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Abstract—Manual interventions continue to be used in fruit-
picking and billing at large-scale fruit storage facilities. Recent
advances in deep in learning approaches, such as one-stage detec-
tors like You Only Look Once (YOLO) and Single Stage Detector
(SSD), as well as two-stage detectors like Faster RCNN and Mask
RCNN, aim to streamline the processes involved with fruit detec-
tion and enhance efficiency. However, these frameworks continue
to suffer with multi-scale objects, in terms of performance and
efficiency due to large parameter sizes. These problems increase
when multi-class fruits are encountered. We propose an improved
version of the one-stage detector framework YOLOv3 for multi-
class fruit detection. Our proposed model addresses the challenges
of multi-scale object detection and detection of different fruit
types in an image by incorporating CNN, bottleneck, and Spatial
Pyramid Pooling Fast (SPPF) modules in the Head, Neck, and
custom backbone of the YOLOv3 framework. Optimization of
learnable parameters for computational efficiency is achieved
by concatenating features at different feature map resolutions.
The proposed model incorporates fewer layers and parameters
compared to YOLOv3 and YOLOv5 models. We performed
extensive testing on three datasets downloaded from Roboflow
and compared them with YOLOv3 and YOLOv5 models. Our
model achieved mAP50 of 0.747 on Dataset 1 comprising images
of apples, bananas, and oranges whereas Dataset 2 consisting of
images of apples, oranges, lemon, and Pear, achieved mAP50 of
0.981. Testing the Mineapple dataset comprising on-tree images of
apples of varied sizes, achieved an accuracy of 0.643. We observe
that the performance of our model beats the performance of the
YOLOv3 and YOLOv5 models.

Keywords—Precision agriculture; yield estimation; fruit detec-
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I. INTRODUCTION

With the growing population, providing food security is
of utmost concern. Precision Agriculture comprises methods
to optimize resources by automation of agricultural tasks like
sowing, weeding, spraying, and harvesting driven by technol-
ogy which helps in increasing food production [1]. Before
harvesting, Yield estimation is necessary to avoid post-harvest
losses of fruits caused by harvesting raw or overripe fruits
[2], [3]. Accurate counting and effective invoicing of these
fruits during harvest [12] and their storage in the warehouse are
critical to orchard profitability. However, the current method
of counting fruits, which involves physical labor, takes a long
time, is prone to error, cannot keep up with the volume, and
is negative to schedule management. Orchards with multiple
types of fruits pose a challenge. Automating this process with
robots is a viable answer [15], but these robots need powerful
computer vision systems to detect and locate the different types
of fruits in the orchard and warehouse environments. Adding
to this, challenges, including various fruit sizes, colors, and

dense foliage, make detection more difficult. The key feature
of object identification is central to this vision system, allowing
the robots to discern between different fruit types and perform
appropriate picking and billing activities.

Fruit Detection models designed by many researchers pri-
oritize certain properties of fruits to improve accuracy through
specialized methods. Commonly used detectors include Mask
RCNN[9], Faster RCNN[8], and different versions of YOLO
(3, 4, 5, and 8), along with DenseNets and ResNets[11] as
feature extractors. Visual attributes like color, texture, shape,
and size are important properties for recognizing fruits. across
different growth stages need to be considered to differentiate
between fruit types. Detection of different types and sizes of
fruits in an image is a challenging problem. Detecting inter-
class similarities and intra-class variations is possible by a
combination of low-level features and high-level semantics. In
this study, we propose a fruit detection model with a custom
backbone network for feature extraction at multiple levels. The
YOLOv3 algorithm caught our attention, particularly through
its simplicity coupled with precision without compromising
speed. YOLOv3 is often used as a base model for modifications
leading to continuous improvement, such as in [11], and has
relatively lower training times to help achieve this. These
reasons inspired us to make good use of it to develop an
advanced one-stage fruit detection model. While deep convo-
lutional networks have shown promise in fruit detection, we
identified key challenges that serve as the primary objectives
this research aims to solve: 1. Creation of lightweight models
for practical use. 2. Effectively handling objects of different
scales. 3. Achieving strong performance while maintaining
efficiency rampant among fruit detection studies. 4. Training
the model successfully on images such that each image has
objects of different classes.

We decided to achieve this by constructing our own variant
of the YOLOv3 [4], one that would take on all four challenges
while providing much better results. Our proposed model
addresses these challenges by incorporating special modules
and optimizing parameters for computational efficiency. The
model shall work on both single class as well as multi
class fruit detection. We utilized three key datasets, one of
which is a benchmark dataset, detailed further in Part C of
the Methodology section. Detailed explanations of our novel
methods are provided in the Proposed System section in this
paper, showcasing our contribution to advancing fruit detection
technology, while the next subsection is a tiny yet precise gist
of why we chose our system in the first place.
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A. Our Contributions

1. We modified the existing Darknet-53 Backbone of the
YOLOv3 model by including multi-scale feature extraction and
then arranging bottleneck layers to reduce the dimensionality
of feature maps making the network more computationally
efficient. In the head part of the model, high-level semantic
features are concatenated with low-level details so that fruits
of different sizes can be detected. With these modifications, our
model can now facilitate the acquisition of more discriminative
features by allowing gradients to flow directly during training.
It also solves the challenge of detecting fruits of varying sizes.

2. Our model is trained on three datasets to prove effec-
tiveness: Dataset 1 and Dataset 2, which consist of images of
different fruits (mixed fruits), and Dataset 3, comprising of the
Benchmark Mineapple Dataset consisting of apples in a dense
orchard environment.

3. We have evaluated the model using various Performance
metrics: Precision, Recall, mAP@50 & mAP@90 and then
compared the results with YOLOv3 and YOLOv5l. Notably,
running our model on Dataset 1 produced a mAP@50 of 0.747
, 0.981 on Dataset 2 and 0.643 on Dataset 3. The model
achieved a higher mAP@50 on Dataset1 and Dataset3 and a
higher Recall on all 3 datasets when compared with YOLOv3
and YOLOv5l models.

4. While designing the Backbone network, care was taken
that the number of layers and number of parameters in our
model are less then those in the standard YOLOv3 model and
YOLOv5l model.

B. Organization of the Paper

The paper is organized as follows : The Section II is
a detailed survey of existing research in the field, followed
by Section III comprising of the dataset characteristics, our
proposed system and subsequent model training. In Section
IV are the results and discussions followed by the Conclusion.

II. RELATED WORK

Before delving into our own model, we explored vari-
ous research contributions, each shedding light on distinct
advancements in real-time fruit detection. The study in [5]
utilizes the YOLOv4 neural network to enhance real-time ba-
nana recognition in complex orchards. It addresses similarity,
occlusion, and uncertainties by extracting complex features.
The model, based on YOLOv4 with CSPDarknet53, includes
the FPN+PAN module, SPP module, and Mish activation
function. The DIOU nms algorithm improves detection con-
fidence. Comparisons show YOLOv4 surpasses YOLOv3 and
traditional methods in accuracy and speed, with an average
execution time of 0.171s and a detection rate of 99.29%. The
YOLOMuskmelon model /citec2, blends speed and accuracy
for enhanced fruit detection. It features a ResNet43 backbone
with ReLU activation, SPP for improved accuracy, FPN for
efficient feature extraction, and DIoU NMS for efficiency. With
an AP of 89.6%, it outperforms YOLOv3 and YOLOResNet50
but slightly lags YOLOv4 at 91.6%. Notably, it operates at
96.3 fps, faster than YOLOv3, YOLOv4, and YOLOResNet50,
highlighting its potential for real-time fruit harvesting robots
due to its speed advantage over YOLOv4. A bottleneck

network module C2f is the building block in the YOLOv8
model for feature extraction. In study [7] YOLOv8 model
achieved mAP50 of 99.5% for ripeness detection of apples
and pears. Results were compared with CenterNet model with
ResNet50 backbone. A light-weight model based on YOLOv5
for real-time applications is proposed in study [8] to detect
strawberry fruits. A detection speed of 7.30ms and average
precision 89.7% is reported. An attention module integrated
with YOLOv7 in study [9] to detect kiwi fruits. Channel and
spatial features extracted by the attention module improve the
accuracy of detecting small and overlapping fruits. Comparison
results of YOLOv8 and Mask RCNN in [9]show that YOLOv8
is better than Mask RCNN in terms of accuracy and speed.
An experiment to detect objects of two types, trunks and
apple tree branches, and next to detect green apples in an
orchard environment confirmed the suitability of YOLOv8
for real-time detection for applications in robotic harvesting.
To enhance real-time fruit recognition speed and accuracy,
[11] introduces YOLOv5s. It targets applications on low-
power devices and fruit-harvesting robots [16]. Adjustments
to the backbone network, adaptive image scaling, and com-
puted anchor boxes were made using a dataset of 1,350
strawberry and 1,959 jujube photos. Improvements like Stem,
AC, Maxpool, CBS, SPPF, and CAM enhance adaptability
to low-power devices. Validation and test results show mAP
values of 93.4% and 96.0%, respectively. Operating at 74
fps on videos, YOLOv5s outperforms models like YOLOv4-
tiny, YOLOv7-tiny, and GhostYOLOv5s in robustness and
efficiency. This study [12] introduces a multi-cluster green
persimmon recognition approach using an enhanced Faster
RCNN model. It utilizes a dataset of 9,300 images captured
under diverse natural light conditions, including scenarios with
multiple fruits, leaf shadows, and overlapping clusters. The
upgraded model integrates a weighted ECA mechanism into
three key feature layers and enhances the DetNet feature
extractor to balance information levels. It incorporates multi-
scale features and employs K-means clustering for bounding
box clustering and anchoring. Achieving a mAP of 98.4%,
the model surpasses the traditional Faster RCNN by 11.8%,
demonstrating significant improvements in identifying green
persimmons, especially in complex and obscure environments.
An input comprising of RGB and HSV images of Oranges fed
to MaskRCNN improved segmentation accuracy in [13] Next,
[14] uses the VGG16 architecture and Faster R-CNN model to
detect kiwifruits in orchard photos under varied lighting and
time conditions. With a dataset of 2400 images at 2352x1568
resolution, each containing at least 30 kiwifruits, the model
excels in recognizing kiwifruits despite occlusion, overlap, and
lighting variations. Outperforming ZFNet, it proves effective
in dynamic agricultural settings, ensuring high accuracy and
minimal false negatives in kiwifruit identification.

In this study [11], authors enhance the YOLOv3 model
for automated oil palm loose fruit identification, integrating
DenseNet for feature reuse, swish activation, and multi-scale
detection to improve small object accuracy. Diversifying a
dataset from 700 UAV and mobile camera photos to 6300 im-
ages, they boost model performance across detection metrics.
Outperforming YOLOv3, Faster R-CNN-ResNet101, YOLOv3
tiny, YOLOv2, and SSD-MobileNet, the model achieves su-
perior average precision, overlap metrics, and F1-score while
maintaining computational efficiency.
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A study [12] introduces a real-time olive fruit detection sys-
tem using advanced deep learning frameworks like YOLOv5x,
YOLOv5s, and YOLOR. YOLOv5s combines YOLO Layer,
PANet, and CSPDarknet for detection. With 40,834 annotated
olive fruit images, the system achieves 62 FPS detection speed
and the highest 0.75 mAP 0.5 precision, making YOLOv5s the
optimal choice for automating olive harvesting challenges. The
project [17] applies deep learning to enhance papaya recogni-
tion in natural orchard settings. The YOLOv5s-Papaya model
integrates bidirectional weighted feature pyramid network,
Ghost module, and coordinate attention module for dense mul-
titarget detection. Utilizing mosaic data augmentation, adaptive
anchor computation, and PANet framework ensures multiscale
feature fusion. With 1,000 diverse photos, the model achieves
92.3% average precision, 83.4% recall, and 90.4% precision,
surpassing previous YOLO versions. The working of Two-
stage Detectors and YOLO architecture and its successors have
been reviewed in [18] A study [19] extensively examines the
YOLO series, assessing their designs, regression methods, and
performance on MSCOCO and Pascal VOC datasets. YOLO
models demonstrate superior detection accuracy and speed
compared to two-stage detectors like RCNN, Fast-RCNN, and
Faster-RCNN, making them ideal for real-time applications
in machine learning and deep learning tasks. An attention
mechanism to improve the localization of fruits is introduced in
YOLOv5 architecture between the backbone and neck region
in [20]. Results on fruits like apple, oranges, grapes on state-
of-the-art models show that the proposed model has a better
target detection and generalization ability.The bidirectional
attention mechanism extracts features from horizontal and
vertical directions, assigns weights followed by concatenation.
The paper in study [21] presents the GCS-YOLOV4-Tiny
model, which enhances the YOLOV4-Tiny architecture for
faster fruit detection by integrating spatial pyramid pooling
(SPP), squeeze and excitation (SE) modules, and group con-
volution. Evaluations on Mango YOLO, Rpi-Tomato, and F.
margarita datasets demonstrate significant improvements over
YOLOV4-Tiny, achieving a 17.45% increase in mean average
precision and a 13.80% rise in F1-score. These enhancements
optimize both accuracy and speed in fruit detection tasks.
In [22], authors have proposed a system for selecting image
regions based on features like LBP, HOG, color histograms,
and shape features with a weighted score for combining
features. Improvement of region proposals based on Edgeboxes
are proposed. A dataset of 18,155 images like apples, pears,
kiwis, and persimmon are trained on the system and then
compared with DPM (Deformable Parts Model), CNN with
SVM and Faster RCNN.A detection rate of 0.9632 and a FPPI
(False positive per image) of 0.0682 is reported. In this study,
multiple types of fruits within the same image are included in
the dataset. It is found that almost all studies have performed
detection on images having fruits of single type within an
image. The study on muticlass fruit detection with multiple
fruits within the same image is carried out in study [22] and
study [10]. In study [22], a custom region selection method
is proposed and has very good accuracy when compared with
Faster RCNN and other models. Faster RCNN F1 score is also
nearly equal to the new method. The images are multiclass but
fruit instances are not overlapping or together. In study [10]
multiple types of classes like trunk and branches are detected
in an image.

III. DATASETS AND METHODOLOGY

Extensive studies over the backbone network of YOLOv3
model and family of YOLO object detectors went into the ini-
tial part of our research. Architectural patterns in the detector
were interpreted to understand how the detector captures var-
ious features. The next step was to examine existing research
like those seen in sSection II to understand modifications
in standard YOLOv3 and YOLOv5 models and their weak
points which would grant us clarity as to what novel changes
we could make to the single stage detector to overcome
challenges with fruit detection in particular. This section is
a detailed account of the technicalities behind a standard
YOLOv3 detector and then the step by step working of our
proposed system. We also formally introduce each dataset with
its contents and their specifications.

A. YOLOV3 Model

YOLOv3 (You Only Look Once, Version 3) emerges as a
pivotal advancement in real-time object detection, brought to
fruition by the collaborative efforts of Joseph Redmon and
Ali Farhadi. Building upon the foundations laid by YOLO
and YOLOv2, YOLOv3 represents a significant leap for-
ward in accuracy and speed, setting new benchmarks in the
field. Released in 2018, this iteration refines its predecessors’
successes while introducing key architectural intricacies that
elevate its performance.At its core, YOLOv3 utilizes a variant
of Darknet, originally a 53-layer network trained on ImageNet,
which has now evolved into a 106-layer fully convolutional
architecture tailored specifically for object detection tasks. This
expanded architecture enables YOLOv3 to process images
comprehensively, integrating global context during inference
and improving its accuracy in detecting various objects.

The algorithm operates as a Convolutional Neural Network
(CNN), drawing inspiration from ResNet and FPN architec-
tures. Darknet-53, YOLOv3’s feature extractor, incorporates
skip connections and three prediction heads, facilitating spa-
tial compression and precise detections. These architectural
enhancements contribute significantly to YOLOv3’s ability to
detect objects accurately and efficiently in real-time scenarios.

In comparative evaluations against other popular frame-
works like Faster R-CNN and MobileNet-SSD, YOLOv3 con-
sistently demonstrates its superiority. It achieves a remarkable
37 mAP on the COCO-2017 validation set at 608x608 resolu-
tion, outpacing Faster R-CNN architectures while maintaining
a significant speed advantage—17 times faster, to be exact.
This speed-to-accuracy ratio positions YOLOv3 as a leading
choice for real-time object detection tasks, especially in sce-
narios requiring rapid and precise identification of objects.

Anchored on concepts like anchor boxes, k-means cluster-
ing, and a meticulously designed network structure, YOLOv3
excels in detecting small targets with exceptional accuracy,
making it a preferred solution for a wide range of applications
demanding robust and efficient object detection capabilities.

1) Bounding Box Prediction in YOLOv3: In the context
of YOLOv3’s object detection technique, bounding box pre-
diction entails generating bounding box attributes such as
coordinates and size. This operation is facilitated by 1 x 1
detection kernels, which have the following shape: 1 x 1 x (B
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x (5 + C)). Here, B specifies the number of bounding boxes
per cell, ‘5’ represents the box attributes (x, y, width, height,
confidence), and C denotes the number of classes. This method
allows YOLOv3 to correctly forecast multiple bounding boxes
for each object class in an image. Object confidence is an
important factor in assessing if an object is present within a
predicted bounding box. This confidence measure is generated
using binary cross-entropy, which assesses the likelihood of
an object appearing within a certain bounding box region. A
higher object confidence score implies a larger possibility of
the object’s presence, whereas a lower score indicates a lower
probability.

Bounding Boxes Prediction:
Shape: 1× 1× (B × (5 + C))
Where B represents the number of bounding boxes per cell,
5 denotes the box attributes (x, y, width, height, confidence),
and C signifies the number of classes.
Object Confidence:
Object Confidence = p(Object)× IoUtruth

pred

B. Proposed System

Fig. 1. Proposed system architecture.

The proposed system shown in Fig. 1 utilizes convolu-
tional layers and bottleneck blocks in the backbone to ex-
tract hierarchical features, followed by a multiscale feature
extraction process. In the head section, the system merges
features from both the backbone and the multiscale extractor
to enhance object detection capabilities. This integrated feature
representation is then utilized for precise object localization
and recognition, improving overall performance in detecting
objects within images.

Our object detection system represents a sophisticated
fusion of architectural components aimed at advancing object

detection capabilities within deep learning frameworks. Once
an image is passed, it undergoes resizing to 640 x 640 size and
post this, enters the backbone of our network which contains
a series of several convolutional layers, each strategically
designed to capture intricate spatial patterns and hierarchical
features from input feature maps.

Fig. 2. Backbone of YOLOv3 and our model.

1) Custom Backbone: These convolutional layers are com-
plemented by multiple bottleneck blocks, inspired by the
modern architecture Darknet-53 as seen in Fig. 2. The bot-
tleneck blocks in Fig. 4 play a crucial role in feature learning
by incorporating residual connections, thereby facilitating the
direct flow of gradients during training and mitigating the van-
ishing gradient problem. This approach not only enhances the
model’s ability to learn discriminative features but also reduces
computational complexity, making the system more efficient
and scalable, making it highly instrumental for deployment
in resource-constrained environments like autonomous fruit-
picking robots or edge computing devices in warehouses. What
closely follows this is the integral part of the system’s object
detection prowess: an innovative inclusion of a multi-scale
feature extractor called the SPPF (Spatial Pyramid Pooling
Fast) layer. SPPF addresses the challenge of efficiently han-
dling objects of varying sizes within input images. Traditional
CNNs often require fixed-size input, limiting their efficacy
in detecting objects at different scales. SPPF overcomes this
limitation by enabling the network to operate on feature maps
of arbitrary sizes, allowing for the detection of objects across
multiple scales within the same image.

Through hierarchical feature fusion in the neck part via
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concatenation and multi-scale feature representation, the sys-
tem achieves enhanced contextual understanding. This is cru-
cial in a mixed fruit setting where for example the model must
differentiate between a lemon and an apple. The SPPF layer’s
implementation of spatial pyramid pooling and factorization
techniques contributes significantly to the system’s efficiency,
enabling it to handle variable input sizes while capturing multi-
scale features effectively. What happens with this module is the
network effectively partitions feature maps into progressively
smaller segments. Segmentation enhances the model’s ability
to focus on and detect smaller objects by increasing both
the resolution and receptive area, which is crucial in densely
packed environments like orchards. This comprehensive archi-
tecture represents a substantial advancement in object detection
methodologies, offering a scalable, efficient, and accurate
solution for complex visual recognition tasks within the realm
of computer vision and deep learning research.

2) Anchor Design Scheme: Anchors for different feature
map sizes are shown in Fig. 3.

Anchors for feature map scale P3/8: These anchors are
used with the feature map at a scale where the input image is
downsampled by a factor of 8. For example, if the input image
is 640x640, the feature map size would be 80x 80.

Anchors for feature map scale P4/16: These anchors are
used with the feature map at a scale where the input image
is downsampled by a factor of 16. For example, if the input
image is 640x640, the feature map size would be 40x40.

Anchors for feature map scale P5/32: These anchors are
used with the feature map at a scale where the input image
is downsampled by a factor of 32. For example, if the input

Fig. 3. Anchors.

image is 640x640, the feature map size would be 20x20.

3) Feature Engineering Techniques: High-Level Features:
These features are representations of abstract and semantic
information about the input data. They typically capture com-
plex patterns, object shapes, textures, and context within the
image. High-level features are crucial for tasks such as object
classification and scene understanding. As an example round
form of the apple has a slight asymmetry that necessitates
accurate feature detection because it can appear in varied sizes
depending on the variety or maturity level. This also serves
crucial when having to discern against a similar looking fruit
such as in Dataset 2 we trained our model on, and most of
this occurs under poor lighting or dense conditions.

Low-Level Features: These features represent more fine-
grained details and local patterns in the input data. They
typically capture simple structures such as edges, corners,
textures, and colors. Low-level features are important for
tasks that require precise localization or detection of specific
visual elements. This would particularly help with oranges,
bananas and pears wherefruit skin gradients and other minor

colour changes can all be used to distinguish between different
varieties and stages of maturity during the harvest cycle.

Fine-grained information refers to subtle, detailed, and
specific visual characteristics present in the input data. It
includes features such as small textures, intricate patterns, or
subtle color variations.

Concat: Concatenating features from different layers of
the backbone network serves several purposes- Hierarchical
Feature Fusion: Features extracted from different layers of
the backbone network capture information at various levels
of abstraction. By concatenating these features, the model
can leverage both low-level details and high-level semantic
information simultaneously. This hierarchical feature fusion
helps improve the model’s ability to detect objects of different
sizes and complexities.

Multi-Scale Feature Representation: Object detection often
requires analyzing images at multiple scales to detect ob-
jects of different sizes. Features from different layers with
varying receptive fields can effectively detect objects of vary-
ing sizes.This multi-scale feature representation enhances the
model’s robustness to scale variations in objects. The perfect
example of this is the Minneapple Dataset we used (Dataset
3). Although Dataset 1 and 2 involved large scale fruits,
Minneapple involved a densely packed apple orchard with
several tiny fruits of very small scale, and yes, our model
adapted well there too.

Enhanced Contextual Information: Concatenating features
from different layers enriches the contextual information avail-
able to the model. Features from shallow layers provide fine-
grained spatial details, while features from deeper layers offer
more abstract semantic information. Combining these features
allows the model to better understand the context of objects
in the image and make more accurate predictions. Let’s say
in dataset 2 where both the shape of an orange as well as the
understanding of its colour comes together to make accurate
classification and not confuse it with a lemon.

SPPF: The Spatial Pyramid Pooling Fast layer, handles
objects of various sizes within the input image. Handling
Variable Input Sizes: One challenge in object detection is effi-
ciently handling objects of different sizes within the input im-
age. Traditional convolutional neural networks (CNNs) require
fixed-size input images, which can be limiting when dealing
with objects at different scales. The SPPF layer addresses this
challenge by allowing the network to operate on feature maps
of arbitrary sizes, enabling it to detect objects at multiple scales
within the same image.

Spatial Pyramid Pooling: The SPPF layer implements a
spatial pyramid pooling operation, which divides the input
feature map into multiple regions of varying sizes and then
pools features from each region separately. By using pooling
operations with different window sizes, the SPPF layer cap-
tures features at multiple scales, allowing the network to be
more robust to variations in object size.

Factorization: The term “factorization” in SPPF refers
to the decomposition of the pooling operation into smaller,
more manageable components. Instead of applying pooling
operations directly to the entire feature map, the SPPF layer
applies them to smaller regions or subregions of the feature
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Fig. 4. Key system blocks.

map, reducing the computational complexity of the operation.
This factorization process helps maintain the efficiency of the
network while still capturing multi-scale features effectively.

Improved Spatial Context: By incorporating features from
multiple spatial scales, the SPPF layer enhances the spatial
context available to the network. This improved spatial context
enables the network to better understand the spatial relation-
ships between objects and their surroundings, leading to more
accurate object detection results. A fruit picking robot working
in a packed warehouse would be able distinguish between
the fruit and non fruit background objects more efficiently,
speeding up the process.

Detect: passing inputs of different scales with varying
numbers of channels In object detection models like YOLOv3,
the detection process often involves analyzing features at mul-
tiple scales to detect objects of different sizes. Features from
deeper layers with larger receptive fields are better suited for
detecting larger objects, while features from shallower layers
with smaller receptive fields are more suitable for detecting
smaller objects. The choice of having more channels in features
from smaller scales and fewer channels in features from larger
scales is often driven by the need to capture finer details
in smaller objects. Smaller objects may require more spatial
information and feature channels to be accurately detected,
whereas larger objects may be adequately represented with
fewer channels. By passing inputs from multiple scales with
varying numbers of channels to the Detect layer, the model
can effectively detect objects across a wide range of sizes. The
model combines features from different scales and channels to
generate bounding box predictions and class probabilities for
objects present in the image.

C. Datasets

1) Dataset 1: The dataset comprises a curated collection
of 150 high-resolution images, capturing three different fruits:
apple, orange and banana. Each image is annotated with

bounding boxes outlining the regions of interest containing the
fruits. No preprocessing and Augmentation were performed on
this dataset. Every model is trained for 100 epochs with a batch
size of 13 and input image size of 640 x 640.

Fig. 5. Dataset 1.

2) Dataset 2: It contains images of mixed fruits categorized
into four distinct classes, namely apples, oranges, lemon,
and pear. Preprocessing steps specifically, RGB images were
converted to grayscale using established color conversion al-
gorithms. This transformation not only reduces computational
complexity but also emphasizes shape and texture features
essential for fruit detection, thereby enhancing model discrimi-
native power. Augmentation techniques like random horizontal
and vertical flips were introduced to simulate variations in
fruit orientation, ensuring the model’s ability to detect fruits
irrespective of their spatial orientation. Additionally, rotation
augmentation was employed, allowing images to be rotated by
±15 degrees around their center. This augmentation strategy
introduces angular diversity, enabling the model to better
generalize to fruits positioned at varying angles within the
image frame. Here each model is trained for 20 epochs with
a batch size of 13 and an input image size of 640 x 640.

Fig. 6. Dataset 2.

3) Dataset 3: The dataset utilized is MinneApple, designed
specifically for apple detection and segmentation within or-
chard environments, aiming to push the boundaries of fruit
detection [6] technology. It focuses solely on a single class
object detection: Apples. Acquired from Roboflow, an open-
source computer vision tool, MinneApple has a split of 670
training images and 331 testing images totaling over 41,000
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Fig. 7. Dataset 3.

annotated object instances across 1001 images. The data col-
lection process spanned more than a year at the University
of Minnesota’s Horticultural Research Center, employing a
standard Samsung Galaxy S4 cell phone to ensure real-world
representativeness. Footage was captured at a controlled speed
of 1 m/s to minimize motion blur, with images extracted
at regular intervals to encompass diverse lighting, angles,
and fruit ripeness stages. This diverse dataset, encompassing
various fruit varieties, ripeness stages, and illumination con-
ditions, is pivotal for training robust machine learning models
capable of generalizing effectively. No data pre-processing or
augmentation was applied to this dataset. All models in Dataset
3 were trained for 30 epochs with a batch size of 13 and input
image size of 640 x 640.

IV. RESULTS

In this study, we evaluated the performance of three object
detection models (YOLOv3, YOLOv51, and Our Model) on
three diverse datasets: (Dataset 1, Dataset 2, and Dataset
3), as displayed in Table I. We employed standard metrics
including precision, recall, mAP@50, and mAP@50-95 to
assess their detection accuracy.

TABLE I. PERFORMANCE METRIC COMPARISON

Dataset Model Precision Recall mAP
@50 @50-95

Dataset 1 YOLOv3 0.715 0.617 0.695 0.367
YOLOV51 0.371 0.546 0.529 0.249
Our Model 0.692 0.664 0.747 0.392

Dataset 2 YOLOv3 0.971 0.967 0.982 0.725
YOLOV51 0.949 0.939 0.971 0.782
Our Model 0.978 0.968 0.981 0.771

Dataset 3 YOLOv3 0.700 0.566 0.638 0.293
YOLOV51 0.642 0.477 0.528 0.233
Our Model 0.679 0.594 0.643 0.301

In terms of model size, we found that our model has
less parameters than the YOLOv5l variant and the YOLOv3
version, as can be seen in Table II.

TABLE II. MODEL DETAILS

Model Layers Parameters
YOLOV3 262 61,497,430
YOLOV51 368 46,119,048
Our Model 225 45,403,880

1) Dataset 1: Our model exhibits superior recall and mAP
scores (both mAP50 and mAP50-95) compared to YOLOv3.
While YOLOv3 has a slight edge in precision, our model’s
overall performance is better. When compared to YOLOv5, our
model surpasses it in all measured metrics: precision, recall,
mAP50, and mAP50-95. Thus, our model demonstrates a
notable improvement over YOLOv3 in recall and mAP scores,
and an overall superior performance across all metrics when
compared to YOLOv5.

2) Dataset 2: Our model outperforms YOLOv3 in pre-
cision, mAP50, and mAP50-95, indicating superior accuracy
and overall performance. However, YOLOv3 has better recall,
likely due to its higher sensitivity in detecting a broader range
of objects. Compared to YOLOv5, our model excels in all
evaluated metrics: precision, recall, mAP50, and mAP50-95.
Thus, our model demonstrates a more balanced and accurate
performance overall, particularly in precision and mAP scores,
while consistently surpassing YOLOv5 across all metrics.

3) Dataset 3: Our model surpasses both models, YOLOv3
and YOLOv5, in all metrics except precision, where YOLOv3
has a slight advantage. Specifically, our model demon-
strates superior recall, mAP50, and mAP50-95 compared to
YOLOv3.Our model excels in all evaluated metrics, including
precision, recall, mAP50, and mAP50-95 compared with the
YOLOv5 model.

V. DISCUSSION

The results across the datasets, when compared with stan-
dard detectors, provide valuable insights into the practical effi-
cacy of our proposed system. For Dataset 1, the superior recall
demonstrates the system’s ability to detect a high number of
fruit instances—apple, banana, and orange. This is particularly
significant in dense orchard environments, where fruits are
often obscured by leaves, twigs, and other elements within the
tree canopy. The higher mAP@50 and mAP@50-95 values
further highlight the model’s superior performance compared
to YOLOv5 and the base YOLOv3 variant in both accurately
localizing and classifying fruits, particularly when predicted
bounding boxes overlap with ground truth. In a multi-class
dataset, this strong performance indicates the model’s robust-
ness in detecting multiple types of fruits. While standard
YOLOv3 demonstrates a slight advantage in precision due to
its effectiveness in reducing false positives, our model achieves
a more balanced trade-off between precision and recall, which
enhances the detection and classification of multiple fruits
(apple, orange, banana) within a single image. The purpose
Dataset 1 served was to evaluate the model’s ability to detect
large objects with occlusion. By using large fruit images, we
can also evaluate the model’s performance on objects that
occupy a significant portion of the image. To perfect the
system, a learning rate of 0.01 was applied for all the 100
epochs from scratch with no pre-trained weights. A split of
130 and 20 was chosen for train and validation respectively.
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(a) (b) (c)

Fig. 8. Prediction on Dataset 1 using models YOLOv3 model(a) ,YOLOv5 model(b) and our model(c).

(a) (b) (c)

Fig. 9. Prediction on Dataset 2 using models YOLOv3(a), YOLOv5 model(b) and our model(c).

(a) (b) (c)

Fig. 10. Prediction on Dataset 3 by using models YOLOv3 model(a), YOLOv5 model(b) and our model(c).

In Dataset 2, our model exhibits superior performance in
correctly identifying fruits without mislabeling background
objects. This precision is particularly critical in controlled
environments for distinguishing between similar objects or
fruits of varying sizes. Although the mAP at a threshold of
50 reflects strong localization capabilities, YOLOv5l demon-

strates a marginally better performance, likely due to the high
similarity in shape between certain fruits, such as lemons and
apples, or lemons and oranges. Despite standard YOLOv3
achieving higher recall, it compromises accuracy, as evident
from the labels on the bounding boxes. This dataset had fruits
of medium to large size. Further, the inclusion of grayscale
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(a) (b) (c)

Fig. 11. Precision recall graph of Dataset 1 applied on YOLOv3 model(a), YOLOv5(b) model and our model(c).

(a) (b) (c)

Fig. 12. Precision recall graph of Dataset 2 applied on YOLOv3(a) model, YOLOv5 model(b) and our model(c).

(a) (b) (c)

Fig. 13. Precision recall graph of Dataset 3 applied onc YOLOv3 model(a), YOLOv5 model(b) and our model(c).

images and augmentation techniques (horizontal/vertical flips
and rotation) helps increase the dataset’s diversity and improve
the model’s generalization capabilities. A learning rate= of
0.01 was applied for all the 20 epochs with no pre-trained
weights, and a split of 1450 and 230 for train and validation
was chosen respectively.

Dataset 3 presents a slightly different trend. In dense
orchard settings, precision is key in reducing false positives,
such as branches, leaves, or occluded apples being incorrectly
classified as apples. While standard YOLOv3 shows a slight
advantage in minimizing these misclassifications, our model
outperforms in terms of recall and mAP@50 and 90. This
indicates that it detects a higher number of apples, even under
challenging conditions where fruits may be partially hidden or
closely packed. In such densely populated environments, the
superior recall of our model is crucial, ensuring comprehen-

sive apple detection, even when some fruits are obscured by
branches. Furthermore, the higher mAP scores underscore the
model’s ability to accurately and consistently localize apples,
particularly in cases where apples are tightly clustered, which
is essential for effective yield estimation in dense orchards.
We chose dataset 3 to specifically evaluate the model’s perfor-
mance on detecting very small objects. The MiniApple dataset
provided a challenging benchmark for object detection tasks
involving tiny objects. We applied a learning rate=0.01 over
all 30 epochs, no pre-trained weights, and the 1001 images
were kept at a split of 670 and 331 for train and validation re-
spectively. It is noteworthy that high mAP@50 and mAP@50-
95 scores proved powerful localization capabilities specially
over the Minneapple dataset where similar research such as
[23] which put to use MHT with YOLO and Faster RCNN,
suffered at counting the fruits and had to rely on high velocity
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algorithms such as DeepSORT to improve performance while
our system could correctly identify a very high number of tiny
apples off the dense branches.

VI. CONCLUSION

Concerning model size, we observed that our model con-
tained fewer parameters than both the YOLOv3 version and
the YOLOv5l variant. Despite containing lower number of
layers than YOLOv3, our model performed beter feature
extraction. This shows that we can achieve good accuracy
without a large and complex structure, making our model a
great choice for tasks that need both speed and efficiency in
object detection. This lightweight model can be effectively
used in applications where efficiency is crucial, offering fast
processing and reduced memory usage compared to larger
models like YOLOv3 and YOLOv5. This certainly means we
have got through with our first and third primary objectives
listed at the start of this paper. In addition, the SPPF module
working within our model provides a reliable solution to the
issues of multi-scale fruit detection. Using pooling layers of
varied sizes improves the model’s capacity to detect fruits of
vastly varying sizes, whether they are small in the Minneapple
dataset’s orchards or the large ones in the Mixed Fruit dataset.
This method decreases sensitivity to variations in input res-
olution, resulting in consistent performance across different
image qualities. Furthermore, by merging characteristics from
several scales within a single feature map, SPPF enhances the
fruit object representation with fine-grained details as well as
global context, ultimately enhancing fruit recognition accuracy
and reliability in a variety of situations. With this, we have
achieved our second primary objective. In summary, our model
showcases strong performance in multi-class fruit detection by
taking a balanced approach and striking a worthy balance be-
tween precision and recall, as opposed to models like YOLOv3
and YOLOv5. The fact that we successfully tested over images
with fruits of different classes hints at success with our
fourth primary objective. Also, our model has superior overall
detection accuracy, as indicated by the greatest mAP@50
score, suggesting its ability to recognize true positives despite
minor differences in bounding box placement. Furthermore,
our model performs consistently across IoU levels, achieving
competitive mAP@50-95 values and assuring accurate fruit
location pinpointing even under stringent bounding box over-
lap criteria. However, while our model demonstrates promising
results, there is potential for further improvement. The model
still does not perform well in cases of occlusion. Improvement
in fusion techniques to better mix information from multiple
layers is needed and for this, we can investigate sophisticated
backbones such as EfficientNet. By exposing the model to a
greater range of training data, data augmentation can also aid
in enhancing the model’s capacity for generalisation. Finally,
testing the model against a variety of benchmarks can reveal
the model’s advantages and disadvantages as well as point
out areas that still want improvement. We may improve our
model’s performance and attain even greater results in object
detection tasks by implementing these strategies.
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Fernando Auat Cheein , “Apple orchard production estimation using deep
learning strategies: A comparison of tracking-by-detection algorithms”,

Computers and Electronics in Agriculture 204, [Online] Available:
https://doi.org/10.1016/j.compag.2022.107513

www.ijacsa.thesai.org 988 | P a g e


