
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 9, 2024 

1 |  P a g e  

www.ijacsa.thesai.org 

Evolving Software Architectures from Monolithic 

Systems to Resilient Microservices: Best Practices, 

Challenges and Future Trends

Martin Kaloudis 

Provadis School of International Management and Technology, Frankfurt, Germany 
 

 

Abstract—Microservice architecture has emerged as a widely 

adopted methodology in software development, addressing the 

inherent limitations of traditional monolithic and Service-

Oriented Architectures (SOA). This paper examines the evolution 

of microservices, emphasising their advantages in enhancing 

flexibility, scalability, and fault tolerance compared to legacy 

models. Through detailed case studies, it explores how leading 

companies, such as Netflix and Amazon, have leveraged 

microservices to optimise resource utilisation and operational 

adaptability. The study also addresses significant implementation 

challenges, including ensuring data consistency and managing 

APIs. Best practices, such as Domain-Driven Design (DDD) and 

the Saga Pattern, are evaluated with examples from Uber's cross-

functional teams and Airbnb's transaction management. This 

research synthesises these findings into actionable guidelines for 

organisations transitioning from monolithic architectures, 

proposing a phased migration approach to mitigate risks and 

improve operational agility. Furthermore, the paper explores 

future trends, such as Kubernetes and AIOps, offering insights 

into the evolving microservices landscape and their potential to 

improve system scalability and resilience. The scientific 

contribution of this article lies in the development of practical best 

practices, providing a structured strategy for organisations 

seeking to modernise their IT infrastructure. 

Keywords—Service-Orientated Architecture; SOA; 

microservices; monolithic architecture; migration 

I. INTRODUCTION 

Microservice architectures [1] have gained significant 
traction in recent years, primarily due to their ability to address 
the scalability and flexibility limitations of traditional 
monolithic systems. This architectural paradigm shift is driven 
by the growing need to manage complex, distributed 
applications efficiently. By decomposing applications into 
independently deployable services, microservices offer 
enhanced modularity, fault tolerance, and adaptability, 
positioning themselves as a superior alternative to monolithic 
architectures in large-scale, dynamic environments. 

While the benefits of microservices, including independent 
scalability, enhanced fault isolation, and faster deployment 
cycles, are well-documented, their adoption is not without 
challenges. Ensuring consistency in data across distributed 
services remains a critical issue, particularly in environments 
where services manage their own databases. Furthermore, the 
operational overhead of managing an increasing number of APIs 
can result in significant complexity, particularly as systems 
grow in scale. These issues underscore the need for robust 

strategies to mitigate the operational challenges inherent in 
microservice architectures. 

This study contributes to the ongoing discourse by proposing 
a structured approach to the transition from monolithic to 
microservice architectures, focusing on best practices derived 
from industry case studies. While existing literature extensively 
covers the theoretical benefits of microservices, there is a 
notable gap in actionable, empirically validated strategies for 
managing the complexities associated with their 
implementation. By analyzing case studies from industry leaders 
such as Netflix and Amazon, this research offers a phased 
migration strategy that minimizes risks and operational 
disruption. The novelty of this study lies in its practical 
framework for managing the inherent challenges of 
microservices, particularly in the context of large-scale 
enterprise systems. 

II. THEORETICAL BASICS 

A. Definition and Characteristics of Microservice 

Architecture 

Microservice architecture is a software development 
approach in which an application is developed as a collection of 
small, independent services. Each service fulfils a specific 
business requirement and communicates with other services via 
precisely defined APIs [2]. Microservices are small, 
independent services that fulfil specific business requirements. 
In [3] it is emphasised that this architecture simplifies the 
development and maintenance of complex systems due to its 
loose coupling and high cohesion. The author in [4] emphasises 
that microservices are particularly suitable for systems that place 
high demands on scalability and flexibility. One of the features 
of microservice architecture is decentralisation, in which 
services, functions and data are decentralised, resulting in a 
loose coupling of components. This promotes the application's 
reliability and fault tolerance. Another feature is independent 
development and deployment, which means that each service 
can be developed, tested and deployed independently. Errors in 
one service do not affect the entire application, which increases 
fault tolerance. Services can be reused in different applications, 
which increases efficiency and development speed [5]. 

B. Monolithic Architecture 

Monolithic architecture is a traditional approach to software 
development in which all components of an application are 
integrated into a single, cohesive code base. This tight 
integration means that the application is developed, tested and 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 9, 2024 

2 |  P a g e  

www.ijacsa.thesai.org 

deployed as an inseparable whole. A key feature of this approach 
is dependent scaling: if one component of the application 
experiences a higher load and requires more resources, the entire 
application must be scaled. This can be inefficient and resource-
intensive, as the underutilised parts of the application also have 
to be scaled. 

Another feature of monolithic architecture is that 
development cycles tend to be longer. As all components are 
closely interlinked, a change in one part of the application 
potentially affects many other parts. This requires extensive 
testing and can delay the release of new features. Any change, 
no matter how small, often requires a redeployment of the entire 
application, which is not only time-consuming but can also lead 
to downtime. This downtime can be particularly critical if the 
application provides business-critical functionality. Monolithic 
systems (see Fig. 1) have traditionally been favoured for their 
consistency and simplicity of implementation and management. 
Developers only have to deal with one code base and one 
deployment process. This can speed up initial development and 
simplify management, especially for smaller applications or 
teams. The clear structure and centralised management of 
dependencies and configurations make monolithic architectures 
attractive for many use cases. 

 
Fig. 1. Monolithic vs. Microservices architecture from [6]. 

To summarise, although monolithic architecture offers 
advantages due to its simplicity and consistency, it has 
significant disadvantages in an increasingly dynamic and scaled 
IT landscape. The lack of flexibility and scalability as well as 
the potential risks due to the tight integration of components 
make it unsuitable for many modern use cases. These 
disadvantages have led to the development and spread of more 
flexible and scalable architectures such as microservice 
architecture, which eliminate the specific weaknesses of the 
monolithic approach. 

C. Microservices Architecture 

In contrast to monolithic architecture, microservices divide 
an application into a collection of loosely coupled, 
independently deployable services, each of which fulfils specific 
business requirements. This architecture offers better scalability, 
flexibility and fault tolerance, but requires advanced knowledge 
of distributed systems development and DevOps practices. Each 

microservice has its own database and can be developed, tested 
and deployed independently, reducing infrastructure complexity 
and enabling more efficient resource utilisation [2]. 

1) Decentralisation and loose coupling: The microservice 

architecture is characterised by a fundamental decentralisation 

of services, functions and data. Instead of developing a 

monolithic application that combines all functions and 

processes in a single, closely linked structure, the microservice 

architecture breaks down the application into a large number of 

smaller, independent services. Each of these services, also 

known as a microservice, is designed to fulfil a specific 

business requirement or functionality. These services are not 

only functionally independent, but also often operate in isolated 

runtime environments and have their own databases. This 

means that each microservice manages and stores its own data, 

which ensures better data consistency. This decentralisation 

leads to a loose coupling of the components. Loose coupling 

means that the individual services are only minimally 

dependent on each other. Changes or errors in one service 

therefore have little to no impact on the other services. This 

decoupling enhances the overall resilience of the application, 

defined as its capacity to maintain operational continuity in the 

presence of faults or failures. Resilience describes the ability of 

a system to remain functional despite errors or faults. In a 

monolithic architecture, an error in one component can affect 

the entire application, whereas in a microservice architecture, 

an error remains isolated and the other services continue to 

function normally. This not only reduces fault tolerance, but 

also increases the overall reliability of the application [2]. 

One of the critical features of microservice architecture is its 
ability to scale individual services independently. As each 
microservice has its own database and is operated independently 
of the other services, each service can be scaled individually 
depending on the specific requirements and the load to be 
managed. This is particularly beneficial in cloud environments 
where resources can be allocated dynamically. For example, if a 
particular service has a high volume of traffic, it can be scaled 
independently of the other services without having to scale the 
entire application. This leads to more efficient resource 
utilisation and lower operating costs. Separation into 
independent services also improves fault isolation. Fault 
isolation means that problems in one service do not directly 
affect other services. If a microservice fails or a problem occurs, 
this error is limited to the affected service and does not affect the 
entire application. This not only makes troubleshooting easier, 
but also increases the reliability of the application. Developers 
can focus on fixing the specific problem without having to worry 
about changes to one service negatively impacting other parts of 
the application. 

By decentralising services, functions and data, the 
microservice architecture offers considerable advantages in 
terms of reliability, fault tolerance, data consistency and 
scalability. The loose coupling of the services leads to increased 
robustness of the application, as errors remain isolated and the 
other services can continue to work undisturbed. Independent 
scalability enables efficient resource utilisation and reduces 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 9, 2024 

3 |  P a g e  

www.ijacsa.thesai.org 

operating costs, while improved fault isolation and recovery 
increases the overall reliability of the application [6]. 

2) Scalability and fault tolerance: The ability to scale 

independently is one of the most outstanding features of 

microservice architecture and brings significant benefits in 

terms of resource management and increased efficiency. In a 

conventional monolithic architecture, all components of an 

application must be scaled together, even if only a small part of 

the application actually experiences an increased load. This 

leads to inefficient resource utilisation and increased costs, as 

not all parts of the application require the same scalability. In 

contrast, microservices enable targeted and demand-orientated 

scaling of individual services. Each microservice can be scaled 

independently of the other services, based on the specific 

requirements and the current load [7]. Splitting the application 

into independent services also has a positive effect on the fault 

tolerance of the entire system architecture. In a monolithic 

system, an error in one component can affect the entire system 

and lead to a total failure. This is because the components are 

closely interconnected and there is a dependency that disrupts 

the entire operating process. Microservices, on the other hand, 

isolate these errors to the affected service. If a microservice fails 

or an error occurs, this has no impact on the other services. The 

application remains functional and the affected microservice 

can be analysed and repaired in isolation. 

Another aspect that increases fault tolerance is the ability to 
recognise and rectify errors automatically. Modern microservice 
architectures often utilise monitoring and management tools that 
continuously monitor the status of the services and react 
automatically in the event of anomalies or errors. This can be 
done by restarting the faulty service, switching to redundant 
services or dynamically reallocating resources. These automated 
processes reduce downtimes and improve the overall availability 
of the application [8]. The resilience, i.e. the ability of a system 
to recover from disruptions, is significantly improved by the 
microservice architecture. The loose coupling of the services 
means that they can work largely independently of each other. 
This independence allows the system to react flexibly to changes 
or failures without affecting the entire application. If a service is 
overloaded by a sudden increase in requests, it can be scaled in 
isolation to cope with the increased load. Should a service 
nevertheless fail, alternative services or failover mechanisms 
can be activated to ensure the continuity of business processes. 

3) Independent development and provision: Microservice 

architecture facilitates the independent development and 

deployment of software components, yielding considerable 

improvements in both the efficiency and agility of the 

development process. In traditional monolithic architectures, 

all parts of an application must be developed, tested and 

deployed as a single unit. This means that even small changes 

to a component require extensive testing and full deployment 

of the entire application. This dependency leads to longer 

development cycles, an increased risk of errors and downtime 

as well as limited flexibility when implementing new functions 

[5]. A key advantage of this independent development and 

deployment is improved fault isolation. In a monolithic 

architecture, an error in one component can affect the entire 

application, which can lead to extensive downtime and difficult 

troubleshooting. In a microservice architecture, an error in one 

service remains limited to that specific service and does not 

affect the other parts of the application.  This independence of 

services also encourages parallel development by different 

teams. In monolithic systems, development teams must 

coordinate their work closely to avoid conflicts, which can slow 

down development processes. In a microservice architecture, 

different teams can work on different services at the same time 

without their work interfering with each other.  

The independent development and provision of 
microservices also supports better scalability of development 
resources. In monolithic systems, the scaling of development 
teams is often limited, as all teams have to work on the same 
code base and coordinate changes. In a microservice 
architecture, development teams can be scaled flexibly as they 
work independently on different services. This allows 
organisations to use their development resources more 
efficiently and respond more quickly to business requirements, 
resulting in faster implementation and improving the flexibility 
and agility of development processes. Improved fault isolation, 
parallel development by different teams and support for CI/CD 
practices lead to faster and more reliable releases, higher 
productivity of development teams and better scalability of 
development resources [5]. 

4) Reusability and flexibility in technology selection: 

Flexibility in technology selection allows teams to develop 

customised solutions that are optimised for their specific 

business needs. For example, a team working on a data-

intensive analytics service might choose a programming 

language such as Python, which is known for its powerful data 

science libraries and frameworks. Another team developing a 

high-performance, critical real-time service might choose a 

language like Go or Rust, which are known for their efficiency 

and low latency. This freedom in technology choice leads to a 

better customisation of solutions to the specific needs of each 

service and therefore to business requirements [5]. Another 

advantage of this flexibility is the ability to introduce and use 

specialised technologies that are particularly suitable for 

specific tasks. Teams can select technologies that best fit the 

requirements and challenges of their specific microservices 

without having to consider the rest of the application. This can 

lead to a significant improvement in performance and 

efficiency. For example, a team working on a machine learning 

model could use specific frameworks and hardware 

acceleration to optimise training times and model accuracy [9]. 

The reusability and technological independence of 
microservices also help to reduce technical debt. Technical debt 
arises when short-term solutions are chosen that lead to higher 
maintenance costs in the long term. By using proven and 
reusable services, development teams can create consistent and 
maintainable code bases that reduce long-term maintenance 
efforts. In addition, flexibility in technology selection allows 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 9, 2024 

4 |  P a g e  

www.ijacsa.thesai.org 

teams to continuously use the best tools and practices to 
minimise technical debt [4]. 

These advantages contribute to the microservice architecture 
being a favoured choice for modern, scalable and flexible 
software development projects [7]. 

III. WHY AND HOW SPLIT MONOLITHS? 

Industries such as retail, travel and transport and automotive 
have increasingly begun to break up their monolithic 
applications into microservices in order to become more flexible 
and scalable. This change is being driven by the need to respond 
more quickly to market changes and reduce total cost of 
ownership (TCO). However, the transition from monolithic to 
microservice architectures is a complex process that requires 
careful planning and a systematic approach. Fig. 2 shows cost-
based determination of granularity services. 

 
Fig. 2. Cost-based determination of granularity services [10]. 

A. Reasons for the Switch to Microservices 

An important reason for this migration is the greater 
flexibility that microservices offer. In retail, for example, 
companies can develop and introduce new functionalities faster 
by splitting their applications into smaller, independent services. 
This is particularly important in a market that is constantly 
evolving and where competition is fierce. Retailers need to be 
able to respond quickly to new trends and customer demands, be 
it by introducing new payment methods, optimising supply 
chains or personalising the shopping experience. 

B. Systematic Analysis and Step-by-Step Migration 

The process of migrating from monolithic to microservice 
architectures often begins with a comprehensive and systematic 
analysis of the existing architecture. The aim of this analysis is 
to identify the current dependencies, bottlenecks and weak 
points. Based on these findings, companies can develop a clear 
migration strategy that is implemented step by step. A complete 
switch to microservices in a single step is usually too risky and 
too complex. Therefore, many companies prefer a step-by-step 
migration in which they gradually break down the application 
into microservices. 

C. Identification of Business Areas 

An important aspect of migration is the definition of business 
units. Business units are functional areas within an organisation 

that have clearly defined responsibilities. For example, a retailer 
might define business domains such as inventory management, 
order fulfilment, customer service and payment processing. 
Each of these domains can then be implemented as an 
independent microservice. This clear demarcation makes it 
possible to reduce the complexity of the overall application and 
clearly define responsibilities. 

D. Formation of Cross-Functional Teams 

Another important step in the migration process is the 
formation of cross-functional teams. Traditionally, development 
and operations teams are separate in many organisations, which 
can lead to communication problems and delays. However, 
microservice architecture requires close collaboration between 
these teams. Cross-functional teams consisting of developers, 
testers, operations experts and other relevant professionals can 
make the development and deployment of microservices more 
efficient. These teams are responsible for the entire lifecycle of 
a microservice, from development and testing to deployment 
and maintenance. 

E. Introduction of DevOps Processes 

The introduction of DevOps practices is another key 
component in the transition to microservices. DevOps stands for 
the integration of development and operations and aims to 
improve collaboration between these two areas. DevOps 
practices include Continuous Integration (CI) and Continuous 
Delivery (CD), which enable faster and more reliable delivery 
of software. By using automation tools and processes, 
companies can increase their efficiency, reduce the error rate and 
shorten the time to market for new functions. 

IV. CHALLENGES OF MIGRATION 

Overall, the transition from monolithic applications to 
microservices offers significant benefits for many companies in 
the retail, travel and transport and automotive industries. By 
conducting systematic analyses, identifying business units, 
forming cross-functional teams and implementing DevOps 
practices, companies can make their IT infrastructure more 
flexible and scalable. A step-by-step migration minimises risks 
and enables continuous adaptation to changing market 
requirements. Research and practical reports prove the positive 
effects of this transformation on the efficiency and 
competitiveness of companies [10]. 

Procedure: The migration from a monolithic to a 
microservice architecture is a complex process that requires 
careful planning. It usually starts with the identification and 
extraction of business domains as independent microservices. 
Business domains, i.e. specific areas within an organisation, 
form the basis for the new architecture [11]. 

Analyse the existing architecture: The first step is to analyse 
the monolithic system to understand the dependencies between 
the components. Tools can automatically create dependency 
diagrams that help to visualise the interactions and control the 
migration process. 

Development of a migration plan: Based on this analysis, a 
detailed migration plan should be created outlining the steps to 
minimise risk and ensure continuity. The plan should prioritise 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 9, 2024 

5 |  P a g e  

www.ijacsa.thesai.org 

the domains to be migrated according to their business value and 
technical complexity. 

Identifying and extracting business areas: Business areas, 
such as the product catalogue or payment processing in an e-
commerce platform, must be clearly defined before they can be 
implemented as independent microservices. 

Support for DDD: DDD helps to manage complexity by 
dividing systems into manageable units. The concept of 
"bounded context" ensures that each microservice has clear 
boundaries, which simplifies development and scaling. 

Minimising risk and ensuring continuity: During the 
migration, mechanisms such as APIs or messaging systems help 
to ensure communication between microservices and the 
monolith and maintain continuity during the process. 

Iterative development and continuous improvement: 
Migration should be viewed as iterative. Each migrated domain 
provides insights for optimising the process for future domains. 

Static and dynamic analysis: Static analysis checks the 
source code to determine dependencies, while dynamic analysis 
monitors runtime behaviour and helps to prioritise services 
based on usage patterns. 

By combining these approaches, companies can reduce 
system complexity and build scalable, maintainable 
architectures. 

Development of a comprehensive migration plan: Based on 
the findings from the static and dynamic analysis, a 
comprehensive migration plan can be developed. This plan 
should take into account the identified services and interfaces as 
well as the prioritised usage patterns. It contains detailed steps 
for carrying out the migration, including the order of migration 
of the individual services, the necessary changes to the 
infrastructure and the implementation of transition mechanisms 
to ensure business continuity. 

Static and dynamic analyses are crucial methods for 
preparing a successful migration from monolithic to 
microservice architectures. While static analysis reveals the 
structure and dependencies of the existing system, dynamic 
analysis provides valuable insights into the actual usage and 
performance of the application. By combining both approaches, 
organisations can develop a solid and low-risk migration 
strategy that takes into account both technical and operational 
aspects. 

V. ADVANTAGES OF THE INTEGRATION OF MICROSERVICES 

Microservices offer numerous advantages that improve 
software development, reduce operating costs and simplify 
maintenance. Key benefits include independent development 
and deployment, efficient resource utilisation, technological 
flexibility, fault isolation and reusability of services. 

One of the most important advantages of microservices is the 
ability to develop and deploy services independently of each 
other. In contrast to monolithic architectures, where every 
change requires extensive testing and a complete deployment of 
the entire system, microservices allow individual services to be 
updated independently of each other. This speeds up 

development, reduces errors and facilitates continuous 
deployment [11]. 

Efficient use of resources: Microservices enable independent 
scaling of services and thus optimise resource allocation. For 
example, if a service experiences increased demand, it can be 
scaled independently without affecting the rest of the system. 
This improves performance and reduces costs, especially 
compared to monolithic systems where the entire application has 
to be scaled [12]. 

Technological flexibility: Each microservice can be 
developed with the technology best suited to its needs. This 
allows development teams to innovate and customise solutions 
more effectively. Teams working on performance-critical 
components may opt for faster, more efficient languages, while 
others may favour simple development [13]. 

Isolation of errors: Errors in a microservice do not affect the 
entire application, which increases reliability. Isolated errors 
make it easier to diagnose and rectify problems without causing 
system-wide downtime [14]. 

Reusability of services: Microservices are independent units 
that can be reused in different applications. For example, an 
authentication service developed for one application can be 
reused in other projects, which saves development time and 
ensures consistency and security. 

These advantages make microservices a favoured choice for 
modern, scalable and flexible software systems. 

VI. PERFORMANCE OF MICROSERVICE ARCHITECTURES: 

CASE STUDIES 

A. Case Study I: Comparison of Performance 

A performance comparison between monolithic and 
microservice architectures shows clear differences in efficiency 
and scalability under different load conditions. In this case 
study, extensive tests were carried out to analyse the 
performance of the two architectures (see Fig. 3). 

 
Fig. 3. Performance test from [15]. 

Performance under lower load: The tests showed that 
monolithic architectures work more efficiently under lower 
load. This is because monolithic architectures combine all 
components and functions into a single, integrated application. 
This tight integration enables optimised use of resources and 
minimal communication latency between components. With 
low user numbers and few requests, the monolithic architecture 

10



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 9, 2024 

6 |  P a g e  

www.ijacsa.thesai.org 

is therefore able to deliver stable and fast response times. The 
reduced complexity and the lack of communication effort 
between distributed services contribute to greater efficiency 
under low load. 

Performance at higher loads: As the load increases, however, 
the results change in favour of the microservice architecture. The 
tests showed that microservices scale better at higher loads and 
therefore achieve better performance results. In scenarios with 
increasing numbers of users and requests, the microservice 
architecture was able to handle the load more efficiently thanks 
to horizontal scaling. This means that additional instances of the 
individual microservices were provided to meet the increased 
demand. Of particular note is the use of replication, where 
multiple copies of a microservice are operated simultaneously to 
evenly distribute the load and increase availability. This ability 
to scale flexibly and on demand leads to improved performance 
under high load compared to monolithic systems. Fig. 4 shows 
the performance tests. 

Monolithic architectures can therefore be more efficient at 
low loads, while microservice architectures show their strengths 
at high loads and scalability. The choice of architecture should 
therefore be based on the specific load requirements and the 
expected usage patterns. 

B. Case Study II: Scalability and Reliability 

The scalability and reliability of an application are critical 
factors for its performance and usability. This case study 
highlights the differences between horizontal and vertical 
scaling and shows how the choice of scaling strategy influences 
the scalability and reliability of the application. 

 
Fig. 4. Performance test from [16]. 

Horizontal scaling: With horizontal scaling, also known as 
"scaling out", additional instances of a service are added to cope 
with the load. This method is particularly suitable for 
applications with a high load and the need for flexible 
scalability. Horizontal scaling involves running multiple copies 
of the service in parallel, which distributes the load evenly. This 
not only improves performance, but also increases fault 
tolerance, as the failure of one instance can be compensated for 

by the other instances. An example of this could be a web server 
that is supported by additional server instances when data traffic 
increases in order to distribute requests efficiently and minimise 
response times. 

Vertical scaling: Vertical scaling, also known as "upscaling", 
involves adding additional resources to a single instance of a 
service, e.g. more CPU, RAM or storage space. This method is 
better suited to low to medium load applications where 
requirements can be met by upgrading existing hardware. 
Vertical scaling can be easier to implement as no changes to the 
software architecture are required. However, it comes up against 
physical and economic limits, as the performance of a single 
instance cannot be increased indefinitely. A typical example 
would be a database that is scaled by adding more memory and 
more powerful processors to enable the processing of larger 
amounts of data. 

C. Decision Criteria for the Scaling Strategy 

The decision between horizontal and vertical scaling 
depends on various factors, including the specific requirements 
of the application, the expected load patterns and the existing 
infrastructure. Horizontal scaling offers more flexibility and 
higher fault tolerance, but is more complex to implement and 
manage. Vertical scaling is easier to implement, but has limited 
scalability and can reach its limits with very high loads. 

Horizontal scaling may therefore be ideal for applications 
with high loads and flexible scaling requirements, while vertical 
scaling may be suitable for applications with moderate loads and 
specific hardware requirements. The decision in favour of one 
or the other strategy should be carefully weighed up based on 
the individual requirements and objectives of the 
application [15]. 

VII. RESULTS AND BEST PRACTICES 

The scientific literature and documented case studies, for 
example on the performance of monolithic and microservices 
architectures, which this article provides an overview of, are 
diverse. What has been missing so far is a best-practice approach 
that generically describes how to proceed with a monolithic 
application landscape in order to achieve a decentralised and 
resilient microservices architecture - in other words, a kind of 
"recipe". This is proposed in this article and inductively derived 
from the existing articles cited above, consolidated and outlined 
below.  

Migrating from monolithic systems to a microservice 
architecture is a strategically challenging task that requires not 
only technical expertise, but also careful planning and 
implementation. There is no "best-of-breed" approach because, 
as described above, the procedural and technological complexity 
of application architectures in companies is individual.  

However, reference can be made to examples from which a 
generic migration path can be derived. Based on the case studies 
analysed above and the scientific work, the author recommends 
the following best practice derived from case studies and thus a 
strategy for the analysis and implementation of microservice 
architectures. 

11



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 9, 2024 

7 |  P a g e  

www.ijacsa.thesai.org 

 
Fig. 5. Migration from monolithic to microservices. 

1) Detailed analysis of the existing architecture: A 

thorough analysis of the existing monolithic architecture is an 

important first step on the way to a successful migration to a 

microservice architecture (see Fig. 5). Without a deep 

understanding of the current components, their dependencies 

and interactions, splitting them into microservices can lead to 

unforeseen complications. The migration process should 

therefore begin with a comprehensive analysis of both the 

system architecture and the underlying code. Two primary 

approaches play a central role in this analysis: static and 

dynamic analysis. 

Static analysis: In static analysis, the source code is analysed 
to determine the dependencies between individual modules and 
their relationships. This method helps to map the existing 
structure of the monolith and visualise the connections between 
the components. The tools used for static code analysis can 
create dependency diagrams that provide a clear overview of 
how the system works as a whole. These insights are crucial for 
identifying potential microservices and ensuring that the 
modularisation of the system is effective and sustainable [10]. 

Dynamic analysis: While static analysis focuses on the 
structure, dynamic analysis captures the behaviour of the 
application during runtime. Monitoring the real-time behaviour 
of the system allows engineers to understand usage patterns and 
critical business processes supported by specific modules. This 
method provides insight into performance bottlenecks and areas 
of the system in need of optimisation, which can inform which 
components should be prioritised for migration into standalone 
microservices. 

Example: Amazon carried out a comprehensive analysis of 
its monolithic architecture before switching to a microservice 
architecture. Critical areas such as the product catalogue and the 
payment system were identified and spun off as independent 
microservices, which significantly improved the scalability of 
the system [13]. 

2) Identification and delimitation of business functions: 

Decomposing a monolithic system into well-defined business 

functions is essential for creating clear service boundaries when 

migrating to microservices. The domain-driven design 

approach ensures that each microservice corresponds to a 

logical business domain, resulting in loosely coupled services 

that can operate independently. 

DDD: DDD is a methodological approach that focuses on 
mastering complexity by modelling business domains. A key 
concept in DDD is the "bounded context", which delineates a 
specific area within a business domain where a consistent model 
is applied. Defining these bounded contexts ensures that 
microservices have clear responsibilities, reducing 
interdependencies and simplifying development, maintenance 
and scaling. 

Example: Netflix used DDD to separate user management 
from its video streaming service. This logical separation enabled 
independent development and provision of functions and 
minimised the risk of system-wide failures [13]. 

3) Gradual migration and minimisation of risks: A phased 

or step-by-step migration strategy is critical to minimising the 

risks associated with the transition from a monolithic 

architecture to microservices. A "big bang" migration - where 

the entire system is migrated at once - can lead to serious system 

failures and business disruption. Instead, migrating smaller, less 

critical components initially allows for a smoother and safer 

transition. 

Step-by-step migration strategy: The aim of a step-by-step 
migration is to divide the migration process into smaller steps so 
that individual components of the monolith can be migrated 
gradually. This approach allows each microservice to be 
thoroughly tested to ensure that it works independently and 
integrates smoothly with the remaining monolith. By prioritising 
low-risk areas, companies can significantly reduce the 
likelihood of critical failures during migration [12]. 

Example: Spotify opted for a step-by-step migration by first 
converting its playlist management system to a microservice. 
This approach enabled the company to tackle problems in 
isolation and minimise the risk of widespread outages [5]. 

4) Formation of cross-functional teams: In addition to the 

technical changes, the migration to microservices also requires 

organisational restructuring. The formation of cross-functional 

teams is essential for the efficient development and 

maintenance of microservices. These teams consist of 

employees from different disciplines - development, operations 

and quality assurance - who work together to provide services 

more effectively. 
Autonomous teams: Each cross-functional team has full 

responsibility for one or more microservices and works 
independently within the scope of the services assigned to it. 
This autonomy enables the teams to develop, deliver and 
optimise their services without being dependent on other teams, 
which increases productivity and flexibility within the company. 

Example: Uber formed cross-functional teams that were 
responsible for individual microservices, such as route 
calculation. These teams worked independently of each other, 
which enabled faster adaptation to changes in the business 
model or technology, which significantly improved productivity 
[12]. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 9, 2024 

8 |  P a g e  

www.ijacsa.thesai.org 

5) Automate with DevOps practices: Automation plays a 

central role in the successful provision and management of 

microservices. Continuous Integration (CI) and Continuous 

Delivery (CD) are two key DevOps practices that ensure 

reliable and rapid delivery of microservices. CI/CD pipelines 

automate the processes of testing, building and deploying 

software, enabling faster releases and greater system stability. 

DevOps practice: DevOps emphasises collaboration 
between development and operations teams to ensure 
continuous improvement of both development and deployment 
processes. By automating testing and deployment, human error 
is minimised, allowing teams to release frequent, smaller 
updates that improve the quality and reliability of the overall 
system. 

Example: Facebook implemented CI/CD pipelines to 
provide several microservices every day. This enabled faster 
releases and greater agility in the development process [13]. 

6) Consideration of data consistency and error tolerance: 

Ensuring data consistency in distributed systems is one of the 

biggest challenges in microservice architectures (see Fig. 6). In 

a microservice system, each service often manages its own 

database, which can make consistency across the entire system 

difficult. Two important techniques for overcoming this 

challenge are event sourcing and the saga pattern. 

Event sourcing: With event sourcing, the state of the 
application is saved as a sequence of events that change this state 
instead of saving the current state directly in the database. These 
events are stored in an event log that can be replayed as required 
to reconstruct the current state. This ensures that all changes are 
traceable and recoverable and that data consistency is 
maintained across distributed systems. 

Saga pattern: The Saga pattern enables the decomposition of 
long transactions into smaller, atomic transactions that can be 
managed by individual microservices. Each transaction is 
designed to either complete or roll back in the event of an error, 
ensuring that all services involved either reach a consistent state 
or return to their previous state, thereby avoiding 
inconsistencies. 

Example: Airbnb uses the Saga pattern to coordinate 
transactions such as bookings across multiple microservices. 
This pattern ensures that the system remains consistent even if 
errors occur in individual services [3]. 

7) Summary of the 6 phases: Successful migration from a 

monolithic to a microservice architecture requires a strategic, 

well-planned approach that takes both technical and 

organisational aspects into account. 
Firstly, a thorough analysis of the existing system is crucial. 

Using static and dynamic analysis techniques ensures a 
comprehensive understanding of component dependencies and 
enables informed decisions on how to split the monolith into 
manageable microservices. Once the architecture is understood, 
it is important to identify and delineate the business functions 
using approaches such as DDD. This ensures that the 

microservices are aligned with the logical business domains, 
resulting in clear boundaries, reduced dependencies and more 
effective scaling. To minimise risks, a step-by-step migration 
strategy is recommended. Gradually migrating smaller, low-risk 
components allows for testing and optimisation, reducing the 
likelihood of critical errors and ensuring a smooth transition. On 
the organisational side, the formation of cross-functional teams 
is essential. These teams, made up of experts from development, 
operations and quality assurance, should be able to manage 
individual microservices independently to increase both 
productivity and flexibility. Automating processes through 
DevOps practices, particularly CI and CD, ensures that 
microservices are deployed efficiently and reliably. Automation 
minimises human error and speeds up the development cycle, 
allowing for frequent, smaller updates. Finally, ensuring data 
consistency and fault tolerance in distributed systems is a major 
challenge that can be addressed with techniques such as event 
sourcing and the Saga pattern. These methods help maintain 
consistent states and handle failures gracefully to ensure system 
reliability and robustness. 

 
Fig. 6. Challenges and best practices in migrating from a monolithic to a 

microservice architecture. 

If companies follow these best practices an included 
recommendations, they can minimise the risks of switching to 
microservices and at the same time benefit from the advantages 
of a scalable, flexible and resilient system architecture. 

VIII. DISCUSSION 

A. Data Consistency and Management of Distributed Data 

Microservice architecture’s distributed nature enables 
greater flexibility in data management, allowing each service to 
optimize its data storage based on specific requirements. 
However, maintaining data consistency across distributed 
services presents significant challenges. Techniques like event 
sourcing and the Saga pattern are often employed to ensure 
synchronized, up-to-date transactions across services. While 
effective, these methods increase the complexity of system 
architecture, adding to operational overhead and necessitating 
advanced technical knowledge [3]. This complexity may not 
always justify the benefits for smaller organisations or systems 
with lower scalability needs, where a monolithic approach could 
be more practical [6]. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 9, 2024 

9 |  P a g e  

www.ijacsa.thesai.org 

B. Trade-offs Between Microservices and Traditional 

Architectures 

Microservices offer clear advantages in scalability and fault 
tolerance, but there are notable trade-offs. For example, smaller 
organisations may struggle with the overhead of managing 
numerous independent services, APIs, and maintaining data 
consistency. Monolithic architectures, by contrast, can offer 
faster development cycles and simpler management, especially 
in smaller applications that don’t require significant scalability 
[6]. As discussed by [12], the benefits of microservices tend to 
emerge in large-scale environments where scalability is critical. 
Thus, the decision to adopt microservices should be weighed 
against the organisation’s size, technical capabilities, and future 
growth plans [7]. 

C. API Management and Overheads 

While microservices communicate through APIs, promoting 
modular design and interoperability, the management of 
multiple APIs can become a burden as systems grow. This issue, 
often termed API proliferation, can increase operational 
complexity and management costs [5]. Solutions like API 
gateways and service meshes help centralize API management 
and streamline communication, providing advanced features 
such as load balancing and security. However, these tools also 
introduce new layers of infrastructure, which may pose 
challenges for smaller organisations without the technical 
resources to maintain them [10]. 

D. Testing Strategies for Microservices 

One advantage of microservices is their ability to support 
isolated unit testing, reducing the risk of system-wide failures 
[18] [20]. Automated testing tools can efficiently validate 
microservices before deployment. However, ensuring that 
multiple microservices function as a cohesive system requires 
extensive integration testing, which can slow deployment cycles 
and increase operational complexity. As emphasized, 
integration testing in microservices introduces an additional 
layer of complexity not present in monolithic systems [17]. 

E. Increased Focus on Emerging Trends 

Technologies like Kubernetes, AIOps, and serverless 
computing are shaping the future of microservices by offering 
advanced automation and orchestration capabilities. 
Kubernetes, for instance, simplifies the management of 
microservices by providing container orchestration tools for 
scaling and fault tolerance [18]. However, Kubernetes’ 
complexity often requires specialised expertise, making it more 
suitable for larger enterprises. AIOps—which integrates 
machine learning to predict system failures and optimize 
performance—offers significant potential for improving 
microservice reliability, but also introduces additional 
complexity [19]. As pointed out, the success of these 
technologies depends on how well organisations can manage 
this complexity [8]. 

F. Linking Case Studies More Critically 

The adoption of microservices by companies like Netflix, 
Amazon, and Uber has been widely documented, but the unique 
contexts that facilitated their success must be critically evaluated 
[6]. For example, Netflix’s need for high reliability in streaming 
services and Amazon’s demand for rapid scalability due to their 

e-commerce platform both necessitated the use of microservices 
[13]. However, smaller companies, or those in industries with 
lower scalability needs, may not experience the same benefits. 
Case studies of large companies should therefore be viewed with 
caution when attempting to generalise these strategies to smaller 
firms [5]. 

G. Potential Gaps in Existing Research 

Although microservices have been widely adopted across 
various sectors, there remain gaps in research concerning their 
implementation in highly regulated industries like fintech and 
healthcare, where data security and regulatory compliance are 
crucial [11]. These industries face challenges in adopting 
decentralised architectures due to the need for strict data 
governance. More research is needed to explore how 
microservice best practices can be adapted for these sectors. 
Moreover, there is limited empirical data evaluating the long-
term performance of microservices in such contexts [16]. 

H. More Quantitative Evaluation 

Empirical studies have shown that monolithic systems tend 
to perform more efficiently under lower loads, while 
microservice architectures excel at higher loads, thanks to their 
ability to scale horizontally. Quantitative data on resource 
utilization, fault tolerance, and operational costs would provide 
a stronger foundation for decision-making when comparing 
these architectures [15]. For instance, valuable insights into the 
performance benefits of microservices under varying conditions 
is provided [16]. 

I. Critical Look at Migration Strategies 

A phased migration approach, where organisations gradually 
transition from monolithic to microservice architectures, is often 
recommended to mitigate risks [7]. This approach allows for 
continuous testing and ensures that each microservice functions 
independently before migrating the entire system. However, this 
can also extend the migration [21] process and lead to technical 
debt, as both systems must be maintained during the transition. 
In some cases, a "big bang" migration, where the entire system 
is migrated at once, might be more efficient, especially for 
smaller systems [5]. Organisations must carefully assess their 
specific needs, technical capacity, and risk tolerance before 
deciding on the best migration strategy [10]. 

IX. CONCLUSION 

To summarise, the evolution from monolithic to service-
oriented and finally to microservice architectures represents a 
significant advance in the development and maintenance of 
modern software applications. Microservice architectures 
address many of the challenges associated with traditional 
monolithic systems and service-oriented architectures and offer 
significant improvements in flexibility, scalability and fault 
tolerance. By splitting complex applications into independent, 
loosely coupled services, microservices enable organisations to 
better respond to changing business requirements and optimise 
resource utilisation. As highlighted in the best practices and 
recommendations, the key benefits of microservices include 
their modular structure, which enables independent 
development, deployment and scalability. This modular 
approach allows organisations to scale services based on 
specific requirements without impacting the overall system. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 9, 2024 

10 |  P a g e  

www.ijacsa.thesai.org 

However, data consistency and Application Programming 
Interface (API) management remain a major challenge and 
require sophisticated strategies such as event sourcing and the 
Saga pattern to maintain synchronisation across distributed 
systems. 

The recommended step-by-step migration strategy helps to 
minimise the risks associated with the transition from 
monolithic systems to microservices. This step-by-step 
approach, together with cross-functional teams, ensures a 
smoother migration process and promotes collaboration 
between development, operations and quality assurance. In 
addition, the adoption of DevOps practices such as CI and CD 
increases the efficiency and reliability of microservice delivery, 
even though this requires a high level of technical maturity. 
While the benefits of microservices are obvious, the increased 
complexity and operational overhead created by their distributed 
nature, as well as the need for advanced skills in DevOps and 
container orchestration, present challenges that must be 
carefully managed. However, the integration of new 
technologies such as AIOps, Kubernetes and serverless 
computing increases the potential of microservice architectures 
and positions them as the dominant model for scalable, flexible 
and resilient software systems in the future. 

Companies that strategically apply these best practices and 
recommendations will be better equipped to overcome the 
challenges of microservice architectures while maximising the 
benefits of scalability, flexibility and fault tolerance in their IT 
infrastructures. 

REFERENCES 

[1] Valdivia, J.A., Lora-González, J., Limón, X., Cortes-Verdin, K., & 
Ocharán-Hernández, J.O. (2020): “Patterns related to microservice 
architecture: a multivocal literature review”. Programme. Comput. 
Software, 46, 594-608. 

[2] Newman, S. (2021). “Building Microservices”. O’Reilly Media, Inc. 

[3] Abdelfattah, A.S. & Cerny, T. (2023): Roadmap to reasoning in 
microservice systems: a rapid review. Appl. Sci, 13, 1838. 

[4] Cadavid, H., Andrikopoulos, V., & Avgeriou, P. (2020): “The architecture 
of systems of systems: A tertiary study”. Inf. Software Technol. 118, 
106202. 

[5] Lewis, J., & Fowler, M. (2014). “Microservices: A definition of this new 
architectural term”. 

[6] Vecherskaya, S.E. (2023). "Tasks and evoluti on of microservice 
architecture", pp. 37-43, Complex systems: models, analysis, 
management, Bulletin of the Russian New University. 

[7] Baškarada, S., Nguyen, V., & Koronios, A. (2020). „Architecture of 
Microservices: Practical Opportunities and Challenges”. 

[8] Van Eyk, E., Iosup, A., Seif, S., & Thömmes, M. (2017). „The spec cloud 
group's research vision on faas and serverless architectures”. In WOSC 
2017 - Proceedings of the 2nd International Workshop on Serverless 
Computing, Part of Middleware 2017 (pp. 1-4). Association for 
Computing Machinery, Inc. https://doi.org/10.1145/3154847.3154848. 

[9] Zimmermann, O. “Microservices tenets”. Comput Sci Res Dev 32, 301-
310 (2017). 

[10] Gouigoux, P., & Tamzalit, D. (2017). “From Monolith to Microservices: 
Lessons Learned on an Industrial Migration to a Web Oriented 
Architecture”. 

[11] Evans, E. (2004). Domain-Driven Design: “Tackling Complexity in the 
Heart of Software”. Addison-Wesley Professional. 

[12] Baškarada, S., Nguyen, V., & Koronios, A. (2020). „Architecture of 
Microservices: Practical Opportunities and Challenges”. 

[13] Newman, S. (2015). “Building Microservices”. O'Reilly Media. 

[14] Dragoni, N., Lanese, I., Larsen, S.T., Mazzara, M., Mustafin, R., Safina, 
L. (2018). Microservices: “How To Make Your Application Scale”. In: 
Petrenko, A., Voronkov, A. (eds) Perspectives of System Informatics. PSI 
2017. Lecture Notes in Computer Science(), vol 10742. Springer, Cham. 
https://doi.org/10.1007/978-3-319-74313-4_8. 

[15] Gos, K., & Zabierowski, W. (2020). “The comparison of microservice and 
monolithic architecture”. 

[16] Blinowski, G., Ojdowska, A. and Przybyłek, A., 2022, "Monolithic vs. 
Microservice Architecture: A Performance and Scalability Evaluation", in 
IEEE Access, vol. 10, pp. 20357-20374, 2022, doi: 
10.1109/ACCESS.2022.3152803. 

[17] Tran, H.K.V., Unterkalmsteiner, M., Börstler, J., & bin Ali, N. (2021). 
„Evaluating the quality of test artefacts - a tertiary study”. Inf. Software 
Technol. 

[18] Arvanitou, E.M., Ampatzoglou, A., Bibi, S., Chatzigeorgiou, A., & 
Deligiannis, I. (2022): “Application and exploration of DevOps: A tertiary 
study”. IEEE Access, 10, 61585-61600. 

[19] Liu, X., Li, S., Zhang, H., Zhong, C., Wang, Y., Waseem, M., & Babar, 
M.A. (2022): “Microservice architecture research: A tertiary study”. 
SSRN Electron. J. 

[20] Alaasam, A.B., Radchenko, G., Tchernykh, A., & González Compeán, 
J.L. (2020): “Analytical study on containerisation of stateful stream 
processing as a microservice to support digital twins in fog computing. 
Programme”. Comput. Software, 46, 511-525. 

[21] Fritzsch, J., Bogner, J., Wagner, S., & Zimmermann, A. (2019). 
„Microservices Migration in the Industry: Intentions, Strategies, and 
Challenges”.

 


