+1

if the fitness of the current position (ℎ⃗⃗𝑥
𝐼+1
) is 

better than the previous position, and by continuously 

updating ℎ⃗⃗𝑥
𝐼+1

, the optimal solution (parent nodes) is attained. 

5) Prey search: The SHs search for their prey in the 

cluster vector(ℜ⃗⃗⃗⃗). Moreover, the SHs diverge from each other 

to attack and search the prey. The prey search is grounded on 

the changes in the �⃗⃗� , which is utilized to randomly search the 

prey. If (|𝑄| > 1), the SHs leave the prey and move to the 

next prey or else perform the attack on the selected prey. By 

this mechanism, global searches can be attained. Hence, the 

final parent nodes selected  ℎ⃗⃗𝑥
𝐼+1
𝑜𝑟𝑛𝛿 are signified as in Eq. 

(19), 

𝑃 = {𝑛1, 𝑛2, . . . , 𝑛𝑞}𝑜𝑟𝑛𝛿      (19) 

Where, 𝑃 illustrates the parent node set and𝑛𝑞represents 

the 𝑞𝑡ℎselected parent node. The pseudocode of PCC-SHOA is 
given in Algorithm 1. 
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Algorithm 1: Pseudocode of PCC-SHOA 

Input: Nodes{ℎ1, ℎ2, . . . . , ℎ𝑙}𝑜𝑟ℎ𝑥 , 

Output: Selected parent node 

Begin  

 Initialize SH population,𝑙, �⃗⃗�1, �⃗⃗�2,  and maximum iteration 

𝐼𝑚𝑎𝑥 

 Set 𝑰 = 𝟏 

 While (𝑰 ≤ 𝑰𝒎𝒂𝒙())do 

  Calculate fitness 

  Determine 𝝀𝒅𝒊𝒔𝒕using PCC 

  Define ℜ⃗⃗⃗⃗ = ℎ⃗⃗𝑥 + ℎ⃗⃗𝑥+1+. . . . . . +ℎ⃗⃗𝑥+ℓ
 

  If reducing factor 
(�⃗⃗� > 1)

{ 

   
Update position using�⃗⃗⃗�𝒙

𝑰+𝟏 = �⃗⃗⃗�𝒑𝒐𝒔
𝑰 −

�⃗⃗⃗�. 𝝀𝒅𝒊𝒔𝒕
 

  } Else { 

   
Update position using�⃗⃗⃗�𝒙

𝑰+𝟏 =
�⃗⃗⃗⃗�

𝓵
 

  }  

  End If  

  

If the fitness of ℎ⃗⃗𝑥
𝐼+1

greater than�⃗⃗⃗�𝒙
𝑰Then

 

  
Update �⃗⃗⃗�𝒙

𝑰+𝟏 

   Else 

    
𝑰 = 𝑰 + 𝟏

 
   End If 

  End While  

  Return optimal value 

 End
  

After that, the rank is assigned to each selected parent 
node as per the fitness values of the parent nodes. 

D. Data Splitting and Compression 

After all the nodes are connected, the source node senses 
the data to be transferred to the destination node. If the sensed 
data size is huge, the files are split into small files, then 
compressed and sent to the destination node via multiple 
paths. This process is done to reduce the data loss in the LLN. 
The split parts are compressed with the Lempel–Ziv–Welch 
(LZW) lossless compression, then the data is transferred via 
nodes. The big file (𝐷) is split into a small file as in Eq. (20), 

𝐷 = {𝑣1, 𝑣2, . . . , 𝑣𝑘}𝑜𝑟𝑣𝑜        (20) 

Hence, the 𝑘𝑡ℎsmall file is illustrated as𝑣𝑘. By utilizing the 
LZW algorithm, this small file 𝑣𝑜is compressed. The file𝑣𝑜is 
compressed utilizing a table-centric lookup model in the LZW 
algorithm by performing encoding of the information in the 
file. The table formed is named dictionary or code table. The 
number of entries commonly accepted in the table is 4096; 
also, a single byte from the input file 𝑣𝑜 is coded with the 

codes 0-255. While encoding is initiated, only the first 256 
entries are present in the dictionary. The compression is 
attained by utilizing the 256 codes through 4095 entries for 
representing the sequence of bytes. 

During compression, LZW identifies repeated sequences 
in 𝑣𝑜, then added to the dictionary. Suppose the string in the 
file 𝑣𝑜is represented as 𝑏𝑎𝑏𝑐 , which is compressed with LZW 
is given as in Eq. (21), 

𝑎𝑏𝑎𝑏𝑏𝑎𝑏𝑐 = 12452   (21) 

This compressed value is sensed in the source node and 
transmitted to the server. Fig. 2 elucidates the flow diagram of 
the proposed system, 

 

Fig. 2. Flow diagram of the proposed RPL. 

E. Congestion Prediction Using Novel EPD-Fuzzy Model 

During the data transfer, a novel EPD-Fuzzy detects the 
congestion among the parent nodes. Fuzzification, rule 
evaluation, and defuzzification are the three processes 
performed by the fuzzy algorithm. However, the fuzzy 
inference process has a lower level of rule generation 
processing than the prevailing Fuzzy algorithm. Thus, to 
resolve this issue, the Exponential Poisson Distribution 
technique is included in the prevailing Fuzzy algorithm. 
Hence, the congestion prediction with the EPD-Fuzzy is stated 
as follows, 

1) Fuzzification: Primarily, the incoming number of 

packets (𝑔), the number of outgoing packets (𝑡)
, 

and the hop 

count (𝑤)data {𝑛𝛿}are given as the crisp set to the fuzzy 

control system, which gets mapped by a membership function 

for generating fuzzy sets. Hence, the membership function is 

represented in Eq. (22), Eq. (23) and Eq. (24), 
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𝑚(𝑔) =
𝑒𝑥𝑝(−𝜍×𝜏)(𝜍×𝜏)𝑔

𝑔!
         (22) 

𝑚(𝑤) =
𝑒𝑥𝑝(−𝜍×𝜏)(𝜍×𝜏)𝑤

𝑤!
       (23) 

𝑚(𝑡) =
𝑒𝑥𝑝(−𝜍×𝜏)(𝜍×𝜏)𝑡

𝑡!
       (24) 

Where, 𝑚( )signifies the EPD membership function 
and𝜍, 𝜏elucidates the center and width of the fuzzy set. 

2) Rule generation: After the membership function is 

defined, the 𝑚(𝑛𝛿) is correlated to generating the fuzzy rules 

as in Eq. (25), (26) and (27), 

𝜌(𝑔) = {
𝑒𝑥𝑝 (

𝜓[𝑚(𝑔)−𝑚(𝑔′)]

𝑚(𝑔∗)−𝑚(𝑔∗)
) 𝑖𝑓𝑚(𝑔) = {𝑔 ∈ (𝑔∗, ∞)

1𝑒𝑙𝑠𝑒
   (25) 

𝜌(𝑤) = {𝑒𝑥𝑝 (
𝜓[𝑚(𝑤)−𝑚(𝑤′)]

𝑚(𝑤′)−𝑚(𝑤∗)
) 𝑖𝑓𝑚(𝑤) = {𝑤 ∈ (𝑤∗, ∞)

1𝑒𝑙𝑠𝑒
 (26) 

𝜌(𝑡) = {𝑒𝑥𝑝 (
𝜓[𝑚(𝑡)−𝑚(𝑡′)]

𝑚(𝑡′)−𝑚(𝑡∗)
) 𝑖𝑓𝑚(𝑡) = {𝑡 ∈ (𝑡∗, ∞)

1𝑒𝑙𝑠𝑒
   (27) 

where 𝜌( )implies the fuzzy rules generated in the 

inference, ∗,′ are the membership function’s lower bound and 
upper bound. After that, the fuzzy rules are aggregated by 
utilizing IF-THEN statements. The aggregation method is 
given by 𝑚𝑎𝑥, which is also named𝑂𝑅operator, which is 
expressed as in Eq. (28), 

𝛥 = 𝑚𝑎𝑥(𝜌(𝑔), 𝜌(𝑤), 𝜌(𝑡))  (28) 

Where, 𝛥specifies the aggregated outputs with the result of 
the implication technique. 

3) Defuzzification: A process that converts fuzzy values to 

crisp values is named defuzzification. Hence, by computing 

the centroid technique, the crisp value is attained. Here, the 

center of the area of the fuzzy set is attained, which 

determines the crisp output (congestion rate)𝑓. 

F. Genitor Node 

Here, a novel genitor node is included, which acts as the 
parent node for sending data if the (𝑓 > 𝑇ℎ)is predicted by 
EPD-Fuzzy; where, 𝑇ℎindicates the threshold value. The 
sensed data is securely transferred to the cloud server via these 
processes. 

G. KLD-TSA-based Novel Load Balancing 

Conversely, users who want to access data from the cloud 
server give requests to access the data. But, multiple requests 
at the same time mount the network traffic. To avoid such 
congestion in the network, Load balancing is performed in the 
proposed model. Here, for load balancing, KLD-TSA is 
wielded. In the prevailing Tunicate Swarm Algorithm (TSA), 
the conflicts among the search agents are more, which affects 
the algorithm’s performance. Hence, to avoid conflicts, 
Kullback Leibler Divergence (KLD) is introduced in the 
prevailing TSA. Tunicate is capable of locating food sources 
in the ocean. On the other hand, the food source in the 
specified search space is unknown. To locate the optimal food 

supply, tunicates use two different behaviors. Swarm 
intelligence and jet propulsion are these tendencies. Thus, the 
proposed load balancing is given further. 

The users who request to access the resources from the 
server are considered as the initial population of tunicates and 
the position of the tunicate population is expressed as in Eq. 
(29), 

𝐽 = {𝑗1, 𝑗2, . . . . , 𝑗℘}𝑜𝑟𝑗𝑦       (29) 

where the tunicate population is denoted as𝐽, 𝑗𝜌represents 

the position of the tunicate℘, and℘indicates the population 
size. To attain the optimal solution, the tunicates perform jet-
propulsion and swarm behavior. The mathematical model of 
jet propulsion satisfies three behaviors: Prevent conflicts, 
move toward the best search agent, and remain close to the 
best tunicate. Utilizing the fitness value, the best search agent 
is computed. Here, fitness is considered as less response and 
waiting time. 

a) Prevent conflicts among agents: In the proposed 

KLD-TSA, the initialization of the new position of the search 

agent(�⃗⃗⃗�) to avoid inter-agent conflict is given by utilizing the 

KLD in Eq. (30). 

�⃗⃗⃗� = ∑ 𝛺(�⃗⃗�𝑦)
℘
𝑦=1 𝑙𝑛

𝛺(�⃗⃗⃗�𝑦)

𝛩(𝑆)    (30) 

Where,�⃗⃗�𝑦is the gravity force of tunicate 𝑦, and𝑆are the 

social forces betwixt tunicates. The gravity force is expressed 
in Eq. (31), 

�⃗⃗� = 𝑟2 + 𝑟3 − �⃗�   (31) 

�⃗� = 2. 𝑟1   (32) 

Here,𝑟1, 𝑟2and 𝑟3epitomize the random values that lie in the 
range of 0 to 1. The water flow advection in the deep sea is 

symbolized by �⃗�  and is defined in Eq. (32). 𝑆 stands for the 

social dynamics among search agents. The vector 𝑆 is 
computed as in Eq. (33), 

𝑆 = [𝐴1𝑚𝑖𝑛𝑚𝑎𝑥𝑚𝑖𝑛]       (33) 

Here, the initial and subordinate speeds of social 
interaction are represented by 𝐴𝑚𝑖𝑛 and 𝐴𝑚𝑎𝑥. 

b) Move towards the best neighbor: After avoiding the 

conflicts betwixt the agents, the search agents move toward 

the direction of the best agent as in Eq. (34), 

𝑇
→
= 𝐹𝑙
→
− 𝐿(𝑗𝑦

𝐼𝑡)
→         

   
(34) 

where𝑇
→

indicates the distance between the tunicates and 

the food, 𝐹𝑙
→

symbolizes the food location, 𝐿is a random value 

between [0, 1], and �⃗⃗�𝑖signifies the tunicate positions. 

c) Keeping close to the best agent: The search agent is 

able to stay in the direction of the optimal search agent (food 

source). Now, the tunicate move towards the prey is computed 

as in Eq. (35), 
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𝑗𝑦
𝐼𝑡 = {

(|�⃗�𝑙|
2
+ |(𝑁)(𝑇) 𝑠𝑖𝑛 𝜃|2)

1
2⁄

𝑓𝑜𝑟𝐿 ≥ 0.5

(|�⃗�𝑙|
2
− |(𝑁)(𝑇) 𝑠𝑖𝑛 𝜃|2)

1
2⁄

𝑓𝑜𝑟𝐿 < 0.5

 (35) 

Where,𝜃signifies the angle between N and T. The updated 
position of tunicates in relation to the location of food sources 
is represented by 𝑗𝑦

𝐼𝑡. 

d) Position update: The tunicate’s swarm behavior is 

updated by updating the position of all search agents 

concerning the first two best search agents is revealed as 

follows in Eq. (36), 

|𝑗𝑦
𝐼𝑡+1| = (

|𝑗𝑦
𝐼𝑡|
2
+| 𝑗
→
𝑦

𝐼𝑡+1
|

2

4+𝑟2
)

1
2⁄

  (36) 

Where, |𝑗𝑦
𝐼𝑡+1|is the magnitude of the updated position of 

the tunicates. After that, the fitness |𝑗𝑦
𝐼𝑡+1| is evaluated. If the 

fitness |𝑗𝑦
𝐼𝑡+1|is greater than the |𝑗𝑦

𝐼𝑡| , then the position is 

updated. Therefore, the optimal solution (i.e., optimal user) is 
obtained by updating the position. Thus, by selecting the 
optimal user, traffic is avoided. Hence, the network load is 
balanced. The pseudocode of the proposed KLD-TSA is given 
in Algorithm 2. 

Algorithm 2: Pseudocode of KLD-TSA 

Input: Users 

Output: optimal user  

Begin 

Initialize tunicate population, parameters�⃗⃗⃗�,�⃗⃗�,𝑆, and maximum 

iterations 𝐼𝑡𝑚𝑎𝑥 

Calculate fitness  

Set Iteration 𝐼𝑡 = 1 

While (𝐼𝑡 ≤ 𝜔)do 

 Update New position using KLD  

  Move toward the best search agent 

  If (𝑳 ≥ 𝟎. 𝟓){ 

Update tunicate position using (|�⃗�𝑙|
2
+ |(𝑁)(𝑇) 𝑠𝑖𝑛 𝜃|2)

1
2⁄

 

} Else If (𝑳 < 𝟎. 𝟓){ 

  Update tunicate position using (|�⃗�𝑙|
2
−

|(𝑁)(𝑇) 𝑠𝑖𝑛 𝜃|2)
1
2⁄
 

} 

End If 

Update the position of all tunicate  

 End while 

 Set 𝐼𝑡 = 𝐼𝑡 + 1 

 Return |𝑗𝑦
𝐼𝑡+1| 

End 

IV. RESULTS 

Here, the proposed RPL methodologies’ performance is 
experimentally evaluated with conventional techniques to 
demonstrate the reliability of the proposed protocol model. 
The performances are experimentally verified on the working 
platform of JAVA and the cloud sim simulation tool. 

A. Performance Analysis 

Here, the proposed protocol’s performance is assessed in 
three phases, namely hash code generation, parent node 
selection, and load balancing. Here, regarding hash code 
generation time, the performance of the proposed hash code 
generation model DHSK-Anchor hash is comparatively 
analyzed with Anchor hash, SWIFFT, SHA512, and MD5 
techniques. 

The time taken to generate the hash value is named hash 
code generation time. The hash code generation time attained 
by the proposed protocol is 2163ms, which is 3051ms, 
5178ms, and 5972ms lower than the prevailing SWIFFT, 
SHA-512, and MD5 techniques. This shows that the proposed 
RPL outperforms the conventional models. Fig. 3 elucidates 
the pictorial representation of hash code generation time. 

 
Fig. 3. Time analysis for hash code generation. 

Fig. 4 depicts the graphical analysis of iteration vs. fitness 
for the proposed and existing algorithms. 

 
Fig. 4. Fitness vs. iteration analysis. 
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The Fitness value evaluation of the proposed PCC-SHOA 
approach and the conventional SHOA, LOA, DFOA, and 
HHOA selection algorithms is elucidated in Fig. 4. Here, at 
the 25th iteration, the proposed PCC-SHOA obtained an 
optimal parent node whose fitness is 2423, which is higher 
when contrasted with the fitness value achieved by the 
prevailing SHOA (2257), LOA (2148), DFOA (2144), and 
HHOA (2046). This proves that the proposed PCC-SHOA 
converged much faster than the prevailing techniques. Fig. 5 
depicts the graphical analysis of throughput. 

 
Fig. 5. Throughput analysis. 

To determine how efficiently the algorithms achieved 
better data transmission with the selected parent nodes, the 
throughput is evaluated. Fig. 5 demonstrates that the 
throughput is analyzed for 50 to 100 nodes. Here, the 
proposed algorithm achieved the highest throughput of 1281 
for 50 nodes, which is higher than the prevailing approaches 
that attained 1054 for SHOA, 993 for LOA, and 828 HHOA 
approaches. This concludes that with the proposed PCC-
SHOA, the parent with lower Residual energy, Transmission 
count, Distance, and bandwidth is selected, which could 
enhance the proposed RPL. Fig. 6 (a) and (b) illustrate the 
analysis of PDR and PLR. 

 
(a) 

 
(b) 

Fig. 6.  (a) PDR and (b) PLR analysis. 

The PDR and PLR are the metrics evaluated to determine 
the rate of packets delivered successfully and the rate of 
packets dropped during the data transmission. Fig. 6(a) 
displays that the rate of packets successfully delivered by the 
proposed PCC-SHOA for 100 nodes is 1.78%, 9.37%, and 
13.70% higher than the prevailing SHOA, DFOA, and HHOA 
approaches. Then, from Fig. 6(b), it is revealed that the PLR 
of the proposed algorithm is 3.15%, 6.45%, 7.12%, and 
10.45% for 50,100, 150, and 250 nodes, which are lower than 
the existing algorithms. This proves that with the use of PCC-
SHOA-centric parent selection, more data is efficiently 
transferred with less loss, which is owing to the splitting and 
compression of large files. 

Here, the latency, waiting time, and TAT performance of 
the proposed KLD-TSA approach are analyzed in comparison 
with the prevailing TSA, Cockroach Swarm Optimization 
Algorithm (CSOA), LOA, and DFOA approaches. Fig. 7 
represents the latency attained by the proposed and the 
prevailing models. 

 
Fig. 7. Latency of the proposed framework. 

Here, latency is the delay that occurs between when the 
user requests access and the response. The Fig. 7 displays that 
the Proposed KLD-TSA approach has lower latency than all 
other algorithms followed by TSA, CSOA, et cetera. 
However, the latency attained by the proposed KLD-TSA is 
3289ms for 150 users, whereas 4176ms, 5347ms, and 6981ms 
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latency were attained by the existing TSA, CSOA, and DFOA 
schemes. Thus, the overall time efficiency of the proposed 
model is proved by this analysis. 

B. Discussion 

The performance of the proposed PCC-SHOA parent node 
selection algorithm and KLD-TSA load balancing algorithm is 
compared to that of current techniques in the discussion 
section. 

1) Performance analysis of parent node selection: In this 

phase, the proposed PCC-SHOA algorithm’s performance is 

comparatively analyzed with the prevailing SHOA, Lion 

Optimization Algorithm (LOA), Dragon Fly Optimization 

Algorithm (DFOA), and Harris Hawks Optimization 

Algorithm (HHOA) regarding the parent selection time, 

fitness value, throughput, response time, Turn-Around Time 

(TAT), PDR, and PLR. The time taken by various algorithms 

to select the parent node is illustrated in Table I. 

TABLE I. TIME TAKEN TO SELECT PARENT NODES 

Algorithms Parent node selection time (ms) 

Proposed PCC-SHOA 6034 

SHOA 6513 

LOA 8274 

DFOA 9627 

HHOA 10344 

Among the prevailing algorithms, SHOA takes less time to 
choose the optimal parent node, which is 6513ms. Yet, with 
the implementation of the PCC technique in the SHOA, 479 
ms lesser time is taken for choosing the optimal parent node, 
which displays the time effectiveness of the proposed PCC-
SHOA approach. 

The response and the turnaround time of the proposed and 
existing approaches for 50 to 250 nodes are illustrated in 
Table II. 

TABLE II. RESPONSE TIME AND TAT 

 

Metrics 

 

Algorithms 

Number of nodes 

50 100 150 200 250 

 

Response 

time (ms) 
 

 

Proposed 
PCC-SHOA 

3781 4796 5447 6145 6794 

SHOA 5142 6834 7402 9247 10375 

LOA 6753 7664 8314 9924 10852 

DFOA 7348 8016 9307 10267 11576 

HHOA 8457 9374 10493 11752 12055 

 

TAT (ms) 
 

 

Proposed 

PCC-SHOA 
5423 6942 7581 9427 10524 

SHOA 7156 8123 9076 10072 11543 

LOA 8056 9365 10786 11898 12630 

DFOA 9546 10498 11966 12756 13277 

HHOA 10374 11863 13757 14624 15371 

The time taken to send the data to the immediate node is 
named the response time, whereas the TAT is the time taken 
by the RPL to transmit data to the server. Here, the response 
time and TAT increase with the number of nodes. Here, for 
250 nodes, the response time of the proposed PCC-SHOA is 
6794ms, which is lower than the prevailing algorithms. Also, 
the best TAT is achieved by the proposed algorithm, which is 
5423ms for 50 nodes. 

2) Performance analysis of load balancing: The waiting 

and turnaround time determined for 250 users with the 

proposed KLD-TSA in comparison with the prevailing 

methodologies is illustrated in Table III. 

TABLE III. WAITING TIME AND TAT OUTCOMES OF THE KLD-TSA 

APPROACH 

 

Metrics 

 

Algorithms 

Number of users 

50 100 150 200 250 

 

waiting 

time 
(ms) 

 
 

Proposed 

KLD-TSA 
2781 4653 6447 7256 7649 

TSA 4133 6922 7464 8046 10953 

CSOA 5613 7914 8706 10264 11952 

LOA 7394 8672 9767 10527 11543 

DFOA 8857 9325 10335 11442 12594 

 

TAT 

(ms) 
 

 

Proposed 

PCC-SHOA 
4423 6602 7921 9597 10554 

TSA 6969 8513 9276 10172 11643 

CSOA 7658 9265 10662 11658 12560 

LOA 9661 10598 11454 12656 13761 

DFOA 10456 11935 13746 14404 15879 

The time taken by the users to access data after requesting 
is called waiting time, whereas TAT is the overall time taken 
to get data concerning the number of users. Here, the proposed 
model’s waiting time for 50 users is 2781ms, which is lower 
than the prevailing CSOA (4133ms), LOA (7394ms), and 
DFOA (8857ms) approach. Moreover, the proposed model’s 
TAT for 50 users is the least (4423ms). This exhibits that with 
the KLD-TSA data balancing, the data can be accessed from 
the server in the least time. 

C.  Comparative Analysis with the Related Works 

Here, the PDR for 50 to 100 nodes is analyzed for the 
proposed routing protocol and the prevailing works of (Conti 
et al., 2020) [12], (Preeth et al., 2020) [15], and (Hadaya & 
Alabady, 2021) [25]. Table IV illustrates the comparative 
analysis of PDR with the proposed and existing algorithms. 

TABLE IV. COMPARATIVE ANALYSIS WITH THE RELATED RESEARCH 

 

Metric 

 

Algorithms 

Number of nodes 

50 55 60 

 

 
PDR (%) 

Proposed EPD-Fuzzy 97.96 96.42 95.37 

(Hadaya & Alabady, 

2021) 
97.145 95.185 94.575 

(Preeth et al., 2020) 84.96 83.24 82.59 

(Conti et al., 2020) 82 81.16 79.60 
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The PDR metric is evaluated for determining the ratio of 
packets delivered successfully to the cloud server. The PDR is 
evaluated for 50, 55, and 60 nodes in Table IV, which displays 
that PDR is inversely proportional to the number of nodes that 
participated in the network. Here, the PDR is assessed for 55 
nodes. With 55 nodes participating in the network, the PDR 
attained by the proposed routing protocol is 96.42%, which is 
1.29%, 15.83%, and 18.80% higher than the prevailing works 
of [25], [12] and [15]. This proves that with the approaches 
introduced in the proposed routing protocol, more data packets 
are transmitted. 

V. CONCLUSION 

This paper proposes a genitor node-centric congestion 
control in the RPL with the PCC-SHOA-based parent node 
selection. The KLD-TSA-centric load-balancing model is 
proposed to avoid congestion among users. The proposed 
technique’s experiments are performed on the Cloudsim 
simulator; also, the performance was assessed. The 
performance evaluation showed that the path betwixt the 
nodes is created in less time since the hash codes are 
generated in less time. Moreover, the optimal parent node is 
selected with the fitness of 2423 in lesser time; also, with the 
selected parent node, the PDR of the proposed model gets 
enhanced by 95.23% more than the prevailing algorithms. At 
the user end, the network load is balanced with a latency of 
4675ms for 250 user requests. After that, the proposed RPL 
model’s overall efficiency is proved by attaining higher PDR 
than the conventional systems. These outcomes proved that 
the proposed protocol was superior to other routing protocols. 
Several data are still lost even after utilizing the LZW 
compression in the proposed model. The research indicates 
that to further minimize data loss, future work may 
incorporate sophisticated deep-learning models for congestion 
prediction and make use of modified compression techniques. 
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