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Abstract—The modeling of micro traffic flow on a highway 

has been extensively observed and studied in various aspects, 

such as driver characteristics in car-following and lane-changing 

behaviors. Regarding car-following and lane-changing, an 

interesting aspect is how to model the movement conditions of 

vehicles on a highway that exhibit unique characteristics 

regarding the speed of four-wheeled or more vehicles passing 

through it. This condition occurs on the Porong Highway in 

Sidoarjo, East Java, Indonesia. Based on these conditions, this 

study develops a microscopic traffic flow model incorporating 

driver characteristics categorized into three types: careful 

drivers, ordinary drivers, and skilled drivers, each with distinct 

vehicle speed traits. These driver characteristics are integrated 

into the Nagel-Schreckenberg Stochastic Traffic Cellular 

Automata (NaSch STCA) model, which we refer to as the 

Modified NaSch STCA. The Monte Carlo simulation is employed 

to generate events through random numbers for the Occupied 

Initial State, Slowdown Probability, and Probability of Lane 

Changing. These three components are integral parts of the 

Modified NaSch STCA model. Experiments (simulations) were 

conducted on the constructed vehicle movement model, and one 

of the outcomes is that the travel time obtained from the NaSch 

STCA model is significantly faster than that obtained from the 

Modified NaSch STCA model. This condition is attributed to the 

unique vehicle speed characteristics on the Porong Highway, 

where the average speed vr = 38 km/h is relatively lower than the 

average speed typically observed on a highway. 

Keywords—Micro traffic flow; driver characteristics; cellular 

automata; Monte Carlo 

I. INTRODUCTION 

Modeling and simulation of microscopic traffic flow have 
been extensively pursued by researchers, including the 
development of micro-traffic flow models based on intelligent 
transportation systems with wireless communication [1]; 
calibration of microscopic car-following (CF) models to 
accurately replicate and study traffic behavior and phenomena 
[2]; estimation and prediction of traffic states by integrating 
statistical data in both congested and uncongested scenarios 
[3]. Intelligent transportation systems offer an alternative to 
enhance traffic environments by integrating the Internet of 
Things and smart algorithms. These systems collect and 
process data from various sources to improve transportation 
efficiency. Research conducted by study [4] reviews the smart 
techniques employed for predicting traffic flow in urban areas. 
Additionally, it proposes a general taxonomy where the 

insights gained from traffic flow analysis merge with 
computational approaches. Microscopic urban traffic 
simulation using integrated modeling methods has been 
conducted, taking into account driver behavior characteristics 
related to car-following and lane changing. The results indicate 
that car-following behavior is more sensitive to variations in 
the status of adjacent vehicles and lane changes compared to 
lane-changing behavior during the lane-change process. This 
study also aids in analyzing travel characteristics and the 
impact mechanisms of vehicles in urban roads, serving as a 
guide for the development of sustainable transportation and 
autonomous vehicles in the future, and promoting efficient 
urban transportation system operations [5]. 

Microscopic traffic simulations are frequently employed to 
evaluate the effects of autonomous vehicles on safety and 
traffic flow. This study examines adaptive driver behavior by 
having drivers navigate the same route three times, each with a 
different level of autonomous vehicle penetration. The findings 
reveal that as the penetration level of autonomous vehicles 
increases, drivers adopt shorter waiting times, smaller 
following distances, and more consistent speeds closer to the 
maximum speed limit. These results indicate that driving 
behavior changes in response to variations in surrounding 
traffic composition [6]. 

Cellular automata have proven highly beneficial, not only 
in traffic flow simulation but also in diverse fields like 
pedestrian behavior for example: study a behavior-based 
cellular automata model that can represent heterogeneous 
crowd structures and explore the effects of different crowd 
compositions on pedestrian dynamics, particularly evacuation 
efficiency [7]. A multi-grid cellular automata model has been 
utilized to connect vehicle and pedestrian models. The 
enhanced Kerner-Klenov-Wolf (IKKW) model and a 
pedestrian movement model that incorporates Time to 
Collision (TTC) have been proposed. The application of these 
models to real-life scenarios has shown the impact of 
pedestrian intrusion behavior on traffic [8]. In the context of 
disaster mitigation, an expanded cellular automata model has 
been proposed for emergency evacuation dynamics involving 
pedestrians, utilizing parameters such as route change 
probability and group fields. Experiments were conducted to 
investigate the effects of this new extension, including the 
verification of related collective phenomena and the evaluation 
of safety performance metrics [9]. An LSTM-CA simulation 
for wildfire spread, combining Cellular Automata with Long 
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Short-Term Memory (LSTM), has been proposed. Real-world 
wildfire spread simulations have been conducted, and the 
accuracy of the wildfire spread predictions was verified using 
KAPPA coefficients, Hausdorff distances, and horizontal 
comparison experiments based on remote sensing imagery of 
wildfires [10]. 

Probabilistic Logistic Cellular Automata (LPCA) modeling 
has been carried out by integrating a basic logistic growth 
model with two-dimensional spatial dynamics to simulate the 
formation of regular patterns. The simulation results indicate 
that resource scarcity and environmental shape are the primary 
factors leading to the emergence of various regular patterns 
[11]. To prevent falling into local optima and to enhance 
convergence speed and global search potential, an advanced 
version of the Ant Colony Optimization (ACO) algorithm, 
known as the Cellular Automata-Based Enhanced Ant Colony 
Optimization Algorithm (CA-IACOA), has been explored. 
Simulation results suggest that this algorithm is effective in 
addressing DDoS attacks, as it achieves high-quality solutions 
for identifying optimal nodes and reliable routing paths [12]. 
The phenomena observed in modeling and simulating various 
aspects using cellular automata indicate its capability to 
provide solutions to both simple and complex problems. 

In the use of cellular automata for a particular problem, the 
role of randomness and Monte Carlo simulation is crucial. 
Many researchers emphasize the incorporation of randomness 
into the rules of cellular automata, such as using randomness in 
the probability of lane switching [13], [14]. Monte Carlo 
simulation plays a significant role in modeling and simulating 
dynamic systems using cellular automata, including calculating 
simulation data for traffic queuing problems [15] and 
predicting real-time traffic flow based on normal distribution 
[16]. 

In micro traffic flow modeling, driver behavior is a critical 
parameter. One aspect involves defensive maneuvers by 
drivers to avoid obstacles and braking, such as encountering a 
pedestrian appearing suddenly on the road ahead of the vehicle 
[17]. The smart road stud (SRS) not only drastically alters 
microscopic driving characteristics but also significantly 
influences driver decision-making processes during overtaking 
maneuvers [18]. On the other hand, research on modeling 
driving behavior in developing countries is conducted using 
microsimulation approaches with multi-agents, deemed 
suitable for accurately replicating driving behaviors [19]. 
Adaptive driver behavior is observed through repeated driving 
of the same route three times with varying penetration rates of 
automated vehicles. It is demonstrated that driving behavior 
changes as the traffic composition around them changes [20]. It 
is noted that following behavior is more sensitive to variations 
in lateral vehicle movements and lane changes [21]. 

In the context of micro traffic flow modeling, many 
researchers utilize driver behavior as a key parameter. 
However, this driver behavior is rarely depicted based on the 
micro traffic flow phenomena observed on highways, 
especially the phenomenon of vehicle speeds passing through 
the roadway. Cellular automata, as a method of dynamic 
system specific to micro traffic flow modeling, employs rules 
that require processes of randomness, including determining 

initial density probabilities and lane-changing probabilities. 
This study employs Monte Carlo simulations for the 
randomness processes embedded within the cellular automata 
rules. A survey of vehicle speeds in micro traffic flow was 
conducted on the Porong Highway in Sidoarjo, East Java, 
Indonesia, focusing on four-wheeled vehicles: trucks/trailers, 
buses, public transportation, and private cars. The phenomenon 
of vehicle speeds passing through this highway served as the 
basis for categorizing driver characteristics. Based on 
normalized speed data from each vehicle type, drivers were 
categorized as follows: careful drivers for truck/trailer drivers,    
ordinary drivers for bus and public transportation drivers, and 
skilled drivers for private car drivers. A modified cellular 
automata model was developed based on these driver 
characteristic categories, and an analysis of traffic flow 
simulation results was conducted to assess the accuracy of the 
model. The results of this study are expected to benefit relevant 
stakeholders, such as government agencies involved in 
highway transportation. The findings, which include travel 
times based on vehicle speed characteristics, can provide 
valuable insights into the comfort and safety of driving on the 
Porong-Sidoarjo Highway in East Java, Indonesia. 

This study continues with an explanation of the stochastic 
traffic cellular automata (STCA) model and Monte Carlo 
methods, which are discrete-time simulation models. It then 
addresses phenomena related to microscopic traffic flow 
characteristics observed on the Porong-Sidoarjo Highway in 
East Java, Indonesia, specifically focusing on driver and 
vehicle characteristics based on vehicle speed in Section II. 
The micro traffic flow phenomena is given in Section III. 
Proposed model is given in Section IV. This is followed by a 
section on testing the developed model and a discussion of the 
relevant results from these tests in Section V. The study 
concludes in Section VI with a summary of the research 
findings. 

II. DISCRETE TIME SIMULATION MODEL: CELLULAR 

AUTOMATA-MONTE CARLO 

A. Stochastic Model: Nagel–Schreckenberg STCA 

In the realm of traffic simulation, modeling at the 
microscopic level has long been recognized as a intricate and 
time-intensive endeavor, requiring intricate models that portray 
the behaviors of individual vehicles. However, approximately 
ten years ago, a novel microscopic model emerged, drawing on 
the cellular automaton framework rooted in statistical physics. 
Its principal advantage lies in its efficient and swift 
performance during computer simulations, although it may 
exhibit slightly diminished accuracy at the microscopic level. 
These traffic models based on cellular automata (TCA) are 
dynamic systems characterized by discrete elements, where 
time progresses in distinct increments and space is represented 
in coarse units (for instance, roads divided into 7.5 meter per-
cell, each either empty or occupied by a vehicle) [22]. 

In terms of randomness usage (probability), cellular 
automata models can be categorized into two types: 
deterministic models and stochastic models. One deterministic 
TCA model compares two acceleration models embedded 
within cellular automata, stating that the Acceleration Time 
Delay (ATD) model and Speed Adaptation (SA) model exhibit 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 8, 2024 

975 | P a g e  

www.ijacsa.thesai.org 

spatiotemporal traffic congestion patterns consistent with 
empirical findings. In both models, the onset of congestion in 
free flow conditions on congested roads is associated with a 
first-order phase transition from free flow to synchronized 
flow; moving congestion spontaneously emerges only in 
synchronized flow [23]. 

Stochastic Traffic Cellular Automata (STCA) are widely 
used in modeling micro traffic flow. The basic model of STCA 
introduces a rule involving randomization, utilizing 
randomness within the TCA rules. This adaptation accounts for 
natural speed fluctuations caused by human behavior or 
various external conditions [24]. Incorporating this randomness 
into TCA transforms it into Stochastic Traffic Cellular 
Automata (STCA). Many researchers have developed STCA 
models from various aspects, focusing on updating acceleration 
in car-following or lane-changing behaviors. 

 

 
Fig. 1. Time-space diagram of NaSch STCA (two lanes), where the vertical 

axis represents time-steps and the horizontal axis represents space (cells), road 

length L = 500 cells, density k = 0.3, slowdown prob. P = 0.3, prob. of lane 

changing Plc = 0. Top image for lane 1 and bottom image for lane 2. 

The STCA developed by Nagel-Schreckenberg is defined 
on a one-dimensional array with a lattice length L and operates 
as an open-loop system. Each location (cell) can either be 
occupied by one vehicle or remain empty. The speed of each 
vehicle is represented by an integer between zero and vmax. 
Updates in the NaSch STCA system consist of four sequential 
steps performed in parallel for all vehicles. The update rules in 
the NaSch STCA system (utilizing two lanes in this study) are 
as follows [22], [24]: 

1) Acceleration: 𝑣𝑖,𝑗(𝑡) ← 𝑣𝑖,𝑗(𝑡 − 1) + 1 

𝑣𝑖,𝑗(𝑡 − 1) < 𝑣𝑚𝑎𝑥 𝑔𝑠𝑖,𝑗(𝑡 − 1) > 𝑣𝑖,𝑗(𝑡 − 1) + 1

2) Braking: if 𝑔𝑠𝑖,𝑗(𝑡 − 1) ≤ 𝑣𝑖,𝑗(𝑡 − 1),  

𝑣𝑖,𝑗(𝑡) ← 𝑔𝑠𝑖,𝑗(𝑡 − 1) − 1

3) Randomization: with slowdown probability P and 

random number 𝜉(𝑡) , if 𝜉(𝑡) < 𝑃 ⟹ 𝑣𝑖,𝑗(𝑡) ← 𝑣𝑖,𝑗(𝑡 − 1) −
1. 

4) Vehicle movement: 

𝑥𝑖,𝑗(𝑡) ← 𝑥𝑖,𝑗(𝑡 − 1) + 𝑣𝑖,𝑗(𝑡)

where, 𝑣𝑖,𝑗(𝑡) is the speed of the vehicle in the i-th lane and 

j-th position, and 𝑔𝑠𝑖,𝑗(𝑡) is space gap, the distance between a 

vehicle and the vehicle in front of it. Fig. 1 shows one of the 
simulation results of NaSch STCA for two lanes with the 
specifications of a lattice length L = 500 cells, density k = 0.3, 
slowdown probability P = 0.3, probability of lane changing Plc 
= 0. Vehicles move from left to right, and the system operates 
as an open-loop system. 

B. Monte Carlo Simulation 

The Monte Carlo simulation involved generating events 
through random numbers. This process comprised data 
collection, assigning random numbers, formulating models, 
and performing analysis. One reason for using a Monte Carlo 
simulation is that it typically applies to simulations utilizing 
stochastic methods to create new configurations of the system 
being studied [25]. On the other hand, the Monte Carlo 
Simulation procedure outlined by [15] and utilized in this 
research involves: (i) Step 1. Data collection, which uses a 
pseudo-random sequence; (ii) Step 2. Random-number 
assignment, where events are generated impartially by 
assigning random numbers in proportion to their probability of 
occurrence. The standard Monte Carlo method with pseudo-
random sequences can achieve good convergence with N 
sample tests. In predicting traffic flow, the Monte Carlo 
Simulation serves as a mathematical tool to model risk or 
uncertainty in a system through the generation of random 
variables. The Monte Carlo Simulation model is designed to 
forecast traffic patterns. To create a new dataset with random 
probabilities, parameters such as the mean and standard 
deviation from the fitted normal distribution were utilized, as 
described by [16]. 

In other areas, the relationship between Cronbach’s alpha 
and randomness was tested using Monte Carlo simulations, as 
opposed to issues with minimum sample width and bias. 
Simulation-generated artificial data were used to estimate the 
alpha coefficient for a K-item scale with a 5-point Likert-type 
format, answered randomly by 5K individuals, where K 
denotes the number of items. Each trial was conducted 5000 
times, and one finding was that the probability of a Cronbach’s 
alpha coefficient of 0.27 or higher for a K-item 5-point Likert 
scale, randomly answered by 5K people, is less than 5% [26]. 

The Monte Carlo simulation procedure, as generally 
outlined by [15], includes Step 1: Data collection and Step 2: 
Random-number assignment has been applied in this study. 
The Monte Carlo Simulation generates random numbers in 
three areas: the initial state of occupancy, randomization 
(slowdown probability), and lane-changing probability. These 
components are integrated into the micro traffic flow modeling 
addressed in this research. Below is an explanation of each 
section. 
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1) Occupied initial state: In this section, random numbers 

are generated using Monte Carlo, where the random value is 

generated to be less than a predetermined density percentage k 

of vehicles. If this condition is satisfied, the initial position of 

the vehicle is assigned to the corresponding cell, and its initial 

speed vij(t) is set according to a normal distribution. All 

vehicles will be moved in parallel per time-step after 

generating their initial positions and velocities. Based on the 

density percentage, random positions xij(t) of vehicles are 

generated on a lattice length L as specified. The highway 

specifications used in this experiment replicate conditions on 

the Porong-Sidoarjo Highway in East Java, Indonesia. The 

traffic flow direction under study is from the cities of 

Sidoarjo/Surabaya towards Malang/Banyuwangi (one-way). 

This highway has two lanes (i = 1-2), and typical straight road 

length is 3750 meters, thus if 1 cell = 7.5 meters, the lattice 

length of the road is 500 cells (j = 1-500). In the Cellular 

Automata model, cells occupied by vehicles are identified 

with the number 1, while unoccupied cells are identified with 

0. Here is the syntax for generating random numbers based on 

Monte Carlo: 

for j=1:n 

    for i=1:2 

        r=rand; 

        if(r<k) 

            x(1,i,j)=1; 

            v(1,i,j)=floor(vmax/2+0.69*randn); 

        end 

    end 

end 

The initial conditions of vehicle speeds vij(t) are represented 
in matrix form with indices (1,i,j). Their values are computed 

using the floor function with the argument 
𝑣𝑚𝑎𝑥

2
+

0,69 𝑥 𝑟𝑎𝑛𝑑𝑛, where randn is a function that generates random 
numbers from a standard normal distribution. Therefore, 
vij(1,i,j) will contain the value from this expression after it has 
been rounded down to the nearest integer using the floor 
function. 

2) Randomization (Slowdown probability): One of the 

rules in Nagel-Schreckenberg's STCA involves 

randomization, specifically reducing the speed by 1 cell per 

time-step for vehicles that satisfy the randomization condition 

stated in the rule. The value of the random number ξ(t) is 

generated using Monte Carlo methods, where its magnitude is 

less than a predefined probability value p (referred to as the 

slowdown probability). Here is the syntax for generating 

random numbers based on Monte Carlo, applied from the 

initial simultaneous movement of vehicles until the end of the 

specified time period. 

for j=1:n 

    for i=1:2 

        if(x(t,i,j)==1) 

            r=rand; 

            if(r<p) 

                if(v(t,i,j)==5) 

                    ... 

                ... 

                end 

            end 

        end 

    end 

end 

3) Probability of lane changing: In this study, we refer to 

the structure of the Porong Sidoarjo highway where each 

direction has two lanes. Lane changes occur simultaneously 

between lane 1 and lane 2 as vehicles move over time. Monte 

Carlo plays a role in generating random numbers to determine 

which vehicles will change lanes. The random number 

generated is smaller than a predetermined lane change 

probability plc. The syntax for lane change from lane 1 to lane 

2 is described below. This condition is equivalent to lane 

change from lane 2 to lane 1. 

for j=6:n 

if(x(t,1,j)==1) 

r=rand; 

if (r<plc) 

    if(v(t,1,j)==5) 

        ... 

    end 

    ... 

    if(v(t,1,j)==1) 

    ... 

    end 

end 

end 

end 

III. MICRO TRAFFIC FLOW PHENOMENA, VEHICLE TYPES, 

DRIVER CHARACTERISTICS 

Traffic flow survey has been conducted in the area of 
Porong Sidoarjo Highway, East Java, Indonesia, where the 
traffic direction is specifically from the cities of 
Sidoarjo/Surabaya towards Malang/Banyuwangi (one-way). 
This highway serves as a main road connecting major cities 
including Surabaya, Sidoarjo, Malang, Jember, and 
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Banyuwangi. The economic growth among these cities is 
linked to the existence of Porong Sidoarjo Highway. The 
presence of this highway is highly significant and gives rise to 
distinct micro-traffic flow phenomena. The survey was 
conducted from March 23rd to March 30th, 2010. Speed data 
of vehicles was collected hourly over 24 hours a day for eight 
days, totaling 190 data points. The surveyed vehicle types 
included four-wheeled or more vehicles such as trucks/trailers, 
buses, public transportation, and private cars. Vehicle speed is 
measured using a speed gun. 

A. Micro Traffic Flow Phenomena 

The survey of speeds from four types of vehicles conducted 
every hour yielded speed data, where each vehicle type has 
several speed data points per hour. The mean speed data for 
each vehicle type per hour was calculated, resulting in 190 
mean speed data points per vehicle type. The phenomenon of 
these mean speeds shows variability in the data. It is desired 
that the speed data have a normal distribution so that 
descriptive statistics such as mean and standard deviation can 
accurately depict the patterns of mean speed and its variability. 
This includes the potential to determine driver characteristics 
based on mean speed data. The phenomenon of mean speed 
data from four types of vehicles over 190 consecutive hours is 
depicted in Fig. 2. 

The results of the vehicle speed survey were analyzed to 
determine the form of the population distribution or its 
probability by testing the hypothesis that a specific distribution 
serves as the model for the speed population. This study 
conducted hypothesis testing on speed data to assess whether 
the speed data or population follows a normal distribution or 
not. The hypothesis test employed a formal goodness-of-fit test 
procedure based on the chi-square distribution. 

 
Fig. 2. The mean speed of four types of vehicles for 190 consecutive data 

points (190 hours). 

The testing procedure requires several parameters: a 
random sample of size n; class interval c; observed frequency 
in class interval i, Oi; expected frequency in class interval i, Ei 
(given from the hypothesized probability distribution). Eq. (1) 
is used as the test statistic to analyze whether the speed data 
pattern conforms to a normal distribution or not. 

𝑋0
2 = ∑

(𝑂𝑖−𝐸𝑖)2

𝐸𝑖

𝑐
𝑖=1  

A statistical test is conducted on the population to 
determine if it follows the hypothesized distribution. The test 
statistic, 𝑋0

2 has approximately a chi-square distribution with c 
– p – 1 degrees of freedom, where p represents the number of 
parameters of the hypothesized distribution estimated by 
sample statistics. The hypothesis is rejected if the calculated 

value of the test statistic 𝑋0
2 > 𝜒𝛼,𝑐−𝑝−1

2 . 

In this hypothesis test, conducted on data concerning the 
mean speeds of all types of vehicles, the sample size n = 190 is 
utilized. With a significance level 𝛼 = 0.05, the hypothesis test 
aims to determine whether traffic survey data (vehicle speeds) 
can be adequately modeled by a normal distribution. The test 
employs c = 8 class intervals, which, for a standard normal 
distribution, divide the distribution area into eight segments 
with equal probabilities: [0, 0.32), [0.32, 0.675), [0.675, 1.15), 
[1.15, ∞), and their mirrored intervals on the other side of zero. 

Each interval has the probability pi = 1/8 = 0.125, thus the 
expected cell frequencies Ei = npi = 190(0.125) = 23.75. Note 
that the parameter values specified are n = 190; 𝛼 = 0.05; c = 
8 cells; pi = 1/8 = 0.125; and Ei = npi = 23.75, which are 
consistent across all types of vehicles. Di sisi lain sebaran data 
kecepatan untuk semua jenis kendaraan memiliki mean 𝜇 = 35 
dan standard deviation Std = 11.32. 

TABLE I.  TEST THE DISTRIBUTION OF SURVEY DATA (MEAN SPEED) 

FOR ALL TYPES OF VEHICLES (FOUR TYPES OF VEHICLES) 

Class 

Interval 

Observed 

Frequency 

oi 

Expected 

Frequency 

Ei 

oi - Ei (oi - Ei)2 
(oi - 

Ei)2/Ei 

x < 22 19 23,75 -4,75 22,56 0,95 

22 ≤ x < 27 12 23,75 -11,75 138,06 5,81 

27 ≤ x < 31 21 23,75 -2,75 7,56 0,32 

31 ≤ x < 35 19 23,75 -4,75 22,56 0,95 

35 ≤ x < 39 28 23,75 4,25 18,06 0,76 

39 ≤ x < 43 41 23,75 17,25 297,56 12,53 

43 ≤ x < 48 41 23,75 17,25 297,56 12,53 

48 ≤ x 9 23,75 -14,75 217,56 9,16 

Total 190 190 
  

43,01 

A hypothesis testing procedure is employed to determine if 
the sample data set of mean speeds follows a normal 
distribution. 

H0: The distribution takes on a normal form 

H1: The distribution does not adhere to a normal form 

The test statistic is  

𝑋0
2 = ∑

(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖

𝑐

𝑖=1

=
(19 − 23.75)2

23.75
+

(12 − 23.75)2

23.75
+ ⋯

+
(9 − 23.75)2

23.75
= 43.01
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Table I shows observed and expected frequencies for each 
cell, as well as the results of the chi-square distribution 
calculation. 

 The chi-square table with 𝛼 = 0.05  and degrees of 
freedom = c – p – 1 = 8 – 2 – 1 = 5 (p represents the 
number of parameters in the hypothesized distribution, 
which in this instance are the parameters of the normal 
distribution specifically, the mean 𝜇 and the variance 
𝜎2. Thus, there are two parameters, so 𝑝 = 2). 

𝜒𝛼,𝑐−𝑝−1
2 = 𝜒0.05,5

2 = 11.07

 Conclusion: since 𝑋0
2 = 43.01  > 𝜒0.05,5

2 = 11.07 , 

rejecting 𝐻0 suggests that the speed data for all vehicles 
does not follow a normal distribution. 

The results of the hypothesis test using a chi-square 
distribution indicate that the distribution is not normal, 
meaning that the mean speed data (survey results) from four 
types of vehicles do not exhibit a normal distribution. As 
mentioned above, transforming traffic flow survey data 
(vehicle speed data) into a normal distribution provides a 
strong basis for more in-depth statistical analysis, simplifies 
data interpretation, and enhances the validity of the analysis 
results to support decision-making. 

Normalization of the mean speed data for four types of 
vehicles was conducted individually for each vehicle due to 
varying extreme data (outliers) they possess. Below is the 
normalization applied to the mean speed data of the 
truck/trailer. 

Normalizing the speed of trucks/trailers. 

Here is the normalization mechanism for the mean speed 
data of trucks/trailers. 

 Transform the data using the natural logarithm function. 

 Remove the outlier data. After removal, the dataset 
consists of 170 entries, down from the original 190. 

 The mean is 3.53 and the standard deviation is 0.20. 

 Appling the hypothesis-testing procedure: 

 H0: The distribution follows a normal form. 

 H1: The distribution does not follow a normal form 

 The statistical test value is  

𝑋0
2 = ∑

(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖

𝑐

𝑖=1

=
(27 − 21.25)2

21.25
+

(17 − 21.25)2

21.25
+ ⋯

+
(21 − 21.25)2

21.25
= 8.26

Each interval has a probability pi = 1/8 = 0.125, thus the 
expected cell frequencies Ei = npi = 170(0.125) = 21.25 for 
each interval. 

Table II shows observed and expected frequencies for each 
cell, as well as the results of the chi-square distribution 
calculation. 

 The chi-square table with 𝛼 = 0.05  and degrees of 
freedom = c – p – 1 = 8 – 2 – 1 = 5 (p represents the 
number of parameters in the hypothesized distribution, 
which in this instance are the parameters of the normal 
distribution specifically, the mean 𝜇 and the variance 
𝜎2. Thus, there are two parameters, so 𝑝 = 2). 

𝜒𝛼,𝑐−𝑝−1
2 = 𝜒0.05,5

2 = 11.07

 Conclusion: Since 𝑋0
2 = 8.26  < 𝜒0.05,5

2 = 11.07 , 

accepting 𝐻0 indicates that the speed data for the 
truck/trailer follows a normal distribution. 

TABLE II.  NORMALIZATION OF MEAN SPEED SURVEY DATA FOR TRUCK / 
TRAILER 

Class Interval 

(Natural 

logarithmic 

numbers) 

Observed 

Frequency 

oi 

Expected 

Frequency 

Ei 

oi - 

Ei 

(oi - 

Ei)2 

(oi - 

Ei)2/Ei 

x < 3,300 27 21,25 5,75 33,06 1,56 

3,300 ≤ x < 3,395 17 21,25 -4,25 18,06 0,85 

3,395 ≤ x < 3,466 13 21,25 -8,25 68,06 3,20 

3,466 ≤ x < 3,530 18 21,25 -3,25 10,56 0,50 

3,530 ≤ x < 3,594 22 21,25 0,75 0,56 0,03 

3,594 ≤ x < 3,665 26 21,25 4,75 22,56 1,06 

3,665 ≤ x < 3,760 26 21,25 4,75 22,56 1,06 

3,760 ≤ x 21 21,25 -0,25 0,06 0,00 

Total 170 170 
  

8,26 

 
Fig. 3. Mean speed normalized results for truk/trailer vehicles. 

Fig. 3 illustrates the normalized mean speed results for 
trucks/trailers, based on 170 data points (after removing 
outliers). The normalized mean speed data yielded a minimum 
of 3.086 and a maximum of 3.839, with respective actual mean 
speeds of 22 and 47. 

Using the same method, normalization was also performed 
on the mean speed data for buses, public transportation, and 
private cars. Table III summarizes the normalization process 
for these three vehicle types. The normalized data counts for 
buses, public transportation, and private cars are 160, 170, and 
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160 respectively. The degrees of freedom used for all three 
types of vehicles are the same, which is 5. However, the 
significance levels (alpha) differ: 0.05 for buses, 0.005 for 
public transportation, and 0.010 for private cars. All chi-square 
distribution calculations for the mean speed data of these three 
vehicle types yielded values smaller than the chi-square values 
in the table. This condition indicates that the distribution of 
mean speed data for buses, public transportation, and private 
cars can be assumed to be normal. 

TABLE III.  SUMMARY OF MEAN SPEED SURVEY DATA NORMALIZATION 

FOR BUS, PUBLIC TRANSPORTATION, AND PRIVATE CAR VEHICLES 

Vehicle Steps Data Specifications Decision 

Bus 

▪Change the 

mean speed data 
to the function 

of natural 

logarithmic 
▪Delete the 

extreme data 

(outlier’s data) 
▪Appling the 

hypothesis-

testing 
procedure (Ho = 

normal 

distribution, H1 
= not normal 

distribution) 

Normalized amount 

of data = 160; Degree 

of freedom = 5; alpha 
= 0.05; Mean = 3,66; 

Std = 0,14; Chi-

square Dist. = 8,93; 

Chi-square Table = 

11,07; Chi-square 

Dist. (=8,93) < Chi-
square Table (=11,07) 

Ho accepted; 
Normal 

Distribution 

Public 
Transportation 

Normalized amount 

of data = 170; Degree 
of freedom = 5; alpha 

= 0.005; Mean = 3,62; 

Std = 0,20; Chi-
square Dist. = 15,98; 

Chi-square Table = 

16,75; Chi-square 
Dist. (=15,98) < Chi-

square Table (=16,75) 

Ho accepted; 

Normal 

Distribution 

Private Car 

Normalized amount 
of data = 160; Degree 

of freedom = 5; alpha 

= 0.010; Mean = 3,70; 
Std = 0,21; Chi-

square Dist. = 13,70; 

Chi-square Table = 
15,09; Chi-square 

Dist. (=13,70) < Chi-

square Table (=15,09) 

Ho accepted; 

Normal 
Distribution 

B. Driver Characteristics Based on Vehicle Speed 

Phenomena 

The phenomenon of micro-traffic flow on Porong Sidoarjo 
Highway has been investigated. Based on speed surveys 
conducted on four types of vehicles (trucks/trailers, buses, 
public transportation, and private cars), mean speed data 
requiring normalization due to non-normal data distribution 
was obtained. The normalized mean speed data (in natural 
logarithm and real numbers) with min-max speed values are 
shown in Table IV. The vehicle speed phenomenon from the 
survey results and the normalization process of speed data are 
used as a basis to establish the characteristics of drivers passing 
through Porong Sidoarjo Highway. The normalized vehicle 
speed data obtained from the survey depict the characteristics 
of drivers crossing Porong Sidoarjo Highway more accurately. 
This condition considers how they regulate their speed 
according to their skill levels and safety preferences. Under 
these circumstances, driver characteristics are categorized into 
three groups: (i) Careful driver (for truck or trailer drivers); (ii) 
Ordinary driver (for bus and public transportation drivers); and 
(iii) Skilled driver (for private vehicle drivers). 

TABLE IV.  THE PHENOMENON OF VEHICLE SPEED TO DETERMINE DRIVER 

CHARACTERISTICS 

Vehicle 

Mean 

speed 

(natural 

logarithmic 

number) 

Mean 

speed 

(real 

number) 

(min - 

max) 

normalized 

speed 

Driver 

characteristics 

Truck/Trailer 3,53 34 22 - 47 Careful driver 

Bus 3,66 39 27 - 52 Ordinary driver 

Public 

Transportation 
3,62 37 21 - 52 Ordinary driver 

Private Car 3,7 41 26 - 57 Skilled driver 

Characteristics of careful drivers regarding the speed 
phenomenon that occurs on Porong Sidoarjo Highway, East 
Java, Indonesia: (i) They are cautious, prioritizing safety over 
speed; (ii) They drive at a moderate speed, maintain distance 
from the vehicle ahead, and are ready to react quickly to 
changes in traffic; (iii) They drive at a speed lower than 
average to ensure safety and comfort. As for ordinary drivers, 
their characteristics are: (i) They typically follow basic traffic 
rules and drive at a comfortable speed that is appropriate for 
traffic conditions; (ii) They carefully follow the flow of traffic, 
adjusting their speed to the surrounding traffic conditions; (iii) 
They exhibit speeds close to the average. The characteristics of 
skilled drivers are: (i) They have a higher level of expertise in 
handling various driving situations; (ii) They can make quick 
decisions and maneuver vehicles effectively without 
compromising safety; (iii) They are capable of driving at 
speeds higher than average, yet within safe limits and well-
controlled. 

IV. THE PROPOSED MODEL OF MICRO TRAFFIC FLOW 

PHENOMENA 

In the previous section, the characteristics of drivers were 
categorized based on the speed phenomena observed on 
Porong Highway in Sidoarjo, East Java, Indonesia. Using the 
results of a vehicle speed survey conducted on this highway, 
these characteristics were classified into three types: careful 
driver, ordinary driver, and skilled driver. This section involves 
mathematical modeling of the vehicle speeds for each driver 
type based on the phenomena observed on Porong Highway in 
Sidoarjo. Subsequently, these speed models are integrated into 
the NaSch STCA rules. Lane-changing behavior is also 
incorporated into the STCA model, considering two lanes as 
per the real conditions on Porong Highway in Sidoarjo. 

A. Driver Characteristics Modeling 

 The three predefined driver characters exhibit 
fundamental differences in their speeds. Careful drivers 
maintain lower driving speeds below the average to prioritize 
safety and comfort. Ordinary drivers typically drive at speeds 
close to the average. Skilled drivers are capable of driving at 
speeds higher than the average, yet within safe limits and well-
controlled. Here are the statements regarding the speed 
modeling for each driver character: 

 careful driver: 1 ≤ 𝑣𝑐𝑑 ≤ �̅�𝑟 

 ordinary driver: 𝑣𝑜𝑑 = �̅�𝑟 ± 1 

 skilled driver: �̅�𝑟 ≤ 𝑣𝑠𝑑 ≤ 𝑣𝑚𝑎𝑥  
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where, 𝑣𝑐𝑑 , 𝑣𝑜𝑑 , and 𝑣𝑠𝑑  are the respective speeds of 
careful drivers, ordinary drivers, and skilled drivers in 
sequence, while �̅�𝑟 represents the average speed for all vehicle 
types passing through Porong Highway in Sidoarjo. 

Based on the speed data from the survey conducted on 
Porong Highway in Sidoarjo over 190 consecutive hours (eight 
days), the average speed for all vehicle types (referring to 
Table IV) �̅�𝑟  is 38 km/h. Converting this to computational 
terms, where 1 cell equals 7.5 meters and 1 second corresponds 
to 1 time-step, the average vehicle speed passing through 
Porong Highway in Sidoarjo �̅�𝑟  becomes 1.4 cells/time-step. In 
computational calculations, this is rounded up to 2 cells/time-
step. 

B. Lane Changing 

The Porong Sidoarjo Highway features two lanes in each 
direction. An illustration of two lanes in one direction is shown 
in Fig. 4. A vehicle is represented by a small box. If a vehicle 
intends to change lanes, it must satisfy the condition that on the 
new lane, there is a distance of b units between itself and the 
vehicle behind, and a distance of a units between itself and the 
vehicle in front. By meeting these conditions, collisions 
between vehicles can be avoided. 

 

Fig. 4. Illustration of a two-lane highway with lane-changing dynamics. 

Many studies have focused on lane-changing behavior in 
multi-lane and dual-lane scenarios. One such study examines 
lane-changing on a two-lane highway, as investigated by [27]. 
Based on the illustration in Fig. 4, the lane-changing used in 
this research must satisfy the following conditions: 

 𝑔𝑠𝑖=1,𝑗(𝑡 − 1) < min {𝑣𝑖=1,𝑗(𝑡 − 1), 𝑣𝑚𝑎𝑥} 

 𝑔𝑠𝑖=2,𝑗−𝑏(𝑡 − 1) > 𝑣𝑚𝑎𝑥 and 

 𝑔𝑠𝑖=2,𝑗+𝑎(𝑡 − 1) > 𝑔𝑠𝑖=1,𝑗(𝑡 − 1) with probability of lane 

changing Plc. 

C. Modified NaSch STCA 

The vehicle movement model in the micro-traffic flow 
simulation conducted on Porong Sidoarjo Highway refers to 
the phenomenon of vehicle speeds observed on that highway. 
Based on the survey results of vehicle speed measurements, 
drivers' characteristics are categorized into three types: careful 
drivers, ordinary drivers, and skilled drivers. The fundamental 
difference among them lies in the typical driving speeds they 
maintain while traversing Porong Sidoarjo Highway. 

In this study, the proposed vehicle movement is a 
modification of the NaSch STCA vehicle movement, where 
vehicle speeds are differentiated into three types according to 
predefined driver characteristics. The modified NaSch STCA 
follows these rules: 

1) Acceleration: 𝑣𝑖,𝑗(𝑡) ← 𝑣𝑖,𝑗(𝑡 − 1) + 1 

𝑣𝑖,𝑗(𝑡 − 1) < 𝑣𝑚𝑎𝑥 𝑔𝑠𝑖,𝑗(𝑡 − 1) > 𝑣𝑖,𝑗(𝑡 − 1) + 1

Where 

 for careful drivers applies 1 ≤ 𝑣𝑖,𝑗(𝑡 − 1) ≤ �̅�𝑟 

 for ordinary drivers applies �̅�𝑟 − 1 ≤ 𝑣𝑖,𝑗(𝑡 − 1) ≤
�̅�𝑟 + 1  

 for skilled drivers applies �̅�𝑟 ≤ 𝑣𝑖,𝑗(𝑡 − 1) ≤ 𝑣𝑚𝑎𝑥  

2) Braking: if 𝑔𝑠𝑖,𝑗(𝑡 − 1) ≤ 𝑣𝑖,𝑗(𝑡 − 1),  

𝑣𝑖,𝑗(𝑡) ← 𝑔𝑠𝑖,𝑗(𝑡 − 1) − 1

3) Randomization: with slowdown probability P and 

random number 𝜉(𝑡) , if 𝜉(𝑡) < 𝑃 ⟹ 𝑣𝑖,𝑗(𝑡) ← 𝑣𝑖,𝑗(𝑡 − 1) −
1. 

4) Vehicle movement: 

𝑥𝑖,𝑗(𝑡) ← 𝑥𝑖,𝑗(𝑡 − 1) + 𝑣𝑖,𝑗(𝑡)

Together with the lane-changing rules stated in the previous 
session: 𝑔𝑠𝑖=1,𝑗(𝑡 − 1) < min {𝑣𝑖=1,𝑗(𝑡 − 1), 𝑣𝑚𝑎𝑥} 

𝑔𝑠𝑖=2,𝑗−𝑏(𝑡 − 1) > 𝑣𝑚𝑎𝑥

𝑔𝑠𝑖=2,𝑗+𝑎(𝑡 − 1) > 𝑔𝑠𝑖=1,𝑗(𝑡 − 1)

with probability of lane changing Plc. 

V. EXPERIMENTAL RESULTS AND DISCUSSION 

In this session, a trial was conducted on vehicle movement 
using a predetermined model known as the Modified NaSch 
STCA. As explained in the previous session, drivers are 
categorized into three types based on speed, which is 
characteristic of each driver (careful, ordinary, and skilled 
drivers). The determination of the number of each type of 
driver is based on probabilities (percentages) relative to the 
predetermined vehicle density. The probabilities for careful 
drivers, ordinary drivers, and skilled drivers are denoted as Pcd, 
Pod, and Psd respectively. 

A. Experimental Results 

Fig. 5 illustrates a time-space diagram, one of the outcomes 
of the trial (simulation) of vehicle movement using the 
Modified NaSch STCA, replicating the phenomenon of vehicle 
movement on the Porong-Sidoarjo Highway. The 
specifications of this vehicle movement simulation are as 
follows: a two-lane highway with a lattice length of L = 500 
cells, density k = 0.3, slowdown probability P = 0.1, 
probability of lane changing Plc = 0.4, probability of careful 
drivers Pcd = 0.1, probability of ordinary drivers Pod = 0.3, and 
probability of skilled drivers Psd = 0.6. The vehicles move in 
one direction, from left to right, replicating the movement from 
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the city of Sidoarjo / Surabaya towards Banyuwangi / Malang, 
and this movement system operates as an open-loop system. 

Based on Fig. 5, it can be seen that with a vehicle density of 
k = 50% (0.5), where the probability of trucks/trailers (careful 
drivers) being present is 10% (0.1), the probability of buses and 
public transportation (ordinary drivers) is 30% (0.3), and the 
probability of private cars (skilled drivers) is 60% (0.6), all 
vehicles cover a distance of 500 cells = (500 x 7.5 meters) = 
3750 meters. This results in a total travel time of t = 3161 time-
steps ≈ 3161 seconds ≈ 52.68 minutes. This condition indicates 
that with the average speed per type of vehicle passing through 
the Porong Sidoarjo highway as shown in Table IV, where the 
minimum speed value of all types of vehicles = 22 km/h and 
the maximum = 57 km/h, the average speed for all types of 
vehicles = 38 km/h. This phenomenon highlights that with a 
vehicle density of k = 50% and an average speed �̅�𝑟  = 38 km/h, 
the travel time for all vehicles over a distance of 3750 meters is 
3161 seconds (52.68 minutes). 

 

 
Fig. 5. Time-space diagram of Modified NaSch STCA (two lanes), where the 

vertical axis represents time-steps and the horizontal axis represents space 

(cells), road length L = 500 cells, density k = 0.5, slowdown prob. P = 0.3, 
prob. of lane changing Plc = 0.4, prob. of careful drivers Pcd = 0.1, prob. of 

ordinary drivers Pod = 0.3, and prob. of skilled drivers Psd = 0.6. Top image 

for lane 1 and bottom image for lane 2. 

The comparison of the time-space diagram between NaSch 
STCA and Modified NaSch STCA is illustrated by one of the 
test results (simulations) as shown in Fig. 6. The test 
specifications employed are as follows: the road length 500 
cells, with a vehicle density of k = 0.3, there is a 30% 
probability of slowdown (P = 0.3) and a 0% probability of lane 
changing (Plc = 0.0). In the Modified NaSch STCA model, the 
probabilities Pcd = 0.1 for careful drivers, Pod = 0.3 for ordinary 

drivers, and Psd = 0.6 for skilled drivers. It can be seen that 
with the same specifications, over a distance of 500 cells (3750 
meters), the travel time for all vehicles in the NaSch STCA 
model is 409 time-steps (409 seconds), while the modified 
model takes 1934 time-steps (1934 seconds). This indicates 
that the travel time in the NaSch STCA model is significantly 
faster than in the modified model. This phenomenon occurs 
because the average speed of vehicles traveling on the Porong 
Highway tends to be lower than usual. 

    

    
Fig. 6. A comparison of time-space diagrams for two lanes between the 

NaSch STCA model and the Modified NaSch STCA. In this visualization, the 
vertical axis corresponds to time-steps, while the horizontal axis represents 

space measured in cells. The road length is L = 500 cells, with a density of k = 

0.3. The probability of slowdown is P = 0.3, and the probability of lane 
changing is Plc = 0.0. For the Modified NaSch STCA model, the probabilities 

are as follows: Pcd = 0.1 for careful drivers, Pod = 0.3 for ordinary drivers, and 

Psd = 0.6 for skilled drivers. The top image shows the time-space diagram for 
the NaSch STCA model, while the bottom image depicts the Modified NaSch 

STCA model. 

A comparison of travel time versus vehicle density was 
conducted between the NaSch STCA model and the Modified 
NaSch STCA model. The simulation specifications include a 
road length of 500 cells, a slowdown probability P = 0.3, and a 
lane-changing probability Plc = 0.3. For the Modified NaSch 
STCA model, the probabilities for careful drivers, ordinary 
drivers, and skilled drivers are Pcd = 0.1, Pod = 0.2, and Psd = 
0.7, respectively. Travel time for vehicles was calculated for 
each density value incrementing by 0.1, ranging from 0.1 to 
0.9. Detailed travel time results for each density value k 
increasing by 0.1 are shown in Table V. It can be observed 
that, for both models, travel time increases with higher vehicle 
density. At the same density value, the NaSch STCA model 
exhibits significantly faster travel times compared to the 
Modified NaSch STCA model. This condition is consistent 
across all density values. For instance, in this simulation, the 
NaSch STCA model yields a travel time of 138 time-steps for a 
density of k = 0.1, increasing to 1196 time-steps for a density 
of k = 0.9. Meanwhile, for the Modified NaSch STCA model, 
the travel time is 1364 time-steps at a density of k = 0.1, 
increasing further with each increment in vehicle density, 
reaching 5641 time-steps at k = 0.9. It can be stated that the 
travel time for the NaSch STCA model is significantly faster 
than for the Modified NaSch STCA model. This condition is 
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attributed to the unique vehicle speed characteristics on the 
Porong Sidoarjo highway, where the average speed for all 
vehicle types �̅�𝑟 = 38 km/h is lower than the general average 
speed. 

It is also noted the difference in travel time between the 
Modified NaSch STCA model and the NaSch STCA model. 
Table V shows that the difference for a density of 𝑘 = 0.1 is 
1226 time-steps. The travel time difference increases as vehicle 
density rises. For a density of 𝑘 = 0.9, the travel time difference 
is 4445 time-steps. The simulation results are also generally 
illustrated in the line graph shown in Fig. 7. 

TABLE V.  VEHICLE TRAVEL TIME AND THE DIFFERENCES BETWEEN THE 

NSCH STCA MODEL AND THE MODIFIED NSCH STCA MODEL 

Density k 
The travel time (time-steps) 

Difference (time-steps) 
NSch STCA 

Modified 

NSch STCA 

0,1 138 1364 1226 

0,2 252 1698 1446 

0,3 394 1999 1605 

0,4 509 2284 1775 

0,5 672 3208 2536 

0,6 802 3510 2708 

0,7 939 4360 3421 

0,8 1041 5094 4053 

0,9 1196 5641 4445 

 
Fig. 7. Comparison of travel time with vehicle density between the NaSch 

STCA model and the Modified NaSch STCA model. The road length is L = 

500 cells, the probability of slowdown is P = 0.3, and the probability of lane 

changing is Plc = 0.3. Specifically for the Modified NaSch STCA model, the 
probabilities of the presence of careful drivers, ordinary drivers, and skilled 

drivers are Pcd = 0.1, Pod = 0.2, and Psd = 0.7, respectively. 

This study also examined vehicle travel time relative to the 
set travel distance, ranging from 100 cells to 500 cells. A 
comparison was made between the travel times of the NaSch 
STCA model and the Modified NaSch STCA model. Fig. 8 

shows that the Modified NaSch STCA model exhibits 
significantly greater travel times for each specified distance 
compared to the NaSch STCA model. 

The mean speed values produced by the modified NaSch 
STCA model were analyzed in relation to vehicle density. 
Simulation results with specifications of road length L = 500 
cells; slowdown probabilities P = 0.1, 0.50, and 0.9 in 
sequence; and lane-changing probability Plc = 0.3 are shown in 
Fig. 9. It is observed that higher vehicle densities lead to a 
decrease in mean speed. This condition aligns with the (𝑘, �̅�𝑟) 
diagram model described. 

 
Fig. 8. Comparison of travel time with distance traveled between the NaSch 

STCA model and the Modified NaSch STCA model. The road length is L = 

500 cells, density k = 0.3, the probability of slowdown is P = 0.3, and the 

probability of lane changing is Plc = 0.3. Specifically for the Modified NaSch 
STCA model, the probabilities of the presence of careful drivers, ordinary 

drivers, and skilled drivers are Pcd = 0.1, Pod = 0.2, and Psd = 0.7, respectively. 

 

Fig. 9. Several (𝑘, �̅�𝑟) diagrams from the modified NaSch STCA model 

(mean speed versus density) with the specifications: road length L = 500 cells; 
slowdown probability P = 0.1, 0.5, and 0.9 in sequence; lane-changing 

probability Plc = 0.3. 
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Delayed acceleration and slowdown probability have been 
incorporated into the modified NaSch STCA model. Regarding 
delayed acceleration, this study references, which is described 
by Takayasu–Takayasu TCA (T2-TCA) in R2 as follows: 

(R2) delayed acceleration: 

𝑣𝑖(𝑡) = 0 ∧ 𝑔𝑠𝑖(𝑡) ≥ 2 ⟹ 𝑣𝑖(𝑡 + 1) ← 1

The presence of delayed acceleration and slowdown 
probability complements each other, as both impact the overall 
performance of the traffic system and contribute to increased 
travel time or congestion. When many vehicles experience 
delayed acceleration and there is also a high probability of 
slowdown, traffic can become more unstable and inefficient. 
This study demonstrates the effect of slowdown probability on 
travel time, with delayed acceleration incorporated into the 
Modified NaSch STCA model. It can be stated that the effect 
of slowdown probability on travel time is also influenced by 
the presence of delayed acceleration within the system. 
Simulation results for travel time in relation to slowdown 
probability are shown in Fig. 10. Observations were made for 
low, medium, and high densities, specifically k = 0.3, 0.5, and 
0.9, with a lane-changing probability Plc = 0.3. 

 
Fig. 10. Travel time observed as a function of slowdown probability P for 

densities k = 0.3, 0.5, and 0.9 sequentially; with a lane-changing probability 
Plc = 0.3. 

B. Discussion 

The workflow of this study is as follows: (i) Conduct a 
survey of traffic phenomena on the Porong Highway in East 
Java, Indonesia. The survey data includes vehicle types, 
vehicle speeds, traffic density, and questionnaire responses 
about the conditions experienced by road users on Porong 
Highway. (ii) Process the survey data and analyze the observed 
phenomena. (iii) Examine the patterns emerging from the data 
analysis. (iv) Identify research topics that can be pursued based 
on the available data. 

Based on the phenomena observed from the survey data, a 
unique finding is the variation in vehicle speeds, where 
different vehicle types exhibit different average speeds. 
Consequently, a microscopic traffic flow model was developed 

based on the speed characteristics of each vehicle type. Since 
vehicles are driven by individuals who influence their speed by 
accelerating or decelerating, the vehicle characteristics are 
inherently linked to the driver. 

The discrete dynamic system model used is Cellular 
Automata, specifically the NaSch STCA model, which is a 
stochastic method utilizing random number generation. The 
random number generator employed in this model is the Monte 
Carlo method, integrated into the NaSch STCA with three 
components utilizing Monte Carlo simulation: the Occupied 
Initial State, Slowdown Probability, and Probability of Lane 
Changing. The innovation in this microscopic traffic flow 
modeling is the categorization of driver characteristics based 
on vehicle speeds observed on the Porong-Sidoarjo Highway, 
categorized into: careful driver, ordinary driver, and skilled 
driver, each with specific vehicle speed profiles. 

The anticipated outcome is the alignment of the developed 
microscopic traffic flow model with the indications of vehicle 
travel times in relation to parameters such as density, travel 
distance, and slowdown probability. Traffic flow simulations 
on the Porong Highway have been conducted, producing 
vehicle travel times that replicate the actual traffic conditions 
on that road. The simulation specifications were adapted to 
match the conditions of the Porong Highway: the traffic flow 
under examination is from the Sidoarjo/Surabaya area towards 
Malang/Banyuwangi (one-way). This highway features two 
lanes (i = 1-2) and a typical straight road length of 3750 
meters. Therefore, with each cell representing 7.5 meters, the 
lattice length of the road is 500 cells (j = 1-500). 

For example, when using a slowdown probability P = 0.3 
and a lane-changing probability Plc = 0.3, the Modified NaSch 
STCA model assigns probabilities of Pcd = 0.1, Pod = 0.2, and 
Psd = 0.7 for careful, ordinary, and skilled drivers, respectively. 
Vehicle travel times were computed for each density value 
incrementing by 0.1, from 0.1 to 0.9. Detailed results of travel 
times for each density increment are presented in Table V. For 
instance, the NaSch STCA model has a travel time of 138 
time-steps at a density of k = 0.1, which increases to 1196 
time-steps at k = 0.9. In contrast, the Modified NaSch STCA 
model shows a travel time of 1364 time-steps at k = 0.1, which 
grows to 5641 time-steps at k = 0.9. This indicates that the 
NaSch STCA model has significantly faster travel times 
compared to the Modified NaSch STCA model. This disparity 
is due to the unique vehicle speed characteristics on the 
Porong-Sidoarjo highway, where the average speed �̅�𝑟  =38 
km/h is lower than the general average speed. 

VI. CONCLUSION  

The phenomenon of micro traffic flow on the Porong 
Highway in East Java, Indonesia, exhibits distinctive 
characteristics. A survey of vehicles with four or more wheels 
was conducted over eight days (190 hours) on this highway. 
The survey identified four types of vehicles: trucks/trailers, 
buses, public transportation, and private cars. The survey data 
revealed that these vehicles have average speeds of 34 km/h, 
39 km/h, 37 km/h, and 41 km/h, respectively. Based on these 
speed characteristics, drivers of each vehicle type were 
categorized as careful drivers for trucks/trailers, ordinary 
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drivers for buses and public transportation, and skilled drivers 
for private cars. 

Vehicle movement modeling was performed using the 
NaSch STCA (NaSch STCA) model, specifically the Modified 
NaSch STCA (Modified NaSch STCA), tailored to simulate 
conditions on the surveyed Porong Sidoarjo highway. The road 
length was 3750 meters (L = 500 cells), straight with two lanes 
in each direction. Simulation results with specific parameters 
(road length of 500 cells, density k = 0.3, slowdown probability 
P = 0.3, and probability of lane changing Plc = 0.0) compared 
data between the NaSch STCA and Modified NaSch STCA 
models. The Modified NaSch STCA model included specific 
driver presence probabilities: 0.1 for careful drivers, 0.3 for 
ordinary drivers, and 0.6 for skilled drivers. 

One of the comparisons between these models is their 
travel time, where the NaSch STCA model significantly 
outperformed the Modified NaSch STCA model. This outcome 
reflects the characteristic vehicle speeds on the Porong 
Sidoarjo highway, with an average speed for all vehicle types 
�̅�𝑟 = 38 km/h. 

For future research, it is essential to develop micro traffic 
flow modeling based on driver characteristics on a particular 
roadway, in collaboration with local government authorities. A 
more effective approach would be to combine Cellular 
Automata with artificial intelligence, enhancing the modeling 
of dynamic micro traffic systems and driver characteristic 
classification. 
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