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Abstract—Upper motor neuron syndrome is characterised by 

spasticity, which represents a neurological disability that can be 

found in several disorders such as cerebral palsy, amyotrophic 

lateral sclerosis, stroke, brain injury, and spinal cord injury. 

Muscle spasticity is always assessed by therapists using 

conventional methods involving passive movement and assigning 

spasticity grades to the relevant joints based on the degree of 

muscle resistance which leads to inconsistency in assessment and 

could affect the efficiency of the rehabilitation process. To address 

this problem, the study proposed to develop a muscle spasticity 

model using Mechanomyography (MMG) signals from the 

forearm muscles. The muscle spasticity model leveraged based on 

the Modified Ashworth Scale and focus on flexion and extension 

movements of the forearm. Thirty subjects who satisfied the 

requirements and provided consent were recruited to participate 

in the data collection. The data underwent a pre-processing stage 

and was subsequently analysed prior to the extraction of features. 

The dataset consists of forty-eight extracted features from the 

three-direction x, y, z axes (for both biceps and triceps muscle), 

corresponding to the longitudinal, lateral, and transverse 

orientations relative to the muscle fibers. Significant features 

selection was conducted to analyse if overall significant difference 

showed in the combined set of these features across the different 

spasticity levels. The test results determined the selection of 

twenty-five features from a total of forty-eight which be used to 

train an optimum classifier algorithm for the purpose of 

quantifying the level of muscle spasticity. Linear Discriminant 

Analysis (LDA), Decision Trees (DTs), Support Vector Machine 

(SVM), and K-Nearest Neighbour (KNN) algorithms have been 

employed to achieve better accuracy in quantifying the muscle 

spasticity level. The KNN-based classifier achieved the highest 

performance, with an accuracy of 91.29% with k=15, surpassing 

the accuracy of other classifiers. This leads to consistency in 

spasticity evaluation, hence offering optimum rehabilitation 

strategies. 

Keywords—Spasticity; mechanomyography; Modified Ashworth 

Scale; machine learning 

I. INTRODUCTION 

A stroke is a sudden and chronic loss of neurological 
function caused by infarction or haemorrhage in the brain, spinal 

cord, or retina, resulting in impaired motor function and 
significant restrictions in performing everyday tasks and overall 
well-being [1]. Most stroke patients experience movement 
difficulties, with approximately 30% of those affected 
experiencing spasticity [2]. Moreover, stroke remains the second 
most prevalent cause of fatality and the primary cause of 
impairment on a global scale, making it the third leading cause 
of death and disability worldwide [3], [4], [5]. On a global scale 
the prevalence of stroke has grown in correlation with the 
process of modemisation, modifications in lifestyle, and a 
growing population of older individuals [6]. 

Upper motor neuron syndrome has been defined by 
spasticity, a neurological impairment that occurs in a variety of 
conditions, including cerebral palsy, amyotrophic lateral 
sclerosis, stroke, brain injury, and spinal cord injury [7]. Lance 
introduced the term "spasticity" in 1980 to define the upper 
motor neuron syndrome, a motor disorder marked by increased 
muscle tone and exaggerated tendon jerks that rely on movement 
velocity and result from the hyperexcitability of the stretch 
reaction [8], [9]. This description exclusively emphasises the 
impact of spasticity on involuntary movements, disregarding its 
effect on deliberate behaviours. The Modified Ashworth Scale 
(MAS) and the Australian Spasticity Assessment Scale (ASAS) 
are widely recognised as the most reliable methods for 
evaluating spasticity in clinical settings, with the MAS being a 
frequently employed tool in stroke rehabilitation [10], [11]. 

In addition, there are several other clinical tools available for 
assessing spasticity, such as Spinal Cord Assessment Tool for 
Spastic Reflexes (SCATS), Fugl-Meyer Assessment (FMA), 
Penn Spasm Frequency Scale (PSFS), and Modified Tardieu 
Scale (MTS) [12], [13]. However, these tools are less accurate 
compared to the MAS and ASAS. Furthermore, the 
conventional method that has been used to assess spasticity 
nowadays involves subjective measurement by the therapists 
[14]. Although, the therapists already been trained well in 
assessing the spasticity using MAS tool measurement, there 
might be a possibility of difference in identify the spasticity 
level. The variability can disturb the effectiveness of the 
rehabilitation process for the neurological disorder patients. 
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During the procedural application of the MAS, the therapist 
executes passive movement and assigns spasticity grades to the 
relevant joints based on the degree of muscle resistance 
experienced during passive stretching [15], [16]. 

The main objective of this study is to validate 
Mechanomyography (MMG) as a reliable signal by comparing 
the accuracy of various machine learning algorithms and 
demonstrate its clinical applicability in objective measurement. 
This study highlights the effectiveness of combining 
mechanomyography with machine learning as a superior 
approach for evaluating muscular spasticity in patients with 
upper limb neurological disorders. 

The main contributions of this study include the introduction 
of MMG as a new and unbiased instrument for evaluating 
muscular spasticity, which has the potential to enhance current 
subjective approaches. The research also evaluates various 
machine learning algorithms to determine the best models for 
analysing MMG data, thereby improving the accuracy and 
consistency of spasticity assessments. Additionally, the study 
illustrates the practical applicability of MMG in clinical settings, 
highlighting its potential to standardize evaluations, optimize 
rehabilitation strategies, and ultimately improve patient 
outcomes. These contributions have substantial significance for 
the field of neurorehabilitation as it establishes an accurate and 
unbiased technique for evaluating spasticity, which can lead to 
enhanced diagnostic precision, individualized treatment 
strategies, and potentially improved long-term results for 
patients with upper limb neurological diseases. 

The structure of the article is as follow: Section II describe 
on characteristics of electromyography and mechanomyography 
on clinical evaluation. Section III presents a comprehensive 
summary of the research carried out by researchers in the topic 
throughout the years. Section IV provide detailed explanations 
on the selection of subjects, the experimental setup, and the pre-
processing and analysis of the data. Section V provides an 
explanation of the machine learning algorithms. Section VI 
provided and deliberated upon the experimental findings and the 
subsequent section explain the conclusion of the study findings. 

II. ELECTROMYOGRAPHY AND MECHANOMYOGRAPHY 

The utilization of electromyography (EMG) in routine 
therapeutic procedures represents a contemporary and 
pioneering approach to neurorehabilitation for individuals 
recovering from a stroke [17]. EMG has been used to record 
electrical muscle activity for quite some time, though it's 
currently limited to therapeutic purposes [18]. Additionally, 
EMG can be highly susceptible to interference from noise and 
variations in resistance, rendering it unreliable in diverse 
settings or during prolonged data collection, such as when an 
individual starts sweating [19], [20]. At the same time, the use 
of EMG sensors necessitates time-consuming skin preparation, 
including disinfection and abrasive paste application, along with 
electrode placement on multiple leg muscles which requires an 
expert environment for accurate sensor positioning and signal 
interpretation [21]. Mechanomyography (MMG) serves as an 
alternative or mechanical counterpart to EMG by quantifying 
muscle vibrations, or mechanical activity generated by active 
muscle, using sensors such as microphones or accelerometers 
[22], [23]. The invention of piezoelectric, microphone, and 

accelerometers demonstrated the adequate detection of 
mechanical signals from the surface of skeletal muscles at low 
frequencies, known as MMG signals that tend to be 
contaminated by electrical noise [24], [25]. MMG provides a 
method that enables the detection and measurement of 
vibrations resulting from muscle contractions and stretching 
[26]. These vibrations propagate through the tissue and can be 
detected on the surface of the skin. 

The characteristics of a reliable MMG transducer typically 
include high sensitivity within the muscle vibrational frequency 
range of 2 Hz to 100 Hz, low sensitivity to random noise, ease 
and standardization of sensor attachment, biocompatibility, 
suitability for clinical environments, and cost-effectiveness 
compared to other clinical assessment techniques [27]. 
Compared to EMG, MMG has not yet gained widespread 
acceptance, particularly in clinical settings. Despite not yet 
achieving widespread acceptance, particularly in clinical 
settings, MMG holds significant potential for various 
applications. These include controlling prosthetic devices, 
recognizing gestures in human-machine interfaces (HMIs), and 
studying the underlying physiological mechanisms of the 
neuromuscular system in scientific research [28]. Additionally, 
MMG offers greater convenience than EMG as it being highly 
responsive to skin conditions and reliable performance in 
dynamic settings, reducing the necessity for frequent cleaning, 
drying, and optimal skin condition maintenance throughout 
usage [29], [30]. MMG responses can be utilized in various 
medical contexts, including the clinical evaluation of 
neuromuscular tissue, biofeedback rehabilitation, and 
neural/myoelectric prosthetic control. 

III. RELATED WORKS ON MACHINE LEARNING 

Machine learning has become a popular data analytics 
technology that uses statistical methods to analyze observed data 
and make predictions or classify new data [31]. Multiple studies 
have investigated the effectiveness of machine learning in 
improving the provision of rehabilitation services, showcasing 
its capacity to enhance patient outcomes and improve clinical 
procedures. 

For instance, Puzi et al. [32] developed An Automatic 
Muscle Spasticity Assessment System (AMSAS) to evaluate the 
muscle spasticity, specifically emphasizing the utilization of 
machine learning methods. The torque and angle signals 
generated by the arm muscles were examined to classify levels 
of spasticity according to the Modified Ashworth Scale (MAS). 
Twenty-five patients with varied degrees of spasticity were 
analysed, and seven features were retrieved. A Linear Support 
Vector Machine (SVM) classifier with four specified 
characteristics got the maximum accuracy of 84% when 
classifying spasticity levels. The variables of Three-Way 
Decision (TWD) including the first and second halves of the 
region, catch position, and post-catch stiffness, were found to 
have a significant association with MAS levels. 

In another study, Puzi et al. [33] presented a new classifier 
that uses clinical data from the affected upper limb to accurately 
measure levels of muscle spasticity. The study proposes a 
methodical quantification strategy that utilizes the Modified 
Ashworth Scale (MAS) in conjunction with a one-way ANOVA 
test to assess the extent to which these features accurately 
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predicted test scores. subsequently, four important features were 
determined as the most significant for creating efficient 
classification models and were employed in the training process. 
The study showcased that the Support Vector Machine (SVM) 
classifier surpassed the Adaptive Neuro-Fuzzy Inference 
System (ANFIS) classifier, with an accuracy rate of 88.0%. 

Additionally, Liu et al. [34] investigated on muscle 
spasticity, specifically targeting the wrist flexor and extensor 
muscles. The methods employed in this study utilise MMG 
signals to identify periods of muscular activity in real-time 
gesture recognition, which is essential for diagnosing muscle 
spasticity. Additionally, it has been utilised to offer significant 
observations on muscle exhaustion and torque, proving their 
potential in evaluating muscle spasticity. The study involved 
assessing eight distinct and atypical gestures, which included 
clapping, flicking the index finger, snapping the finger, flipping 
a coin, shooting, extending the wrist, bending the wrist, and 
creating a fist. The K-nearest neighbours (KNN) algorithm, with 
a value of K set to 7, achieved the maximum classification 
accuracy of 94.56% for the eight gestures. 

Furthermore, Kim et al. [31] conducted a study aimed at 
assessing elbow spasticity by the application of machine 
learning techniques. This was achieved by employing 
sophisticated machine learning algorithms to meticulously 
analyse acceleration and rotation characteristics derived from 
the injured elbow's side. The acceleration and rotation properties 
of the elbows of affected patients have been examined to 
determine the degree of spastic movement, similar to the way 
the modified Ashworth scale (MAS) score was used. Achieving 
an accuracy of up to 95.4%, a random forest (RF) algorithm was 
used to classify spasticity. The learning problem was classified 
as supervised since the signals correlated with MAS scores, as 
evaluated by therapists. Additional features were extracted and 
incorporated into the existing feature set, resulting in enhanced 
classification performance. 

These studies collectively illustrate the potential of machine 
learning in the precise assessment and classification of muscle 
spasticity, offering significant advancements in the field of 
rehabilitation. 

IV. METHODOLOGY 

A. Subjects 

30 post-stroke subjects with upper limb spasticity 
participated in the study. This study has obtained approval by 
the Research Ethics Committee of the International Islamic 
University Malaysia (IIUM) under the identification number 
IREC 2023-025. Specifically, the subjects were diagnosed with 
spasticity in upper limbs (UL), with an age range of 18 to 80 
years recruited from Sultan Ahmad Shah Medical Centre 
(SASMEC) and National Stroke Association of Malaysia 
(NASAM). The informed consent has been provided by the 
subjects prior to participation, and the study adhered to strict 
data protection procedures, ensuring that all subject information 
was managed in accordance with applicable data privacy 
regulations. The subjects recruited for this research were chosen 
from MAS levels 0, 1, 1+, 2, and 3. The MAS level 4 was 
omitted due to the absence of any noticeable bending and 
straightening movements during the evaluation. The pilot 

examination was conducted by experienced therapists to 
evaluate the subjects movement capability and identify potential 
issues that can be addressed for the upcoming data collection. 
The demographic characteristics of the research subjects were 
detailed in Table I. MAS scores ranging from 0 to 3 were 
determined for the participants' affected muscles. Five groups 
were formed from the volunteers: MAS-0 (N=5), MAS-1 
(N=16), MAS-1+ (N=3), MAS-2 (N=4) and MAS-3(N=2). 

TABLE I.  DEMOGRAPHIC DATA OF THE PATIENTS (DIVIDED INTO FOUR 

GROUPS) 

Mas 

Level 

Numbers 

(N) 

Genders 

(M/F) 

Affected Hand 

(Left/Right) 

Age 

(Year) 

0 6 3/3 2/4 
44.3 ± 

18.4 

1 15 11/5 7/8 
62.7 ± 

10.1 

1+ 3 3/0 2/1 56.0 ± 7.5 

2 4 3/1 1/3 50.0  ± 9.5 

3 2 2/0 2/0 
38.7 ± 

19.1 

B. QSAT Platform 

A new platform called as Quantitative Spasticity Assessment 
Technology (QSAT) has been developed based on the 
Mechanomyography (MMG) technique to overcome the 
inconsistency measurement of spasticity as depicted in Fig. 1. 
The platform incorporates two primary sensors: an 
accelerometer Mechanomyography (ACC-MMG), which 
measures muscle vibrations in the biceps and triceps, and a 
potentiometer, which assesses the angular position of the upper 
limb during flexion and extension movements. Through the 
measurement of patients' biological signals, the extracted 
features have been examined for their correlation with MAS 
using machine learning. The utilization of platform 
measurements mapped to MAS levels enhances the evaluation 
of spasticity and streamlines the clinical workflows of therapists. 

 
Fig. 1. QSAT System with labels. 

C. Data Acquisition and Experimental Setup 

In this study, a commercial biological signal acquisition 
system (Raspberry Pi Pico) was used to record ACC-MMG 
signals (ADXL345, Digital Devices, full-scale range = ± 2 g to 
± 16 g; typical frequency responses = 0.1 to 3200 Hz; sensitivity 
= 3.9 mg/LSB; size = 3 mm x 5 mm x 1 mm)) and potentiometer 
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data, both sampled at a rate of 166.7 Hz. Each muscle group, 
including the biceps and triceps, was equipped with a tri-axial 
ACC-MMG accelerometer and a potentiometer, which were 
integrated within an elbow brace arm. This configuration 
enabled single-channel potentiometer recording alongside 
simultaneous two-channel ACC-MMG recording. The ACC-
MMG signal, captured three-dimensionally by the 
accelerometers, included three distinct sub-signals 
corresponding to the x, y, and z axes. Consequently, one channel 
was designated for potentiometer data, while two channels were 
dedicated to ACC-MMG signal acquisition, with all data 
recorded concurrently. The ACC-MMG signals along the 
muscle axes were captured using three distinct tri-axial 
accelerometers. These accelerometers were oriented along the x, 
y, and z axes, corresponding to the longitudinal, lateral, and 
transverse orientations relative to the muscle fibers, 
respectively, as illustrated in Fig. 2. 

 
(a) 

 
(b) 

Fig. 2. ACC-MMG Sensor placement: (a) On the Biceps and (b) On the 

triceps. 

The experimental protocol began with each subject directed 
to lie down in the supine position with their arm positioned 
alongside their body. This evaluation was carried out using the 
Modified Ashworth Scale (MAS) as the clinical tool for 
assessment. During the implementation of the MAS, the 
therapist performs passive movements and assigns spasticity 
grades to the corresponding joints depending on the level of 
muscular resistance observed during passive stretching. After 
the session, the ACC-MMG signal of biceps and triceps was 
recorded. The sensors were affixed to the skin in a secure 
manner through the utilization of double-sided tape. "Sensor 1" 

was placed on the biceps muscle's belly, while "Sensor 2" was 
positioned on the triceps muscle's belly. The sensor's x-axis was 
aligned with the direction of muscle fiber contraction while z-
axis was touched directly to the skin surface. At the same time, 
the potentiometer with elbow brace arm support was attached to 
the elbow joint. The QSAT experiment began by assessing the 
subject's arm through the placement of one therapist's hand 
beneath the lower arm in proximity to the wrist, while the other 
hand gave stability to the upper arm near the shoulder, as 
illustrated in Fig. 3. The subject's arm underwent three 
repetitions of a movement, transitioning from full extension (0°) 
to full flexion (135°) for a duration of two seconds each time. 
All results have been recorded and organized in an Excel 
datasheet. 

 

Fig. 3. Setup of QSAT Platform measures for upper limb. 

D. Data Analysis and Feature Extraction 

Signal preprocessing was conducted using MATLAB 
R2023a software (MathWorks Inc.). The ACC-MMG and 
potentiometer data collected throughout the experiments 
underwent initial preprocessing to ensure precision and 
reliability. Based on the analysis of the raw data, the signals 
exhibited minimal noise interference, indicating that filtering 
was unnecessary. The continuous data was then divided into 
epochs corresponding to each movement cycle, ranging from 
full extension (0°) to complete flexion (135°) of the elbow. The 
potentiometer data provided distinct markers indicating the 
beginning and end of each movement cycle. Fig. 4 shows a 
graph that presents the time-series plots of the ACC-MMG 
signals along the x1, y1, z1 axes (for the biceps) and the x2, y2, z2 
axes (for the triceps), together with the potentiometer readings. 
The resulting graph visually represents the patterns of muscle 
fibres vibration along all three spatial directions and joint 
motions during flexion. The ACC-MMG signals had distinct 
amplitude and frequency characteristics for each axis, aligning 
with the longitudinal, lateral, and transverse orientations of 
muscle fibres. Significant differences in muscle activity patterns 
can be observed when comparing the ACC-MMG signals of the 
biceps and triceps while the potentiometer readings, indicating 
joint angles, align with the ACC-MMG signals, validating the 
observed movement cycles. 
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(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 
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(g) 

Fig. 4. Muscle vibrations of the biceps (a, b, c) and triceps (d, e, f), and the 

angular position (g) during flexion for patient 30. 

A specialised algorithm was developed to extract significant 
features from the ACC-MMG signals. The features selected for 
analysis included Root Mean Square (RMS), Peak to Peak 
Amplitude (PTP), Max, Min, Mean Average Value (MAV), 
Standard Deviation (SD), Skewness (S), and Kurtosis (K). 
During the feature extraction stage, time-domain features were 
extracted for the x1, y1, z1 axes (for the biceps) and the x2, y2, z2 
axes (for the triceps), corresponding to the longitudinal, lateral, 
and transverse orientations relative to the muscle fibers. The 
obtained features were tabulated into a dataset. The equation that 
determines each extracted feature are as follows: 

𝑅𝑀𝑆 =  √
1

𝑛
∑ 𝑥𝑖

2
𝑖    

𝑃𝑇𝑃 = 𝑀𝑎𝑥 − 𝑀𝑖𝑛      

𝑀𝑎𝑥 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑒𝑟𝑚𝑠                 

𝑀𝑖𝑛 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑒𝑟𝑚𝑠                

𝑀𝐴𝑉 =  
𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑒𝑟𝑚𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠
                      

𝑆𝐷 =  
∑(𝑥𝑖−𝑀𝐴𝑉)2

𝑛
                              

𝑆 =  
∑ (𝑥𝑖−𝑀𝐴𝑉)3𝑛

𝑖

(𝑛−1) 𝑆𝐷3                               

𝐾 =  
𝑛 (𝑛+1)

(𝑛−1)(𝑛−2)(𝑛−3)
 ×  ∑ (

𝑥𝑖−𝑀𝐴𝑉

𝑆𝐷
)

4

− 
3(𝑛−1)2

(𝑛−2)(𝑛−3)
    

The RMS is a metric that quantifies the amplitude of a signal, 
serving as an indicator of the intensity of muscular contractions 
or tension of the upper limbs [2], [35]. MAV of MMG signals 
serves as an indicator of the muscular strength and endurance of 
the specific muscle in concern [36]. It symbolizes the power, and 
the energy generated by the muscle. SD were computed for the 
ACC-MMG signals in the x, y, and z axes, providing insights 
into the average muscle activity and its variability. 
Complementing these metrics, the PTP value measures the 
extent of a signal by determining the disparity between its 

highest positive peak and its lowest negative peak of vibration 
amplitude during a specific timeframe, thereby representing the 
magnitude spectrum of muscular oscillations or motions within 
the ACC-MMG signals. Additionally, skewness and kurtosis 
were calculated to offer a deeper understanding of the properties 
of muscle signal distributions, thus enhancing the 
comprehension of muscle activity and its variability. 

For this study, a total of 90 datasets were collected from 30 
subjects in order to train the muscular spasticity classifier. The 
one-way MANOVA test was utilised with SPSS 27.0.1 (IBM 
Inc.) to minimise dependent and redundant features through 
significant feature analysis. The statistical test selected was a 
one-way MANOVA due to the presence of multiple continuous 
dependent variables in independent groups [37]. The features 
were testing using the technique to examine the significant 
difference in mean value between the groups. The results from 
the one-way MANOVA test, including significant values and 
corresponding p-values, are presented in Table II. A rejection 
threshold was set at p < 0.05 to identify significant differences 
in the dependent variables. The null hypothesis for ANOVA 
posited that no difference existed in mean values among the 
groups. As the p-values of the features listed in Table II were 
less than 0.05, the null hypothesis was effectively rejected. 
Consequently, these twenty-five optimal features were selected 
to train the classifiers for classifying the level of muscle 
spasticity. 

TABLE II.  SIGNIFICANT VALUE OF FEATURES 

Features P Values 

MAVx1 0.000 

MAVy1 0.000 

MAVz1 0.000 

SDz1 0.001 

PTPy1 0.013 

Maxx1 0.000 

Maxy1 0.003 

Maxz1 0.000 

Minx1 0.000 

Miny1 0.000 

Minz1 0.000 

Sx1 0.001 

Ky1 0.020 

RMSx1 0.004 

RMSy1 0.000 

RMSz1 0.000 

MAVy2 0.000 

MAVz2 0.006 

SDz2 0.042 

Maxy2 0.000 

Maxz2 0.011 

Miny2 0.000 

Minz2 0.003 

RMSy2 0.000 

RMSz2 0.002 
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E. Machine Learning Algorithm 

Machine-learning classifiers were utilised to automatically 
infer a prediction function from labelled data derived from 
inertial signals obtained during passive stretching. The therapist 
provided MAS ratings to annotate these inertial signals, thus 
structuring the task as a supervised learning problem. Most 
offline approaches rely on supervised Machine Learning (ML) 
models for activity recognition, such as Support Vector Machine 
(SVM), Decision Trees (DTs), K-Nearest Neighbors (KNN) and 
Linear Discriminant Analysis (LDA) [31], [38]. Supervised 
machine-learning algorithms have the benefit over unsupervised 
methods of being able to assign appropriate labels to training 
data based on preset classes, thereby avoiding the need to create 
"artificial" groups [39]. 

SVM known as a collection of supervised learning 
techniques employed for the purposes of classification and 
regression [40], [41]. For a classification problem, SVM seeks 
to identify the separating hyperplanes that maximize the margin 
between sets of data points in an n-dimensional space, where 
each data point belongs to one of the available classes. This will 
guarantee a strong ability to make accurate predictions in 
various situations, assuming that the target function remains 
stable between the training and testing data. SVM are primarily 
used when the data cannot be separated by a straight line in their 
current domain [42]. SVM applies a transformation to the input 
data points, mapping them to a feature space where they can be 
separated by a linear boundary. Essentially, it separates the 
classes by incorporating support vectors to optimize the 
separation between samples belonging to distinct classes. 
Therefore, it is also known as large-margin categorization. 

DTs is a structured representation of a decision-making 
process used to determine the class of a given instance [43]. 
Every node in the tree represents either a class label or a 
particular test that divides the instance space according to the 
potential results of that test. Every subset of partitions 
corresponds to a subproblem of classification, which is then 
resolved by a subtree. The terminal nodes of the decision tree 
include the class labels. To categorize an instance, one must 
follow a path from the starting point of the tree to one of its end 
nodes, taking into account the results of the tests at each step of 
the process. 

KNN classifier is a method used to categorise unlabelled 
data by assigning them to the class of the most comparable 
labelled samples. Observational characteristics are gathered for 
both the training and test datasets [44]. The intuition behind 
Nearest Neighbor Classification is straightforward. It often 
proves beneficial to consider multiple neighbors, leading to the 
more commonly utilized K-Nearest Neighbor (KNN) 
Classification, where the class of an instance is determined 
based on the k nearest neighbors [45]. Besides that, LDA is also 
highly popular technique used to extract distinctive features for 
the purpose of pattern classification [46]. Linear Discriminant 
Analysis (LDA) leverages label information to acquire a 
discriminant projection that effectively increases the separation 
between different classes and decreases the distance within each 
class, hence enhancing the accuracy of classification. Several 
extensions of LDA have been established to improve 
performance and efficiency. The traditional Linear Discriminant 
Analysis (LDA) model typically assigns a Gaussian density to 

each class, assuming that all classes have an identical covariance 
matrix [47]. LDA is closely associated with ANOVA (analysis 
of variance) and regression analysis, since each attempt to 
represent a dependent variable as a linear combination of other 
traits or data. 

Two dataset has been prepared and structured for muscle 
spasticity model development. The first data utilized all 
available features, while the second dataset incorporated only 
the significant features identified through a one-way MANOVA 
test. Each dataset datasets were divided into training and testing 
sets with ratios of 90/10, 80/20, and 70/30. In the 90/10 split, 
90% of the data was used for training the model while the 
remaining 10% was reserved for testing. Similar procedures 
were followed for the 80/20 and 70/30 splits. These different 
partitions were used to evaluate the models' robustness and 
generalization capabilities. The optimal algorithm underwent k-
fold cross-validation, where it was trained and tested with k 
values of 5, 10 and 15 to evaluate the stability of the models 
across different partitioning schemes. The performance of the 
machine learning algorithms was assessed using confusion 
matrices, accuracy, and training length. The percentage of 
correctly predicted samples to the total number of samples 
represents the definition of accuracy. A True Positive (TP) 
outcome occurs when the model accurately predicts the positive 
class while a True Negative (TN) refers to an outcome where the 
model accurately predicts the negative class. likewise, a False 
Positive (FP) occurs when the model wrongly predicts the 
positive class, whereas a False Negative (FN) occurs when the 
model incorrectly predicts the negative class. Equation 9 can be 
used to compute the accuracy by considering the values of TP 
(true positive), TN (true negative), FN (false negative), and FP 
(false positive) [48]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑝 + 𝑇𝑁

𝑇𝑝 + 𝑇𝑁+ 𝐹𝑃+𝐹𝑁
 

A confusion matrix comprises a square matrix displaying the 
general classification model performance. The rows of the 
confusion matrix show actual instances of class labels, whereas 
the columns show instances of predicted class labels. For each 
trial, the diagonal components of this matrix will indicate how 
many times the predicted label matches the actual label. For 
assessing how effectively the model classified data, the 
confusion matrix acts as a useful indicator. 

V. RESULTS AND DISCUSSION 

The accuracy performance of the algorithms influenced by 
different training and testing splits which presented in Table III. 
It also compares the accuracy based on features selected for 
training and testing, yielding varying results. Dataset with all 
features and significant features for the 90/10 split showed 
highest accuracy compared to other data ratios. However, most 
researchers recommend using a 70/30 split for smaller datasets 
[49]. Dataset with all features shown that KNN algorithm 
achieved an accuracy of 83.95%, outperforms the others 
algorithm. Notably, the KNN algorithm demonstrated an even 
higher accuracy of 90.12% when using significant features, 
indicating that the use of significant features enhances the 
model's performance. 
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TABLE III.  PERCENTAGE OF DATA SET AND ACCURACY WITH ALL 

FEATURES AND SIGNIFICANT FEATURES 

Algorithm 

Training and Testing Split Percentage of Accuracy 

All Features Significant Features 

90-10 80-20 70-30 90-10 80-20 70-30 

DT 64.20 65.28 55.56 65.43 63.89 65.08 

LDA 69.14 59.72 46.03 76.54 70.83 66.67 

SVM 65.43 69.44 60.32 72.84 68.06 69.84 

KNN 83.95 80.56 66.67 90.12 86.11 84.13 

The confusion matrix findings shows that the accuracy of 
KNN algorithm for all features and significant features which 
presented in Fig. 5 and Fig. 6. The True Positive Rate (TPR) and 
the False Negative Rate (FNR) are shown in a confusion matrix 
in KNN algorithms. The rows and columns of the matrix 
represent the predicted and actual classes for the MAS levels 0, 
1, 1.5 (1+), 2, and 3, respectively. Comparing the accuracy of 
the KNN classifier using all features and significant features 
reveals important insights. KNN algorithm with all features 
achieves an overall accuracy of 83.95%, demonstrating superior 
performance, particularly in correctly identifying the extreme 
classes (0 and 3) and maintaining high true positive rates across 
most classes. However, when using the dataset with significant 
features, the KNN algorithm's overall accuracy increases to 
90.12%. This improvement is evident in its enhanced ability to 
correctly identify not only the extreme classes (0 and 3) but also 
intermediate classes 1. It also showed increase in true positive 
rates across classes 1.5 compared to KNN algorithm using all 
features. This comparison highlights the effectiveness of using 
significant features in improving the classification accuracy of 
the KNN model. Futhermore, comparing with both dataset, 
significant features proving to be most optimum accuracy. 

 
Fig. 5. Confusion matrix for KNN using all features. 

Table IV presents the training durations for several machine 
learning algorithms, illustrating that the use of significant 
features consistently reduces training time compared to using all 
features. Specifically, the training time for the Decision Trees 
(DTs) algorithm decreased from 4.27 seconds to 3.24 seconds. 
The Linear Discriminant Analysis (LDA) algorithm's training 

time was reduced from 1.13 seconds to 0.91 seconds. The 
Support Vector Machine (SVM) algorithm showed a reduction 
in training time from 4.35 seconds to 3.75 seconds. Similarly, 
the K-Nearest Neighbors (KNN) algorithm experienced a 
decrease in training time from 3.03 seconds to 2.46 seconds. 
Among the algorithms evaluated, the Decision Trees (DTs) 
algorithm exhibited the most significant reduction in training 
time based on the percentage difference with 24.12% due to 
algorithm structured. The notable decrease in training time 
emphasises the efficiency improvements obtained by 
prioritising the most pertinent features, thereby illustrating the 
advantages of feature selection in machine learning models. 
Moreover, utilising crucial features simplifies the training 
process by decreasing the complexity and size of the dataset, 
enabling machine learning algorithms to function more 
effectively and attain quicker convergence [47]. 

 
Fig. 6. Confusion matrix for KNN using significant features. 

TABLE IV.  TRAINING TIME OF ALL ALGORITHM WITH ALL FEATURES 

AND SIGNIFICANT FEATURES 

Table 

Head 

Training Time (seconds) 
Percentage Difference (%) 

All Features 
Significant 

Features 

DT 4.27 3.24 24.12 

LDA 1.13 0.91 19.47 

SVM 4.35 3.75 13.79 

KNN 3.03 2.46 18.81 

Machine learning models trained on datasets with significant 
features identified through a one-way MANOVA test 
consistently showed higher accuracy across all data split tests 
compared to those using all available features. This underscores 
the impact of feature selection on model performance, 
demonstrating that models trained on statistically significant 
features often outperform those using all features. This 
highlights the importance of feature selection in enhancing 
model accuracy and efficiency. Furthermore, the efficacy and 
efficiency of a machine learning solution are contingent upon 
the inherent qualities and attributes of the data, as well as the 
proficiency of the learning algorithms [47]. Among the 
algorithms, KNN exhibited the highest accuracy across all 
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datasets. The KNN classifier proves to be the optimal method 
for classifying biomechanical parameter features, particularly in 
scenarios with limited datasets and low dimensionality [50], 
[51]. 

A. Comparative Performance Analysis of Classifier 

Algorithms 

The KNN algorithm using significant features was evaluated 
and compared in a 90/10 split using k-fold cross-validation with 
k values of 5, 10, and 15. This methodology enabled a thorough 
evaluation of the performance of KNN algorithm by dividing the 
dataset into k subsets, or folds, in a systematic manner. The 
algorithm underwent k-fold cross-validation, where it was 
trained and tested k times. In each iteration, a different fold was 
used as the validation set, while the remaining k-1 folds were 
utilised for training. Varying the value of k allowed for an 
examination of the models' stability and robustness across 
different partitioning schemes, providing a thorough evaluation 
of their predictive capabilities and overall performance in 
diverse scenarios. Table V illustrates the comprehensive 
comparison of accuracy in classifying various levels of 
spasticity, based on the output of MAS levels. The accuracy of 
KNN algorithm showed a decreased when the number of folds 
increased from 5 to 10. However, KNN algorithm demonstrates 
optimum accuracy with k= 15 at 91.29%. 

Based on the result, there is no direct correlation between 
adjusting the value of K in k-fold cross-validation and the 
accuracy of machine learning algorithms [52]. Hence, while 
choosing the value of k, it is important to exercise caution as a 
lower k value entails decreased computing cost, reduced 
variance, but increased bias. Conversely, a larger value of k is 
more computationally demanding but exhibits greater variability 
and reduced bias. Therefore, the value of k must be chosen such 
that the size of each validation set is sufficient to ensure a 
reliable assessment of the model's performance. In conclusion, 
the KNN algorithm with significant features demonstrated 
superior performance in objectively evaluating the level of 
muscle spasticity. 

TABLE V.  PERFORMANCE OF KNN ALGORITHM WITH DIFFERENT 

VALUE OF K-FOLDS 

k-folds Percentage of Accuracy 

5 90.12 

10 88.89 

15 91.29 

B. Clinical Implementation and Integration 

A systematic approach would be beneficial for the successful 
incorporation of mechanomyography (MMG) technology into 
current spasticity management treatments. MMG evaluations 
can serve as an addition to older methods like the Modified 
Ashworth Scale (MAS) and the Australian Spasticity 
Assessment Scale (ASAS). MMG can enhance the reliability 
and consistency of spasticity level evaluations by offering 
unbiased data that can validate and improve the subjective 
assessments currently employed. 

As trust in the technology increases, MMG might be 
progressively integrated as a principal evaluation tool. This 

would require the development of standardised protocols that 
integrate MMG measurements into clinical decision-making 
processes. For instance, MMG data can be utilised to modify 
treatment strategies, track the development of spasticity over a 
period, and assess the efficacy of therapies. Integrating MMG 
with current electronic health record (EHR) systems could 
enhance efficiency by enabling doctors to conveniently access 
and analyse MMG data in conjunction with other patient 
information. 

Comprehensive training for therapists is crucial for ensuring 
the effective utilisation of MMG technology in clinical contexts. 
This training should include both the technical aspects of 
utilising MMG devices, and the analysis of data produced by the 
machine learning models. It is important for therapists to receive 
training to comprehend the importance of MMG signals, 
specifically the time and frequency domain characteristics 
considered essential for precise assessment of spasticity. 

Furthermore, therapists must acquire knowledge of the 
machine learning algorithms employed to analyse MMG data. 
This entails comprehending the mechanisms by which these 
models generate predictions, interpreting the significance of the 
primary output metrics, and incorporating these insights into 
clinical practice. Hands-on training, supported by user-friendly 
software interfaces, will further enhance therapists' proficiency 
in utilizing MMG technology effectively. 

C. Limitation of Study 

While this study demonstrates the potential of 
mechanomyography (MMG) in assessing muscle spasticity, 
several limitations should be considered. Initially, while MMG 
is proficient in assessing muscle vibrations within the frequency 
range of 2 to 100 Hz, enhancing the sampling rate could enhance 
the precision of the data. Increasing the sampling rates can catch 
finer details of the muscle signals, perhaps improving the 
accuracy of the assessments and offering a more thorough 
comprehension of muscle spasticity. 

Moreover, the study primarily utilises time domain variables 
for analysis. Although these features provide information, it may 
not comprehensively capture all the complexities that comprise 
MMG signals. In contrast, frequency domain features may 
identify additional patterns and behaviours that are not evident 
in the temporal domain. By including frequency domain 
analysis, a more comprehensive and precise depiction of muscle 
vibrations can be achieved. This has the potential to enhance the 
performance of models and enable more dependable evaluations 
of spasticity. 

D. Future Research 

A precise assessment of muscle spasticity is essential for the 
effective treatment and control of neurological diseases in 
patients. Although mechanomyography (MMG) has potential as 
a technique for assessing spasticity, its present uses mostly rely 
on extracting time-domain characteristics from MMG data. To 
completely maximise the potential of MMG and enhance its 
practical application in clinical settings, future research should 
prioritise several crucial areas of development. 

Exploring advanced optimisation approaches and ensemble 
methods can greatly improve the accuracy and reliability of 
predictive models used in spasticity assessment. Techniques 
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such as hyperparameter tuning, ensemble learning, and deep 
learning approaches could offer significant improvements in 
interpreting MMG data and assessing spasticity levels. Besides 
that, the exploration of ensemble methods offers another 
promising avenue for improving model performance. By 
combining the predictions of multiple algorithms, ensemble 
techniques such as bagging, boosting, or stacking could reduce 
variance, mitigate overfitting, and increase the overall predictive 
power of the models. These methods could enhance the model's 
ability to generalize across different patient populations and 
clinical settings, thereby improving the robustness of spasticity 
predictions. 

Moreover, the integration of advanced deep learning 
techniques, such as convolutional neural networks (CNNs) or 
recurrent neural networks (RNNs), could enhance the automated 
extraction of detailed and significant characteristics from the 
MMG signals. These models have demonstrated considerable 
efficacy in various biomedical signal processing contexts, as 
they are adept at identifying intricate patterns and relationships 
within the data that might be overlooked by traditional feature 
extraction methods. While this study primarily utilizes time 
domain features extracted from MMG signals, there remains 
significant potential to enhance model performance through 
more sophisticated feature engineering approaches. For 
instance, increasing the sampling rate of MMG data could 
capture finer details of the signal, thereby enabling the 
application of frequency domain extraction methods. Such 
techniques would provide a more nuanced analysis of the MMG 
signals, potentially uncovering features that are not detectable in 
the time domain alone. 

By integrating these advanced techniques, the precision and 
robustness of spasticity assessments could be substantially 
improved, leading to more accurate and reliable predictions. 
Future research should investigate these avenues to further 
enhance the clinical utility of MMG in the objective assessment 
of muscle spasticity. 

VI. CONCLUSION 

Essentially, the purpose of this study was to address the 
problem of subjective and inconsistent evaluation of muscle 
spasticity in patients with neurological diseases. The objective 
was to validate MMG as a reliable signal by comparing the 
accuracy of various machine learning algorithms and 
demonstrate its clinal applicability in objective measurement. 
The study demonstrated the efficacy of employing different 
machine learning algorithms, such as Decision Trees (DTs), 
Support Vector Machines (SVM), and K-Nearest Neighbours 
(KNN), for accurately predicting degrees of spasticity. The 
KNN algorithm, using both all features and significant features, 
achieved optimal accuracy in the 90/10 split. Specifically, KNN 
with significant features demonstrated the highest accuracy at 
91.29% with k=15, outperforming the use of all features, 
highlighting its effectiveness in categorizing biomechanical 
parameters. This technological development has the potential to 
greatly improve rehabilitation processes by offering more 
accurate and unbiased evaluations of spasticity. Moreover, it has 
the potential to decrease related expenses and time, ultimately 
resulting in an enhancement in the standard of treatment for 
impacted patients. 
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