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Abstract—Water quality is crucial for sustaining life, and 

accurate prediction models are essential for effective 

management. This study introduces an Artificial Neural Network 

(ANN) model designed to predict the Water Quality Index (WQI) 

in the Amoju Hydrographic Subbasin, Cajamarca-Peru. The 

model was developed using key water quality parameters, 

including electrical conductivity (EC), total dissolved solids 

(TDS), calcium carbonate (CaCO3), and phosphate ( 𝐏𝐎𝟒
𝟑− ), 

identified through Pearson correlation analysis. Data from water 

samples collected over six months were used to train and validate 

the model. Results revealed that the ANN model achieved high 

predictive accuracy, with a significant correlation between WQI 

and the aforementioned parameters. The model's performance 

outstrips traditional methods demonstrating its capability to 

effectively capture complex interdependencies among water 

quality indicators.  This research emphasizes the potential of AI-

driven approaches for enhancing predictive accuracy in 

environmental monitoring. Future studies should consider 

incorporating additional variables, such as heavy metals and 

microbial indicators, and consider the application of real-time 

AI-driven monitoring systems to further refine water quality 

management strategies. The ANN model presented here offers a 

promising tool for decision-makers, providing a reliable method 

for predicting water quality in similar hydrographic basins and 

contributing to the broader field of AI in environmental science. 

Keywords—Artificial neural networks; hydrographic subbasin; 

machine learning models; water quality index; water resource 

management 

I. INTRODUCTION 

Water is a critical resource upon which all life on Earth 
depends, with its quality playing a pivotal role in human health 
and aquatic ecosystems. The contamination of water sources 
poses significant threats to public health and the environment, 
underscoring the urgency of effective water quality monitoring 

and management. Numerous studies have highlighted the 
importance of assessing and predicting water quality to 
safeguard the sustainability and safety of water resources [1], 
[2]. Water quality forecasting is an indispensable method for 
effective water resource planning, regulation, and monitoring, 
and it is a crucial component of research focused on water 
ecological protection [3], [4]. 

The global issue of water pollution, aggravated by 
industrialization and urbanization, has driven the development 
of advanced methodologies for monitoring and predicting 
water quality. Traditional approaches, such as manual sampling 
followed by laboratory analysis, are often labor-intensive, 
time-consuming, and costly, thereby limiting their efficiency 
and scalability. These challenges have catalyzed the integration 
of artificial intelligence (AI) and machine learning (ML) 
techniques into water quality assessment, offering more 
efficient and cost-effective solutions for real-time water quality 
prediction [5], [6]. Among these techniques, machine learning 
models, particularly artificial neural networks (ANNs), have 
gained widespread adoption due to their capability to handle 
complex, and nonlinear relationships within environmental 
data [7], [8]. 

Recent advancements in technology, including remote 
sensing (RS), the Internet of Things (IoT), and big data 
analytics, have further enhanced water quality monitoring by 
enabling the collection and processing of vast amounts of data 
form diverse source. The synergy between these technologies 
and AI has facilitated the development of more accurate and 
reliable predictive models, capable of providing comprehensive 
assessments of water quality status [9], [10]. Specifically, 
metrics such as the Water Quality Index (WQI) and Water 
Quality Classification (WQC) are commonly employed to 
aggregate multiple water parameters into a single, interpretable 
value, providing a holistic overview of water quality [11]. 
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This study is focused on developing an Artificial Neural 
Network (ANN) model to predict water quality in the Amoju 
Hydrographic Subbasin located in Cajamarca Peru. By 
leveraging various water quality indicators, the model aims to 
forecast the WQI and classify the water quality status, thereby 
contributing valuable insights for water resource management 
and pollution control. Through the application of advanced AI 
techniques, this research addresses the pressing need for 
efficient water quality prediction methods that ensure the 
provision of safe and clean water for diverse uses, while also 
mitigating the adverse effects of water contamination on public 
health and the environment [12], [13]. 

The structure of the paper is organized as follows: Section 
2 reviews the relevant literature on water quality prediction 
using various classifiers. Section 3 details the materials and 
methodologies employed, including data preparation, pre-
processing, splitting, distribution, feature correlation, and WQI 
computation. The experimental setup and the result analysis are 
discussed in Section 4. Finally, the paper is concluded with 
limitations and future scope in Section 5. 

II. LITERATURE REVIEW 

The literature on water quality prediction has undergone a 
considerable transformation, particularly with the increasing 
adoption of Artificial Neural Networks (ANNs) in 
environmental modeling. This paradigm shift is evident in the 
application of ANNs within hydrographic subbasins, such as 
the Amoju Subbasin in Cajamarca, Peru. The study titled “An 
Artificial Neural Network Model for Water Quality Prediction 
in the Amoju Hydrographic Subbasin, Cajamarca-Peru” 
contributes significantly to this evolving field by addressing the 
critical need for accurate predictive models that can inform 
environmental management and policy in the region. ANNs, 
inspired by the neural structures of the human brain, excel at 
capturing and modeling the intricate non-linear relationships 
prevalent in environmental datasets. These networks are 
particularly effective in dealing with the complex dynamics of 
hydrographic subbasins, such as the Amoju Subbasin, which 
holds significant ecological value and is vulnerable impacts of 
anthropogenic activities. 

Recent studies further underscore the potential of artificial 
intelligence (AI) in enhancing water quality prediction and 
monitoring. For instance, [14] and [15] developed AI models 
focusing on water quality index (WQI) prediction and water 
quality classification (WQC). The study in [14] utilized 
adaptive neuro-fuzzy inference system (ANFIS) algorithms for 
WQI prediction and feed-forward neural network (FFNN) for 
WQC, achieving high predictive accuracy. The study in [15] 
also demonstrated the efficacy of AI in water quality 
monitoring, affirming the robustness of these models in 
managing complex environmental data. The research in [16] 
reviewed the integration of AI and the Internet of Things (IoT) 
in water quality prediction, emphasizing AI's role in analyzing 
intricate systems and leveraging historical data to enhance 
prediction accuracy. Similarly, [17] explored several AI 
techniques, including multilayer perceptron neural networks 
(MLP-ANN), ensemble methods, gaussian process regression, 
support vector machine (SVM), and decision tree, all of which 

contributed to a comprehensive evaluation of water quality 
parameters. 

The impact of water quality on public health further 
emphasizes the necessity of accurate WQI modeling, a task 
that presents significant challenges within the water sector. The 
study in [18] introduced an innovative application of the 
ensemble Kalman filter integrated with ANNs to predict WQI 
using physicochemical parameters, showcasing the model's 
capability to handle noise in environmental data. Other 
researchers have explored different machine learning 
techniques for WQI prediction. The research in [19] employed 
k-nearest neighbors, boosting decision trees, SVMs, and 
multilayer perceptron ANNs in their models, while [20] 
compared deep learning-based models with other machine 
learning models such as random forests (RF) and extreme 
gradient boosting (XGBoost) for predicting groundwater 
quality. Their comparative study highlighted the superior 
performance of deep learning models in certain contexts. 

The prediction of dissolved oxygen concentration, a key 
indicator of river water quality, has also been enhanced 
through AI. The study in [21] utilized a deep learning 
approach, applying recurrent neural networks (RNNs) to 
predict this parameter with high precision. Moreover, [22] 
proposed a hybrid model combining ANNs, discrete wavelet 
transforms (DWT), and long short-term memory (LSTM) 
networks, further advancing the state-of-the-art in water quality 
prediction. 

In addition, [23] implemented a comprehensive architecture 
integrating machine learning models (RF, DT, LR, SVM, 
AdaBoost) with deep learning models (CNN, LSTM, GRU) for 
predicting both water quality and water consumption. This 
study underscores the potential of hybrid models in addressing 
multi-faceted environmental issues. The research in [24] 
further advanced this approach by integrating deep learning 
models with feature extraction technique, such as principal 
component analysis (PCA), linear discriminant analysis 
(LDA), and independent component analysis (ICA), to enhance 
water quality classification accuracy. 

In study [25], focused on the prediction of water quality 
using machine multiple learning techniques, including 
regression and classification models like SVMs, multiple linear 
regression (MLR), and Bayesian tree model (BTM). Their 
comprehensive five-step methodology, which included data 
pre-processing, feature correlation analysis, and model feature 
importance, resulted in a maximum prediction accuracy of 
99.83% with the MLR classifier. The study in [26] compared 
decision tree algorithms (DT) and Naïve Bayes classifiers for 
water quality prediction, with DT emerging as the most 
accurate model, achieving an accuracy value of 97.23%. 

Additionally, [27] proposed a machine learning-based 
system for predicting the WQI in the Illizi region by employing 
eight artificial intelligence algorithms. The results indicated 
that the Multivariate Linear Regression (MLR) model 
exhibited the highest accuracy among the models considered. 
In contrast, [28] explored 15 supervised Machine Learning 
(ML) algorithms to estimate the WQI, identifying gradient 
boosting and polynomial regression as the most efficient 
methods for WQI prediction. Further advancements in the field 
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include the work of [29], who developed a prediction method 
for WQI using feedforward artificial neural networks (ANNs) 
with 25 water quality parameters inputs. By integrating 
backward elimination and forward selective combination 
methods, the study achieved high R2 and minimal squared 
error (MSE). Similarly, [30] predicted the WQI using 16 water 
quality parameters and successfully applied ANN through a 
Bayesian regularization algorithm, demonstrating the 
robustness of this approach. Moreover, the study in [31] 
examined the comparative efficiency of multivariate linear 
regression (MLR) and ANN models for predicting water 
quality parameters, such as pH, temperature, total suspended 
solids (TSS), and total suspended matter (TSM), in estimating 
the chemical oxygen demand (COD) and biochemical oxygen 
demand (BOD). In another study, [32] designed a feed-
forward, fully-connected, three-layer perceptron neural 
network model to predict the WQI using 23 parameters, 
reinforcing the trend towards increasingly complex ANN 
architectures. Also, [33] took a different approach by 
proposing a two-layered ensemble model that integrates five 
commonly used methods, including partial least square, 
random forest, and Bayesian networks, into an ML model for 
forecasting beach water quality. The model stacking approach 
yielded the best predictions, demonstrating the advantages of 
ensemble methods in enhancing model robustness and 
accuracy. The study in [34] developed an ML-based 
classification system for the Chao Phraya River's water quality, 
integrating attribute realization (AR) and support vector 
machine (SVM) algorithms. The results indicated that linear 
regression (LR) was the most suitable function for river water 
data classification, offering a different perspective on the 
adaptability of ML techniques across diverse water bodies.  
The research in [35] also employed an ANN approach for 
calculating and simulating the WQI of the Akaki River, 
utilizing a neural network model trained on 12 inputs and one 
output. The optimal model architecture was obtained with eight 
hidden layers, achieved an accuracy of 0.93. Besides, [36] 
formulated four distinct ML techniques, including Back 
Propagation Neural Network (BPNN), Adaptive Neuro-Fuzzy 
Inference System (ANFIS), Multilinear Regression (MLR), 
and Support Vector Regressor (SVR) for forecasting the water 
quality index (WQI) across the Yamuna River. The study in 
[37] applied independent techniques like the M5P tree model, 
additive regression (AR), support vector machine (SVM), and 
random subspace (RSS) to predict WQI, identifying AR as the 
most optimal approach with favorable outcomes. 

The literature also explores hybrid models. The study in 
[38] developed a hybrid ML method combining random trees 
and bagging, testing four standalone and 12 hybrid data-mining 
algorithms for WQI forecasting in a humid climate. The study 
concluded that hybrid models could significantly improve 
prediction accuracy. In a similar vein, [39] optimized the 
performance of an adaptive neuro-fuzzy inferences system 
(ANFIS) for water quality metrics prediction using Genetic 
Algorithm (GA), Differential Evolution (DE), and Ant Colony 

Optimization (ACOR), further demonstrating the value of 
optimization algorithms with ML models. Consequently [40] 
enhanced a hybrid artificial neural network (HANN) model 
with a genetic algorithm (GA) for predicting water output in 
drinking water treatment plants in China. The HANN model 
has shown better ability and consistency in forecasting the total 
water output. The prediction shows that the HANN model has 
improved its performance from 0.71 to 0.93 R2 by increasing 
the training data provided. Likewise, the study in [41] 
introduced an ensemble ML model, Extra Tree Regression 
(ETR), for predicting monthly WQI values in Hong Kong. 
Achieving a high prediction accuracy with R2 = 0.98 and 
RMSE = 2.99. The study in [42] utilized Principal Component 
Regression (PCR) and Gradient Boosting Classifier (GBC) to 
predict WQI, demonstrating 95% prediction accuracy for PCR 
method and 100% classification accuracy for GBC. [43] 
evaluated the performance of 12 ML models, including 
boosting-based, decision tree-based, and ANN-based 
algorithms, for estimating the WQI of the La Boung River in 
Vietnam, with extreme gradient boosting (XGBoost) emerging 
as the best performer, achieving an R2 of 0.989 and RMSE of 
0.107. Finally, [44] used Random Forest (RF), Extreme 
Gradient Boosting (XGBoost), Gradient Boosting (GB), and 
Adaptive Boosting (Ada-Boost) model for predicting WQC. In 
contrast, K-nearest neighbor (KNN), decision tree (DT), 
support vector regressor (SVR), and multi-layer perceptron 
(MLP) were used as regression models for predicting WQI. 
The results showed that GB model produced the best results for 
predicting WQC, with an accuracy of 99.5% value, and the 
MLP regressor model in predicting WQI, with an accuracy of 
99.8% value. 

These studies collectively highlight the potential of AI, 
particularly machine learning and neural networks, in 
advancing water quality management. However, there is a 
notable gap in evaluating water quality classification based on 
metrics such as accuracy, precision, or F1 score. Moreover, 
many of these approaches are limited by their focus on either 
WQI prediction or WQC, rather than integrating both aspects. 
Our proposed methodology addresses these aspects by 
employing a lightweight model that not only enhances 
prediction accuracy but also integrates water quality 
classification with water demand prediction, paving the way 
for a more comprehensive approach to water resource 
management. Table I provides a comparative summary of the 
research works discussed. 

The literature further reveals the versatility of artificial 
neural networks (ANNs) in water quality prediction, 
demonstrating their adaptability to various geographical and 
hydrological contexts. The inclusion of diverse input 
parameters, including meteorological data to land use and 
physicochemical attributes-into ANN models has consistently 
improved the prediction accuracy, offering a more holistic 
understanding of the factors influencing water quality 
dynamics. 
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TABLE I.  COMPARATIVE SUMMARY OF THE DISCUSSED RESEARCH WORKS 

Reference Year Classifiers Achieved Accuracy 

[14] 2020 NARNET, LSTM, SVM, KNN, NB SVM 97.01% 

[15] 2021 KNN, FFNN, ANIFS WQI ANFIS 96.17% 

[24] 2021 Dimension reduction PCA, LDA, ICA, RNN, LSTM, SVM (variants) LSTM RNN with LDA, LSTM, RNN 99.72% 

[25] 2021 NN, RF, MLR, SVM, BT 99.83% MLR 

[26] 2021 DT, NB (variants), K-fold cross validation 97.22% DT 

[27] 2021 MLR, RF, RSS, AR, ANN, SVR, LWLR With all parameters: MLR 

[28] 2019 

Multiple linear regression, polynomial regression, RF, GBC, SVM, 

ridge regression, lasso regression, elastic net regression, MLP, GNB, 

LR, SGD, KNN, DT, bagging classifier 

Gradient Boosting and Polynomial Regression with MAE = 
1.964 and 2.727, respectively 

[34] 2021 Attribute-realization (AR) and Support Vector Machine (SVM) AR-SVM with 0.86-0.95 accuracy respectively 

[36] 2019 BPNN, ANFIS, SVR and MLR DC values vary in the range of 0.9202 to 0.9957 

[37] 2022 AR, M5P tree model, RSS and SVM 
AR with R2 = 0.9993, MAE = 0.5243, RSME = 0.6356, 
%RAE = 3.8449 and %RRSE = 3.9925 

[38] 2020 RF, M5P, RT and REPT 
RT with R2 = 0.941, RMSE = 2.71, MAE = 1.87, NSE = 

0.941, PBIAS = 0.500 

[41] 2021 ETR, SVR and DTR 
ETR model produced more accurate WQI predictions with 
R2 = 0.98 and RSME = 2.99 values 

[42] 2022 PCR and GBC methods PCR = 95% and GBC = 100% 

[43] 2022 
(Adaptive boosting, GBoost, HGBoost, LGBoost, XGBoost), (DT, ET, 

RF), (MLP, RBF, DFFNN, CNN) 
XGBoost (R2 = 0.989 and RMSE = 0.107) 

[44] 2023 K-nearest neighbor (KNN) regressor model, DT, SVR, MLP 
MLP regressor model outperformed the best accuracy with 
R2 = 99.8% 

 

III. MATERIALS AND METHODOLOGY 

Fig. 1 displays the proposed methodology for completing 
the research. 

A. Study Area 

The study was conducted in the Amoju River Subbasin, 
which is located within the Alto Marañon III Inter-basin in 
northern Peru. The subbasin covers an area of 354 km2, as 
depicted in Fig. 2. The Amoju River itself extends 
approximately 29 km, originating near the towns of San Jose 
de Alianza, Nuevo Jerusalen, and La Rinconada Lajeña. The 
river then flows into the Marañon River at the Pedregales 
hamlet in the Bellavista district, within Jaen province, 
Cajamarca department [45]. 

A Digital Elevation Model (DEM) from the National 
Aeronautics and Space Administration (NASA) [46] was 
employed to determine that the maximum elevation within the 
subbasin reaches 3222 meters above sea level, while the lowest 
point is situated at 408 meters above sea level. The region is 
characterized by steep slopes, ranging from 40º to 56º in the 
upper and middle sections, and from 0º to 25º in the lower 
section. These topographical features, as shown in Fig. 3, 
suggest that the area is suitable for agricultural activities and 
the establishment of urban centers. 

Moreover, this subbasin is a critical source of water supply 
for human consumption, serving as the primary provider for 
the cities of Jaen and Bellavista, as well as their associated 
agricultural valleys. The locations of the sampling stations are 
detailed in Table II. 

 
Fig. 1. Framework of the proposed methodology.  
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Fig. 2. Study area location map. 

 
Fig. 3. A Subbasin slope map. 

TABLE II.  SAMPLING STATION LOCATIONS 

Code Location Latitude Longitude 

P-01 Nuevo Jerusalén -5.70347 -78.93161 

P-02 La Rinconada Lajeña -5.68396 -78.92851 

P-03 San Antonio -5.67808 -78.91332 

P-04 La Cascarilla -5.67719 -78.88849 

P-05 Puente La Corona -5.71176 -78.83388 

P-06 Punte Pakamuros -5.70729 -78.80355 

P-07 Cruzpa Huasi -5.70682 -78.90707 

P-08 La Granadilla -5.72972 -78.91294 

P-09 La Virginia -5.73523 -78.90385 

P-10 La Victoria -5.72548 -78.89995 

P-11 Puente Tumbillán -5.67307 -78.81757 

P-12 
Qda. Tumbillán- Altura La 

Granja 
-5.6772 -78.78447 

P-13 Puente Bellavista Viejo -5.67135 -78.67758 

P-14 Puente Santa Cruz -5.66024 -78.68604 

P-15 Yanuyacu - Altura UNJ -5.67278 -78.7676 

The upper section of the basin is dominated by a Tropical 
Premontane Rainforest (bh-PT) with annual precipitation levels 
reaching up to 1968 mm. The middle section is characterized 
by a very humid Tropical Low Montane Forest (bmh-MBT). 
Agroforestry systems, particularly those cultivating Coffea 
arabica (coffee) in association with citrus trees, are prevalent in 
the upper subbasin. The lower subbasin is dominated by a 

Tropical Premontane Dry Forest (bs-PT), where extensive rice 
fields (Orysa sativa) are cultivated. 

B. Hydrogeological Settings 

The water chemistry and quality in the study area 
influenced by both the lithology and the duration of water-rock 
interaction [47]. To identify the aquifer units within the 
National Geological Map provided by the Geological, Mining, 
and Metallurgical Institute (INGEMMET) [48] was used. This 
data was processed using QGIS software to create a 
hydrogeological map, illustrating the characteristics of the 
lithological units, as shown in Fig. 4. 

 
Fig. 4. Hydrogeolocgical map of the subbasin. 

The lithological units within the subbasin display varied 
hydrogeological properties. Based on the hydrogeological map, 
these units were classified into aquifers and aquitards. Six 
distinct hydrogeological categories were identified within the 
aquifer units, while only one category was identified within the 
aquitards, as detailed in Table III. 

C. Dataset Collection 

Water samples were collected from 15 designated sampling 
points (Upper, Middle and Lower) within the Amoju 
Hydrographic Subbasin over a period from November 15th, 
2023 to July 20th, 2024. The geographic distribution of these 
sampling points across the subbasin is illustrated in Fig. 5. 
Samples were brought to the CEASA and CAE laboratory in 
an insulated cooler box containing ice packs to maintain a 
stable temperature during transit. Analytical procedures 
commenced within 48 hours of sample collection to ensure 
data integrity. 

The dataset for this study was sourced from strategic 
locations in Jaen-Cajamarca, focusing on five (05) 
physicochemical parameters measured in situ at each of fifteen 
(15) sampling sites. These parameters include pH, Electrical 
Conductivity (EC), Dissolved Oxygen (DO), total dissolved 
solids (TDS), and temperature (T°), all of which were 
measured using a recalibrated portable HANNA Multi-
parameter HI 9829 device.  Additionally, the dataset includes 
four (04) non-metallic inorganic parameters: alkalinity 
(𝐶𝑎𝐶𝑂3) , total hardness (TH), nitrates (𝑁𝑂3

1−) , and 

phosphates (𝑃𝑂4
3−). Table IV provides a detailed description 

of each attribute measured. 
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TABLE III.  A DESCRIPTION OF THE HYDROGEOLOGICAL CHARACTERISTICS OF THE SUBBASIN [48] 

Hydrogeological 

Unit 

Classification 

Hydrogeological 
Code Lithology Description Hydrogeological 

Aquifer 
Volcanic Fissured 

Aquifer 
AFV Andesites and Dacitas 

Local or discontinuous productive aquifers, or extensive aquifers, 

which are only moderately productive (medium permeability). This 

does not preclude the existence of other, more productive aquifers at 
greater depths. 

Aquifer 
Fissured 

Sedimentary Aquifer 
AFS 

Lutites, intercalated with 

limestones, marls 

Local or discontinuous productive aquifers, or extensive aquifers, 

which are only moderately productive (medium permeability). This 

does not preclude the existence of other, more productive aquifers at 
greater depths. 

Aquifer 
Fissured 
Sedimentary Aquifer 

AFS-c 
Conglomerates, shales and 
sandstones 

Local or discontinuous productive aquifers, or extensive aquifers, 

which are only moderately productive (medium permeability). This 
does not preclude the existence of other, more productive aquifers at 

greater depths. 

Aquifer 
Unconsolidated 
Porous Aquifer High 

APNCa-al 
Alternation of shales and 
sands 

Aquifers are extensive and highly productive, exhibiting high 
permeability. 

Aquifer 
Unconsolidated 
Porous Aquifer High 

APNCa 

Alluvial, moraines, 

glaciofluvial, lacustrine and 

travertine 

Aquifers are extensive and highly productive, exhibiting high 
permeability. 

Aquifer 
Unconsolidated 

Porous Aquifer High 
APNCa-ar 

Sands, sandstones, gravels 

and conglomerates 

Aquifers are extensive and highly productive, exhibiting high 

permeability. 

Aquifer 

Unconsolidated 

Porous Aquifer 

Medium 

APNCm 
Conglomerates, shales, 
mudstones 

Local or discontinuous productive aquifers, or extensive aquifers, 

which are only moderately productive (medium permeability). This 
does not preclude the existence of other, more productive aquifers at 

greater depths. 

Aquitard Intrusive Aquitard ATI 
Acid and intermediate 
intrusive rocks 

Formations without aquifers (with a very low permeability) can be 
considered. 

TABLE IV.  FEATURE DESCRIPTION OF DATASET 

Attributes Name Description 

Physicochemical parameters 

pH Water acidity and basicity. 

EC Water's ability to conduct electricity in the presence of ions. 

DO Concentration of dissolved oxygen in water. 

TDS Concentration of dissolved minerals, salts, metals, cations, or anions in water. 

T° Water temperature at the time of testing. 

Non-metallic inorganic parameters 

𝐶𝑎𝐶𝑂3 Water’s ability to neutralize acids or resist changes that cause acidity, maintaining pH levels. 

TH Concentration of dissolved calcium and magnesium in water. 

𝑁𝑂3
1− Concentration of nitrates, representing the most common form of nitrogen in water. 

𝑃𝑂4
3− Concentration of phosphates, indicate of phosphorous and oxygen compounds in water. 

 

 

Fig. 5. Groundwater sampling sites. 

D. Dataset Preprocessing and WQI Calculation 

Data preprocessing is a critical step in ensuring the integrity 
and reliability of subsequent analysis. In this study, 
preprocessing involved the handling of missing data, 
normalization, and outlier removal to enhance the quality of 
the dataset. The Water Quality Index (WQI) was calculated to 
provide a comprehensive assessment of water quality across 
various sampling sites within the study area. 

Water Quality Index (WQI): Methodology and Calculation 

The Water Quality Index (WQI) is a widely recognized 
metric that synthesizes multiple water quality parameters into a 
single, overall score, reflecting the water's suitability for many 
uses [14]. The WQI in this study using the formula showing in 
Eq. (1). 
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𝑊𝑄𝐼 =
∑ 𝑞𝑖×𝑤𝑖
𝑁
𝑖=1

∑ 𝑤𝑖
𝑁
𝑖

 

Where N represents the number of parameters analyzed, qi 

denotes the quality rating scale for each parameter i, computed 
in Eq. (2), and wi denotes the unit weight of each parameter 
determined by Eq. (3). 

𝑞𝑖 = 100 × (
𝑉𝑖−𝑉𝑖𝑑

𝑆𝑖−𝑉𝑖𝑑
) 

Where qi is the parameter's actual value in the water 
samples tested, Vi represents the estimated value of the 
parameter i, Vid represents the ideal value under pure water 
conditions, and Si represents the standard permissible limit for 
the parameter i as shown in Table V. The unit weight wi is the 
parameter's recommended standard value as depicted in Table 
VI. 

𝑤𝑖 =
𝐾

𝑆𝑖
 

Where K denotes the proportionality constant, which is 
calculated using Eq. (4): 

𝐾 =
1

∑ 𝑆𝑖
𝑁
𝑖=1

 

The permissible limits and corresponding unit weights for 
the parameters are detailed in Table V and Table VI, 
respectively. 

TABLE V.  PERMISSIBLE LIMITS OF THE PARAMETERS USED IN 

CALCULATING THE WQI [49] 

Parameter Unit Permissible Limits 

pH - 8.5 

Conductivity  μS/cm 1000 

Dissolved Oxygen mg/L 10 

Total Dissolved Solids mg/L 1000 

Temperature °C 25 

Alkalinity mg/L 200 

Hardness mg/L 200 

Nitrate mg/L 45 

Phosphate mg/L 0.1 

TABLE VI.  PARAMETERS UNIT WEIGHTS 

Parameter Unit Weight (wi) 

pH 0.00004727 

Conductivity 0.00000040 

Dissolved Oxygen 0.00004018 

Total Dissolved Solids 0.00000040 

Temperature 0.00001607 

Alkalinity 0.00000201 

Hardness 0.00000201 

Nitrate 0.00000893 

Phosphate 0.00401830 

The WQI is a versatile metric that can be employed for the 
calculation of numerous parameters, including those selected 
for analysis. The WQI depends on the variable data. The 
proposed system is capable of testing any parameters in 
conjunction with any water quality data. 

IV. RESULTS AND DISCUSSION 

Table VII provides descriptive statistics for the dataset 
attributes derived from 75 groundwater samples. These 
statistics, including count, mean, standard deviation, minimum, 
maximum, and quartiles, offer a comprehensive overview of 
the dataset's distribution and underlying properties. The mean 
pH value of 7.79 with a standard deviation of 0.46 suggests a 
slightly basic water quality, consistent with findings from 
similar studies in hydrographic subbasins [50], [51]. 
Conductivity averages at 220.96 µS/cm, reflecting significant 
variability in ion concentration among the samples. Dissolved 
Oxygen (DO) levels, averaging 7.46 mg/L, are critical for 
sustaining aquatic life, aligning with established benchmarks 
[52]. Total Dissolved Solids (TDS) display considerable 
variability with a mean of 164.61 mg/L, indicative of diverse 
mineral content in the samples. The mean temperature (Tº) of 
21.52 ºC influences the solubility and reaction rates of various 
chemical constituents, further impacting water quality 
parameters [53]. 

Alkalinity and hardness, with means of 114.84 mg/L and 
136.57 mg/L, respectively, reflect the water's buffering 
capacity and calcium/magnesium content, both of which are 
crucial for assessing the chemical stability of the water [25]. 
The mean concentrations of nitrate (𝑁𝑂3

1− ) and phosphate 

( 𝑃𝑂4
3− ) are 0.021 mg/L and 1.52 mg/L, respectively, 

highlighting the presence of nutrient pollution, a significant 
concern in water quality management [50]. The Water Quality 
Index (WQI) has a mean value of 1.88, indicative of the overall 
quality of the water samples analyzed. 

The correlation matrix presented in Fig. 6 is crucial for 
understanding the interrelationships among the water quality 
parameters. It enables the identification of functional 
dependencies, where strong correlations (r > 0.7) suggest 
significant associations, while weaker correlations (r < 0.4) 
imply more complex or indirect relationships. The WQI, the 
primary focus of this study, exhibits a strong positive 
correlation with phosphate levels (r = 0.99), underlining the 
significant impact of nutrient concentrations on overall water 
quality. In contrast, WQI shows weak correlations with 
parameters such as EC, TDS, CaCO3, and 𝑁𝑂3

1−, suggesting 
that these variables, while influential, do not directly drive the 
WQI in this context. 

The detailed examination of the correlations reveals that pH 
is moderately correlated with total hardness (TH), CaCO3, and 
temperature (T°), with respective correlation coefficients of 
0.59, 0.54, and 0.6. These findings are consistent with previous 
studies that have observed similar patterns in groundwater 
quality assessments [27]. Conductivity (EC) displays a strong 
positive correlation with T° (r = 0.73), CaCO3 (r = 0.94), and 
TH (r = 0.88), indicating that these parameters are 
interdependent, likely due to their shared origin in mineral 
dissolution processes [14]. 
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TABLE VII.  DESCRIPTIVE STATISTICS OF THE FEATURES 

Parameter Count Mean Std Dev Min Q1 Median Q3 Max 

pH 75.00 7.790020 0.462099 6.75 7.4960 7.9340 8.1810 8.5510 

Conductivity (µS/cm) 75.00 220.962667 197.740533 29.80 57.70 137.20 338.50 722.00 

Dissolved Oxygen (mg/L) 75.00 7.4616 0.6773318 4.50 7.2250 7.60 7.8150 10.12 

Total Dissolved Solids (mg/L) 75.00 164.605333 207.768171 6.00 38.65 95.90 216.50 1400.00 

Temperature (ºC) 75.00 21.52 5.052053 15.10 16.80 20.60 20.65 32.80 

Alkalinity (mg/L) 75.00 114.84 86.908159 20.00 40.00 82.00 191.00 354.00 

Hardness (mg/L) 75.00 136.5720 109.56334 34.20 39.90 102.60 225.15 427.50 

Nitrate (mg/L) 75.00 0.021366 0.030259 0.000354 0.006854 0.010302 0.0240 0.218747 

Phosphate (mg/L) 75.00 1.517073 1.220099 0.3215 0.862250 1.12130 1.6790 7.850 

WQI 75.00 1.878745 1.183223 0.582148 1.238313 1.614984 2.089291 7.89930 
 

 
Fig. 6. Heatmap visualization of the future correlations. 

Dissolved Oxygen (DO) exhibits a negative correlation 
with several parameters, notably EC (r = -0.47) and CaCO3 (r = 
-0.49), which may suggest that higher ionic content and 
carbonate hardness could suppress oxygen solubility, a 
phenomenon that has been documented in other hydrographic 
contexts [50]. The analysis of TDS reveals moderate to strong 
positive correlations with pH (r = 0.3), EC (r = 0.49), and 
temperature (r = 0.38), reflecting the influence of these factors 
on dissolved solid concentrations [51]. The temperature itself 
strongly correlates with EC (r = 0.73) and CaCO3 (r = 0.7), 
further reinforcing the interdependence of these water quality 
metrics. 

The scatter plot matrix shown in Fig. 8 and the heatmap 
visualization provide additional insights into these 
relationships, offering a visual representation of the strength 
and direction of correlations. These graphical tools are 
essential for identifying patterns and anomalies in the dataset, 
facilitating a more nuanced interpretation of the results. The 
distribution of water compounds, as depicted in Fig. 7, 
confirms the trends observed in the correlation matrix, support, 
supporting the conclusion that physicochemical parameters, 
particularly nutrient concentrations, are critical determinants of 
water quality in the Amoju Hydrographic Subbasin. 

The application of an Artificial Neural Network (ANN) 
model to predict the Water Quality Index (WQI) yielded robust 
results, demonstrating strong predictive performance across 
several key metrics, as shown in Table VIII. The model's Mean 
Absolute Error (MAE) of 0.2478 indicates a high degree of 
accuracy, with predicted WQI values deviating minimally from 
actual measurements. This level of accuracy is consistent with 
previous studies employing machine learning techniques for 
water quality prediction, further validating the model's 
effectiveness [44]. 

 
Fig. 7. Distribution of water compounds from the dataset. 
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Fig. 8. Scatter plot matrix of the feature. 

TABLE VIII.  RESULTS BY ANN FOR WQI PREDICTION 

Parameters ANN 

MAE 0.2478 

MSE 0.0962 

RMSE 0.3102 

R2 0.9518 

The model's Mean Squared Error (MSE) of 0.0962 and 
Root Mean Squared Error (RMSE), calculated as 0.3102 
underscore the model's ability to minimize prediction errors, 
with the RMSE providing a direct measure of prediction in the 
same as the WQI. The model's predictive strength is further 
validated by the R-squared (R2) value of 0.9518. The R2 score 
suggests that approximately 95.18% of the variance in WQI 
can be explained by the model, highlighting its robustness and 
reliability as a predictive tool [23]. 

 
Fig. 9. ANN loss graph per epoch. 

The convergence of the training and validation loss curves 
over 100 epochs, as illustrated in Fig. 9, suggest that the model 
is well-calibrated, with minimal risk of overfitting. This further 
corroborated by the “Actual vs. Predicted WQI” scatter plot 
shown in Fig. 10, which provides a visual comparison between 
the actual WQI values and those predicted by the model. The 
points on the plot are closely aligned along the red dashed line, 
which represents a perfect prediction. This close alignment 
reinforces the model's accuracy and the minimal prediction 
error. The plot confirms that the ANN model produces reliable 
predictions with a high degree of accuracy. 

 
Fig. 10. Actual vs. predicted WQI graph. 

V. CONCLUSION AND FUTURE WORK 

This section presents a summary of the research 
conclusions and offers recommendations for future directions, 
highlighting key findings, limitations, implications, and 
suggests potential areas for further investigation. 

A. Conclusion 

Water is an essential resource for life on Earth, and 
ensuring its quality is fundamental to maintaining human 
health and environmental sustainability. The assessment of 
water quality, traditionally carried out through standard 
laboratory methods, has significantly advanced with the 
integration of machine learning (ML) techniques. These ML-
based approaches offer a more robust and accurate means of 
predicting water quality indices by leveraging a wide array of 
water quality parameters. 

This study has highlighted the relationships between 
various   physicochemical parameters and the Water Quality 
Index (WQI) through a comprehensive analysis using Pearson's 
correlation matrix and Artificial Neural Network (ANN) 
model. The following key conclusions are drawn: 

1) Correlation insights: 

a) Very weak correlation: The WQI exhibits very weak 

correlations with parameters such as Electrical Conductivity 

(EC), Total Dissolved Solids (TDS), calcium carbonate 

(CaCO3), and nitrate (NO3
1−). These weak correlations suggest 

that these parameters, while part of the overall water quality 
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assessment, have limited direct influence on the WQI in this 

specific study context. 

b) Strong correlation: A strong positive correlation is 

observed between WQI and phosphate (𝑃𝑂4
3−), indicating that 

phosphate levels are critical determinant of water quality in 

the studied hydrographic subbasin. 

c) Moderate correlations: The pH shows moderate 

correlation with Total Hardness (TH), CaCO3, and 

Temperature (T°), implying a notable, though not dominant, 

role of these parameters in influencing the water quality. EC 

also displays a moderate correlation with pH, TDS, and 𝑁𝑂3
1−. 

d) Negative correlation: EC is negatively correlated 

with Dissolved Oxygen (DO) and phosphate (𝑃𝑂4
3−) , 

suggesting inverse relationships that may have implications 

for aquatic life and overall water chemistry. 

2) Model performance: The ANN model developed for 

predicting the WQI demonstrated high predictive accuracy, 

validated by a low Mean Absolute Error (MAE), Mean 

Squared Error (MSE), and a high R-squared (R2) value. These 

metrics confirm the model's ability to reliably predict water 

quality, making it a valuable tool for environmental 

monitoring and management. 

3) Comparative analysis: The findings align with existing 

literature, reinforcing the importance of certain key 

parameters, particularly phosphate, in water quality 

assessments. The study not only corroborates the conclusions 

of previous research but also expands upon them by providing 

a nuanced understanding of parameter interrelationships 

within this specific geographical and environmental context. 

B. Future Work 

While the current study has provided significant insights 
into water quality prediction using machine learning, several 
avenues for future research remain: 

1) Incorporation of additional parameters: Future studies 

should focus on incorporating additional chemical and 

biological parameters, such as heavy metals and microbial 

indicators, which might provide a more comprehensive water 

quality assessment. 

2) Longitudinal data analysis: Extending the temporal 

scope of data collection over longer periods could allow for 

the examination of seasonal and climate variations in water 

quality, thereby enhancing the robustness of the predictive 

model. 

3) Enhanced model architectures: Further refinement of 

the ANN model, or the application of more advanced machine 

learning techniques such as ensemble methods, deep learning, 

or hybrid models, could potentially improve predictive 

performance and uncover more complex relationships between 

parameters. 

4) Geoespatial analysis: Integrating geospatial analysis 

tools with machine learning could provide spatially explicit 

predictions of water quality, which would be invaluable for 

regional water management and policy-making. 

5) Real-time monitoring and prediction: Developing real-

time monitoring systems, coupled with AI-driven predictive 

models, could facilitate the timely detection of water quality 

anomalies, enabling swift remedial actions and thereby 

safeguarding public health. 

By addressing these areas in future research, the predictive 
capabilities and practical applications of machine learning in 
water quality management can be significantly advanced, 
contributing to more effective and sustainable environmental 
stewardship. 
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