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Abstract—This paper introduces a fuzzy decision support 

system (FDSS) based on a graph neural network (GNN) for 

anomaly detection and intelligent security. The primary aim is to 

develop a robust system capable of accurately identifying 

anomalies and providing timely incident response services. GNNs 

are utilized to capture the complex relationships and features 

between nodes in graph data, learning the embedded 

representation of each node through information transfer and 

aggregation mechanisms, which encapsulate the structural 

information of the graph. The FDSS leverages these features to 

construct a fuzzy rule base and perform fuzzy inference, 

generating decision suggestions that enhance the system's 

adaptability and robustness in dealing with uncertain data. The 

challenges addressed include the need for efficient anomaly 

detection in large-scale surveillance networks, the requirement for 

fast response times during emergencies, and the necessity for 

scalable and adaptable systems. Experimental results demonstrate 

that the GNN-based FDSS surpasses other methods in terms of 

anomaly detection accuracy, incident response service efficiency, 

system processing capacity, and model generalization ability. 

Compared to traditional statistical methods, machine learning 

models, and deep learning models, the proposed system maintains 

high precision and recall rates, processes data more efficiently, 

and adapts well to new datasets. 

Keywords—GNN; fuzzy decision support system; intelligent 

security; anomaly detection; incident response service 

I. INTRODUCTION 

In the information age of the 21st century, social public 
security has become one of the core elements of national 
governance and urban development. With the acceleration of 
urbanization process, intelligent security system as an 
important technical means to maintain social stability and 
order, its intelligent, automatic level of improvement is 
particularly critical. Traditional security systems rely mainly on 
manual monitoring and simple video analysis, which is not only 
time-consuming, but also difficult to effectively respond to 
large-scale and complex scenes. In recent years, with the rapid 
development of artificial intelligence technology, especially the 
rise of deep learning and graph neural networks (GNN), a new 
technical path has been provided for the intelligent upgrading 
of intelligent security systems [1]. 

As shown in Fig. 1, the intelligent security system is a 
comprehensive security solution integrating modern 
technologies such as artificial intelligence, Internet of Things 

and advanced image recognition technology. It can not only 
monitor and warn of potential threats in real-time, but also 
automatically analyze behaviors, identify individuals, and even 
predict security events through cameras, sensors, access control 
systems and other devices, with powerful data analysis and 
management platforms. From home to enterprise and public 
facilities, intelligent security provides a series of functions 
including video surveillance, intrusion alarm and access 
control, which significantly improves the efficiency and 
accuracy of security prevention, while reducing manpower 
dependence and realizing intelligent management and rapid 
response. 

Anomaly detection, as one of the core functions of 
intelligent security, aims to identify and warn against abnormal 
behaviors or potential threats in real-time, such as intrusion, 
violence and so on. However, anomaly detection algorithms are 
often characterized by diversity, concealment and strong 
environmental dependence, which require high accuracy and 
robustness of anomaly detection algorithms. In addition, once 
an abnormality is found, how to quickly and accurately start the 
Incident Response Service mechanism to prevent the situation 
from deteriorating is also a key problem that the intelligent 
security system must solve [2]. 
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Fig. 1. Framework diagram of intelligent security system. 
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In the field of intelligent security, significant progress has 
been made in the research of anomaly detection technology. 
Traditional statistical methods and machine learning models 
such as support vector machines and random forests are widely 
used, but these methods have obvious limitations when dealing 
with high-dimensional and unstructured data. In recent years, 
deep learning-based methods, especially convolutional neural 
networks (CNN) and recurrent neural networks (RNN), have 
demonstrated superior performance in image and video 
anomaly detection. However, these methods often ignore 
complex relationships between data, especially in large-scale 
surveillance networks, which are critical to accurately 
understanding the global situation [3]. 

This paper aims to fill the gaps mentioned above and 
proposes a fuzzy decision support system (FDSS) based on a 
graph neural network for anomaly detection and Incident 
Response Service in intelligent security. Specific research 
contents include: (1) According to the characteristics of 
intelligent security data, a graph neural network model suitable 
for large-scale surveillance networks is designed to extract 
space-time features and relationship features effectively. (2) 
Constructing a fuzzy rule base based on GNN output, using 
fuzzy logic to deal with uncertainty in monitoring data, 
improving robustness and adaptability of decision-making. (3) 
Design a set of Incident Response Service strategies linked with 
abnormal detection results to ensure a timely and effective start 
of the plan and reduce risks. (4) The performance of the 
proposed system in terms of anomaly detection accuracy, 
response time and resource consumption is verified by real data 
sets, and compared with existing methods [4]. 

This paper aims to fill the gaps mentioned above and 
proposes a fuzzy decision support system (FDSS) based on a 
graph neural network for anomaly detection and Incident 
Response Service in intelligent security. Specific research 
contents include the following. First, according to the 
characteristics of intelligent security data, a graph neural 
network model suitable for large-scale surveillance networks is 
designed to effectively extract spatiotemporal and relational 
features. Second, a fuzzy rule base is constructed based on 
GNN output, utilizing fuzzy logic to address uncertainty in 
monitoring data, thereby enhancing the robustness and 
adaptability of decision-making. Third, a set of Incident 
Response Service strategies linked with anomaly detection 
results is designed to ensure timely and effective initiation of 
plans and reduce risks. Finally, the performance of the proposed 
system in terms of anomaly detection accuracy, response time, 
and resource consumption is verified using real datasets and 
compared with existing methods. 

In the remainder of this paper, we first describe the 
experimental environment and data set used in our study in 
Section II. We then detail the experimental design and 
methodology in Section III, outlining the steps involved in data 
preprocessing, model construction, training, and optimization. It 
discusses the specific data preprocessing steps taken to ensure 
the quality and efficiency of model training. The model training 
and optimization processes are elaborated in Section IV, 
including the strategies employed for learning rate adjustment 

and preventing overfitting. In Section V, we present the 
experimental results, comparing the performance of our GNN-
based FDSS with other methods in terms of anomaly detection, 
incident response service efficiency, system processing ability, 
and model generalization. Finally, Section VI concludes the 
paper by summarizing the key findings and suggesting 
directions for future research. 

II. RELATED WORK 

A. Neural Networks 

At the forefront of intelligent security, which is related to 
public safety and urban management, Graph Neural Networks 
(GNN) are gradually showing their unique value and 
transformation potential. GNN not only revolutionizes the 
processing of multi-source information such as surveillance 
video and sensor data, but also promotes the depth and breadth 
of environmental understanding of security systems through its 
ability to operate directly on complex network structure data 
[5]. 

Recent research and application cases reveal how GNN 
opens up new possibilities in the field of intelligent security. On 
the one hand, GNN can effectively extract and integrate 
spatiotemporal features in video surveillance, and significantly 
enhance the accuracy and robustness of abnormal behavior 
recognition by learning complex relationship patterns between 
nodes, such as pedestrian behavior interaction and vehicle flow 
trends [6]. On the other hand, by constructing scene graphs and 
applying GNN, researchers successfully utilize spatial layout 
and dynamic interaction information between objects to 
improve the detection accuracy of abnormal events and 
maintain high performance even under complex and 
changeable environmental conditions [7]. GNN is also used to 
optimize resource allocation and event prediction for large-
scale surveillance networks. By learning the correlation 
between monitoring points, GNN assists decision support 
systems in dynamically adjusting monitoring resources to 
ensure dense coverage of critical areas while reducing 
unnecessary waste of resources [8]. This methodological 
innovation not only strengthens the active defense capability of 
the security system, but also provides a more refined solution 
for smart city management. 

It is worth noting that GNN fusion with traditional methods 
has also become a research hotspot, such as combining 
convolutional neural networks (CNN) and recurrent neural 
networks (RNN) to further improve the learning ability of 
spatiotemporal features, or integrating with fuzzy logic, 
reinforcement learning and other technologies to deal with 
more complex decision problems and dynamic response 
strategies [9]. 

Despite this, GNN applications in intelligent security are 
still in a rapid development stage, facing many challenges, such 
as efficient processing of large-scale graph data, interpretability 
of models, and generalization of cross-domain applications. 
Future research needs to continue to explore algorithm 
optimization, system integration, and deep integration with 
actual application scenarios to give full play to GNN's potential 
in intelligent security. 
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B. The Role of Fuzzy Decision Support System (FDSS) in 

Uncertainty Processing 

Fuzzy Decision Support System (FDSS) plays an 
indispensable role in dealing with the uncertainty challenges 
inherent in intelligent security, and its influence is increasing 
day by day. FDSS's core strength lies in its ability to navigate 
situations that are ambiguous and difficult to quantify precisely, 
which is a common problem in the field of intelligent security, 
especially in the task of identifying abnormal behavior. By 
introducing fuzzy logic, FDSS can provide a flexible and 
powerful framework to adapt to and resolve complex and 
changeable security environments. 

Marking an important milestone, they creatively integrated 
fuzzy logic with video surveillance systems to develop a system 
that efficiently identified fuzzy behavior patterns at the edges. 
This achievement significantly improves the response speed 
and recognition accuracy of the system to abnormal activities 
in complex scenarios, paving the way for fuzzy logic in the field 
of intelligent security applications [10]. 

By constructing and optimizing the fuzzy rule base 
carefully, they not only accelerate the decision-making process 
of Incident Response Service, but also greatly enhance the 
flexibility and adaptability of the decision-making mechanism 
[11]. This research proves that FDSS can make a reasonable 
judgment quickly according to the fuzzy rules set in advance 
when facing an emergency, effectively guide the 
implementation of emergency measures, reduce the decision-
making delay, and fully reflect the broad prospects of fuzzy 
logic in improving the emergency response capability of the 
intelligent security system. FDSS has also demonstrated unique 
value in promoting transparency and interpretability in 
decision-making processes. It allows decision-makers to 
understand how the system handles uncertainty according to 
fuzzy rules, and can provide a reasonable decision-making 
basis even in the case of incomplete or conflicting information. 
In addition, FDSS enhances the comprehensiveness and 
reliability of decisions by integrating fuzzy information from 
different sources, such as multimodal sensor data, which is 
critical to building a robust intelligent security ecosystem. 

C. Latest Development of Anomaly Detection and Incident 

Response Service Technology 

In the field of intelligent security, the latest advances in 
anomaly detection and Incident Response Service technology 
reveal a profound transformation from traditional methods to 
intelligence and automation, especially under the catalysis of 
deep learning, which is undergoing an unprecedented 
innovation. 

Anomaly detection technology in intelligent security 
systems has gradually moved from traditional statistical 
methods that rely on manual design features to automatic 
feature learning based on machine learning, and finally jumped 
to a new height of deep learning. Deep learning techniques, 
especially the introduction of convolutional neural networks 
(CNNs) and recurrent neural networks (RNNs), have 
revolutionized the identification of abnormal behavior in video 
surveillance. CNN, with its powerful ability in image 
recognition, can efficiently extract key visual features from 
video frames, while RNN captures dynamic behavior patterns 

in video sequences through its time series analysis ability. 
Together, the accuracy and efficiency of anomaly detection are 
significantly improved. Although deep learning has made 
remarkable achievements in anomaly detection, it still faces 
challenges in the face of increasingly complex and changeable 
monitoring environment, especially the processing of high-
dimensional spatiotemporal data and the understanding of 
complex scene relationships. This requires higher-level model 
architectures such as graph neural networks (GNNs) and the 
integration of spatiotemporal attention mechanisms to better 
capture and understand the interactions between nodes and 
temporal dynamics in surveillance networks [12]. 

In terms of Incident Response Service, the focus has shifted 
from pure after-action to predictive maintenance and 
preparedness. Modern intelligent security systems aim to 
minimize damage by integrating predictive models, analyzing 
anomaly detection results in real time, and quickly formulating 
and activating the most appropriate response strategy [13]. This 
includes, but is not limited to, using machine learning 
algorithms to predict the likelihood and severity of abnormal 
events, dynamically adjusting response levels in conjunction 
with methods such as fuzzy logic or decision trees, and 
remotely scheduling resources through IoT technology for 
immediate intervention. 

While these studies have made important progress in 
individual aspects of smart security, several key challenges and 
research gaps remain. Firstly, how to effectively integrate 
GNN's strong relationship learning ability and fuzzy logic's 
uncertainty processing advantage to construct an integrated 
system that can accurately identify anomalies and flexibly 
respond is an unexplored field. Second, existing methods tend 
to focus on specific types of anomaly detection and lack 
solutions that are widely applicable in complex and variable 
environments. In addition, system performance evaluation, 
especially resource consumption and response efficiency in 
real-world scenarios, also requires more attention. 

To sum up, this study intends to design fuzzy decision 
support system based on GNN to make up for the shortcomings 
of anomaly detection and Incident Response Service in the 
current intelligent security field, and promote the development 
of intelligent security technology to a higher level by 
integrating spatiotemporal feature learning, fuzzy logic 
decision and efficient Incident Response Service mechanism 
[14]. 

III. RELEVANT THEORETICAL BASIS 

A. Graph Neural Network (GNN) Basics 

Graph Neural Networks (GNNs) are advanced deep 
learning models designed to process graph data and capture 
complex structural information and relationship features 
between nodes in graphs. The core idea of GNN is to learn the 
embedded representations of each node through iterative 
propagation and aggregation of node features, which can 
contain the location information, neighborhood features and 
structural context of the node in the graph. 

GAT is a computational model that exists in software 
implementations for working with graph data structures, and as 
such it is a virtual algorithm in computer science. It is not a 
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physical entity, but a model of an algorithm implemented in a 
programming language and run on a computer. 

The input to the GNN model is a graph G=(V,E), where V 
is the set of nodes and E is the set of edges. Each node is usually 
accompanied by a feature vector representing the initial feature 
information of the node. Edges can also carry eigenvectors that 
characterize relationships between nodes. The goal of GNN is 
to learn a mapping function f that maps nodes to a new feature 
space containing information about the graph structure. Where 
d and are the dimensions of the node and edge features, 
respectively, and are the dimensions of the output embedding 
[15]. 

GNN's working principle can be summarized as two core 
steps: information transfer and aggregation. Node 
characteristics are updated step by step through multi-layer 
iteration. In each iteration, each node generates a message 
vector according to its own characteristics and the 
characteristics of its neighbors through a message transfer 
function. This process can be expressed as: where is the 
message received by node v at the lth layer, is the neighbor node 
set of node v, and is the characteristic representation of node v 
at the previous layer. The received messages need to be 
aggregated to generate a new feature representation of the node. 
Commonly used aggregation functions are summation, 
average, maximum, etc. This process is described as in study 
[16]. 

In order to learn deeper graph structure features, GNN 
usually designs multilayer structures. With each additional 
layer, the process of information propagation and aggregation 
repeats over a wider neighborhood, allowing the model to 
capture structural information over greater distances. To 
introduce nonlinearity, nonlinear activation functions such as 
ReLU are often used after aggregation to enhance the 
expressiveness of the model. 

The flexibility of GNN framework is reflected in the choice 
of message passing and aggregation functions, and different 
designs can cope with different types of graph data and task 
requirements. For example, Graph Convolutional Network 
(GCN) uses graph convolution as an aggregation function, and 
Graph Attention Network (GAT) introduces an attention 
mechanism to dynamically adjust the contribution weights of 
neighbor nodes. 

To sum up, GNN gradually extracts high-level feature 
representations of nodes while retaining graph structure 
information through carefully designed information 
dissemination and aggregation mechanisms, providing a 
powerful tool for machine learning tasks on graph data [17]. 

B. Fuzzy Decision Support System (FDSS) 

Fuzzy Decision Support System (FDSS) is a kind of 
decision support system based on fuzzy set theory, which can 
deal with fuzzy or uncertain problems. Fuzzy sets allow an 
element to have a real membership between 0 and 1, unlike 
traditional sets where elements either belong completely 
(membership 1) or do not belong at all (membership 0). Let the 
universe U be a nonempty set, and the fuzzy set A defined on 
the universe U can be described by membership functions of 
fuzzy sets, denoted by. For any element x in the domain of 

discourse, denotes the degree to which x belongs to fuzzy set 
A. The membership function quantifies the degree of 
membership of element x to fuzzy set A, and the closer its value 
is to 1, the higher the degree of belonging of x to A, and the 
closer it is to 0, the lower the degree of belonging [18]. 

These operations preserve the properties of fuzzy sets, i.e., 
the membership of elements to the set is continuous and can 
take any value between 0 and 1. In fuzzy decision support 
systems, fuzzy rules are often used to express decision logic. 
The general form of fuzzy rule is "if condition, then 
conclusion", where condition and conclusion are expressions of 
fuzzy set. 

For example, a fuzzy rule might be written as follows: 

"If the input is 'very hot'(high membership), the output is 
'turn on the power air-conditioning'(also high membership)." 

Fuzzy reasoning is the core part of fuzzy decision support 
system, Mamdani model or Takagi-Sugeno-Kang (TSK) model 
is usually used. Mamdani model transforms input fuzzy 
information into output fuzzy decision through fuzzification, 
inference, clipping and defuzzification. The TSK model 
combines fuzzy logic and multivariate regression analysis, 
using linear or nonlinear functions to map directly from input 
fuzzy sets to output real values. 

Fuzzy decision support systems use these concepts and 
operations to deal with fuzzy or uncertain decision problems in 
the real world, such as expert systems, pattern recognition, 
control system design, etc. [19]. 

C. Anomaly Detection Theory 

Anomaly detection in intelligent security system is the key 
technology to maintain public safety. It detects and warns 
abnormal behavior or event in time by analyzing video 
surveillance and sensor data, and then triggers Incident 
Response Service mechanism. Anomaly detection techniques 
can be divided into three categories: statistical methods, 
machine learning methods and deep learning methods. In the 
field of smart security, these methods are widely used to 
identify unusual patterns of activity. Statistical methods define 
boundaries of normal behavior based on statistical properties of 
the data, beyond which exceptions are considered. For example, 
a detection method based on Z-score. Where X is the observed 
value, is the mean value, and is the standard deviation. When| 
Z| is greater than a certain threshold, it is considered abnormal. 
This method is simple and intuitive, but it is weak when dealing 
with high-dimensional data and complex patterns. Support 
Vector Machines (SVM) maximize the spacing of normal data 
in anomaly detection by constructing a boundary, such as One-
Class SVM [1].Where w is the normal vector of the 
classification hyperplane and is the slack variable that controls 

the proportion of outliers. i This method can deal with 

nonlinear problems well, but the cost of parameter selection and 
training is high. The specific workflow is shown in Fig. 2 [20, 
21]. 

AutoEncoder (AE) and generative adversarial networks 
(GAN), identifies anomalies by learning representations of data 
[2]. 
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Fig. 2. Workflow. 

Intelligent security system integrates a variety of sensors 
and video surveillance, anomaly detection applications in this 
field need to solve the real-time and accuracy problems in 
complex scenarios. In video surveillance, anomaly detection 
models based on deep learning, such as those based on 3D 
convolutional neural networks (3D-CNN) [3], are able to 
capture spatiotemporal dynamic features. Where y is the 
predictive label, X is the video segment, and X is the model 

parameter.  Normal behavior is identified by training the 

model, and abnormal behavior is identified as a negative class 
by uncertainty or reconstruction error in the model output. 
Intelligent security systems often use multimodal data fusion, 
such as video and sound [4], to improve the robustness of 
anomaly detection. Where h is the fusion feature, v is the video 
feature, a is the audio feature, and a is the fusion function 
parameter. Multimodal fusion enhances adaptability to 
complex environmental changes. 

Once an abnormality is detected, the intelligent security 
system shall immediately trigger an Incident Response Service, 
including but not limited to alarming, invoking resources, 
taking isolation measures, etc. Response strategy design needs 
to be combined with fuzzy logic or decision trees to achieve fast 

and effective action. 
1

( | )
1 ( ( ))T

P a o
exp w f o


  

where, 

is the probability of taking action a, given observation o, w is 
the weight vector, and f(o) is the function that converts the 
observation into a feature vector [22]. 

IV. MODEL CONSTRUCTION OF FUZZY DECISION SUPPORT 

SYSTEM BASED ON GNN 

A. System Architecture Design 

This section will introduce the architecture design of fuzzy 
decision support system based on a graph neural network 
(GNN) in detail, including four key modules. Data 
preprocessing, GNN feature extraction, fuzzy rule base 
establishment, decision support and Incident Response Service. 

Data preprocessing is the cornerstone of any data analytics 
model. In the GNN context, this step involves transforming the 
raw data into a graph structure, including definitions of nodes 
and edges, and possibly feature assignments. If the data is time 
series or sequence data, sliding window technology can be 
considered to extract time segments, each segment is defined as 
a node, and the dependency relationship between adjacent 
segments constitutes an edge [6]. Data normalization or 
normalization is also an important step in this phase to ensure 
stability of GNN training process, as shown in Eq. (1) [22]. 
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x x
x

x x





  (1) 

GNN learns node characteristics on the graph through 

message passing mechanism, and for each node iv , its 

characteristic representation
( )l

ih is iteratively updated to at 

level 1, as shown in Eq. (2) [23]. 
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where is the activation function, is the inter-layer weight 
matrix, is the neighbor node set of a node, is the element of the 
adjacency matrix, and reflects the relationship strength between 
nodes. Based on the features extracted from GNN, a fuzzy rule 
base is constructed to support the subsequent fuzzy inference. 
Each rule can be formalized as: IF (Feature 1 is fuzzy set A) 
AND (Feature 2 is fuzzy set B) THEN (Decision is fuzzy set C) 
for example, the rule "If traffic flow is high and crowd density 
is high, there is a risk of congestion" can be converted to a fuzzy 
rule. The membership function of a fuzzy set, such as a 
triangular or Gaussian distribution, quantifies the degree to 
which an eigenvalue belongs to a particular fuzzy set [24]. 

Based on GNN features and fuzzy rule base, fuzzy inference 
is performed to generate decision suggestions. Fuzzy reasoning 
usually includes three steps: fuzzification, reasoning and 
defuzzification. In the reasoning process, the principle of 
maximum membership degree is applied to select the most 
consistent decision, and its formula is shown in Eq. (3). 
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      (3) 

where, is the total membership of decision, is the 
membership of the ith feature under the corresponding decision, 
and $\(w_i\)$ is the weight of the feature, reflecting its 
importance in the decision [25, 26]. 

B. Algorithm Design and Implementation Optimization 

In order to improve the generalization ability of the model 
and the ability to capture complex relationships, we will deeply 
customize the GNN model and introduce advanced graph 
learning components. For example, GraphSAGE model [7] is 
used for node feature aggregation, which realizes efficient 
graph feature learning by sampling neighbor nodes and 
aggregating their features. The formula can be expressed as, 
and its formula is shown in Eq. (4). 

   ( 1) ( ) ( ) ( ),AGGREGATE { | }l l l l

i i j ih W CONCAT h h j   N  (4) 

Among them, the function is the aggregation operation on 
the features of neighboring nodes, such as average pooling, 
maximum pooling, etc. CONCAT represents the feature 
splicing operation to enrich the representation information of 
nodes [27]. 
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In order to make GNN learning process more suitable for 
fuzzy decision requirements, we propose an integration strategy 
that embeds fuzzy logic directly into GNN training cycles. 
Specifically, in the reverse propagation process, the learning of 
features conforming to preset fuzzy rules is enhanced by 
adaptively adjusting the weight of the loss function, and the 
formula is shown in Eq. (5). 

integrated GNN fuzzinessL L L     (5) 

Here, is the standard GNN loss, which quantifies the 
consistency of the learned features with the fuzzy rule set, and 
is a dynamic tuning factor that adjusts automatically based on 
training progress and model performance. 

In terms of anomaly scoring, we will use reinforcement 
learning methods [8] to dynamically adjust threshold settings to 
suit the anomaly sensitivity requirements of different scenarios. 
Specifically, the thresholding problem is modeled as a Markov 
Decision Process (MDP), where state s contains the current 
anomaly score distribution, action a is the direction and 
magnitude of the threshold adjustment, and reward r reflects the 
adjusted system performance improvement. Through 
interaction with environment, threshold strategy is optimized 
continuously to achieve optimal anomaly detection effect. The 
formula is given in Eq. (6) [28]. 

t T
k t

t k

k t

R r






     (6) 

Where is the discounted future reward starting at time t, the 
discount factor, and T is the number of periods the reward is 
considering? 

Through the above-mentioned deeply customized GNN 
model, advanced fuzzy inference integration strategy, and 
dynamic threshold adjustment method, the algorithm design 
proposed in this section not only greatly enhances the 
professionalism and practicality of the model, but also 
improves the robustness and adaptive ability of the system in 
complex decision environments, providing solid technical 
support for the actual deployment of fuzzy decision support 
systems. 

V. EXPERIMENTAL EVALUATION 

A. Experimental Environment and Data Set Introduction 

This chapter details the infrastructure configuration of the 
experiment and the characteristics of the data set used, laying a 
solid foundation for subsequent experimental design. The 
experimental environment is built on an advanced cloud 
computing platform equipped with NVIDIA Tesla V100 GPUs 
and equipped with high-speed network interconnection to 
ensure efficient data transmission and parallel computing 
capabilities. The memory configuration is 256GB, enough to 
handle the immediate processing needs of large-scale data sets. 
For data sets, the widely recognized MNIST handwritten digit 
data set and CIFAR-10 image classification data set were 
selected [29]. 

B. Experimental Design 

This section provides an in-depth explanation of the overall 
architecture and core strategy of the experiment. The 
experimental design follows the modularization principle and 
is divided into four main stages: data preprocessing, model 
construction, training and evaluation. Among them, the model 
construction part uses convolutional neural networks (CNN) in 
deep learning, specifically LeNet-5 model for MNIST dataset, 
and more complex ResNet-18 model for CIFAR-10 dataset, 
aiming to explore the relationship between model performance 
and data complexity through different network depths and 
structural complexity. Eq. (7) shows the forward propagation 
calculation process of a general convolutional layer, where f 
represents the filter, x is the input feature map, represents the 

convolution operation, and F is a nonlinear activation 

function, such as ReLU as shown in Eq. (7) [30]. 

( )y f x b  F    (7) 

C. Data Preprocessing Steps 

Data preprocessing is a key step to ensure the quality and 
efficiency of model training, which mainly includes data 
cleaning, standardization, enhancement and division. Data 
cleaning removes invalid or mislabeled samples to ensure the 
purity of the data set. Normalization scales the input data to the 
same range, typically a distribution with a mean of 0 and a 
standard deviation of 1, using Eq. (8) to improve model 
convergence speed and stability. 

norm

x
x






    (8) 

Data enhancement increases sample diversity through 
rotation, inversion, clipping, etc., reduces overfitting risk and 
enhances generalization ability of models. Finally, the data is 
randomly divided into training, validation and test sets, 
typically 70%, 15%, 15% to ensure fairness of model 
evaluation on independent test sets [31]. 

D. Model Training and Optimization 

During the model training phase, we employ a stochastic 
gradient descent (SGD) optimizer and introduce momentum 
terms to accelerate convergence and reduce oscillations, as 
shown in Eq. (9), where is the learning rate, is the current 
parameter, is the gradient, and is the momentum cumulative 
variable. 

1 (1 )t t tv v g       (9) 

1t t tv         (10) 

At the same time, learning rate decay strategy and early 
stopping method are applied to dynamically adjust learning rate 
and prevent overfitting. Model evaluation uses cross-entropy 
loss function combined with precision, recall and other 
evaluation indicators to ensure the performance of the model on 
classification tasks. The model training and optimization 
process is shown in Fig. 3. 
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Fig. 3. Model training and optimization. 

E. Experimental Results 

Table I shows the performance evaluation metrics of 
different anomaly detection methods on selected data sets. The 
GNN-based fuzzy decision support system performed best in 
terms of F1 score and AUC, with 0.90 and 0.95, respectively, 
higher than other methods. 

Table II summarizes the average, shortest and longest 
response times of GNN-based fuzzy decision support systems 
under different emergency scenarios. For example, in 
emergency evacuation drills, the average response time was 3.5 
seconds, the shortest response time was 2.8 seconds, and the 
longest response time was 4.2 seconds. These data show that 
the fuzzy decision support system based on GNN can quickly 

start Incident Response Service in practical application, and the 
average response time is lower than the industry standard. This 
may be attributed to GNN's efficient computing power and 
ability to handle exceptions quickly. 

Table III compares the GNN-based system with two other 
systems (Systems A and B) for different load pressures. Under 
high load conditions, GNN-based systems can handle 120 
events/hour, while systems A and B can handle only 50 and 60 
events/hour, respectively. This indicates that GNN-based 
systems have higher processing efficiency and stability, and can 
effectively cope with a large number of events. This may be due 
to GNN's ability to process complex data relationships quickly, 
thus improving the processing power of the system. 

TABLE I. ANOMALY DETECTION PERFORMANCE EVALUATION 

Method Precision Recall F1 score AUC 

Fuzzy Decision Support System Based on GNN 0.92 0.88 0.90 0.95 

traditional statistical methods 0.85 0.9 0.867 0.92 

Machine Learning Models (Isolation Forest) 0.88 0.82 0.85 0.91 

Deep Learning Model (Autoencoder AE) 0.9 0.86 0.88 0.93 

TABLE II. INCIDENT RESPONSE SERVICE TIME STATISTICS 

Scene Average Response Time (sec) Minimum Response Time (Seconds) Maximum Response Time (Seconds) 

emergency evacuation drill 3.5 2.8 4.2 

fire warning 4.1 3.7 4.6 

Traffic accident response 3.2 2.9 3.8 

TABLE III. SYSTEM EFFICIENCY TEST (UNIT: EVENTS / HOUR) 

Load Pressure System A System B Fuzzy Decision Support System Based on GNN 

low 120 150 180 

in 80 100 160 

high 50 60 120 
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TABLE IV. EFFICIENCY COMPARISON WITH OTHER METHODS 

Method Training Time (Hours) Detection Time (Ms/Event) Overall Efficiency Score (1-10) 

Fuzzy Decision Support System Based on GNN 20 30 8.5 

traditional statistical methods - 10 7 

machine learning model 15 25 6.5 

deep learning models 40 50 5 
 

Table IV assesses the differences in training time and 
detection efficiency between the different methods, as well as a 
composite efficiency score. The GNN-based system had a 
longer training time of 20 hours, but a detection time of only 30 
ms/event, with an overall efficiency score of 8.5. This shows 
that GNN-based systems have advantages in long-term 
operation, which can quickly and accurately identify abnormal 
situations and provide timely support for decision makers. This 
may be because GNN is able to efficiently learn and capture 
features in the data, thereby improving detection speed and 
accuracy. 

Fig. 4 shows how well each model generalizes across 
different datasets. The performance of fuzzy decision support 
system based on GNN on dataset A, dataset B and dataset C is 
0.92, 0.87 and 0.93 respectively, which is better than other 
methods. 

 

Fig. 4. Comparison of the generalization ability of anomaly detection 

models. 

Experimental results show that the fuzzy decision support 
system based on GNN outperforms other methods in anomaly 
detection performance, Incident Response Service efficiency, 
system processing ability and model generalization ability. The 
system maintains high precision and recall and has strong 
adaptability to new data. It can identify anomalies quickly and 
accurately, and provide timely and reliable support for 
decision-making. Overall, fuzzy decision support system based 
on GNN is an efficient and stable anomaly detection solution. 

F. Discussion 

The experimental results presented in the previous sections 
demonstrate the effectiveness of the fuzzy decision support 
system (FDSS) based on Graph Neural Networks (GNNs) in 
multiple aspects. However, a deeper examination of the 

findings provides valuable insights into the system's strengths 
and potential areas for improvement. 

Firstly, the superior performance of the GNN-based FDSS 
in terms of F1 score and AUC, as shown in Table I, suggests 
that the system is highly adept at balancing precision and recall, 
making it particularly suitable for anomaly detection tasks 
where both false positives and false negatives need to be 
minimized. The ability of GNNs to capture the complex 
relationships within graph data contributes to this enhanced 
performance. 

Secondly, the Incident Response Service times recorded in 
Table II indicate that the system not only identifies anomalies 
accurately but also responds promptly. The average response 
time of 3.5 seconds for emergency evacuation drills, for 
instance, highlights the system's capability to initiate actions 
swiftly, which is crucial in emergency scenarios. This 
responsiveness can be attributed to the efficient computational 
framework of the GNN-based system. 

Thirdly, the system's processing efficiency, as outlined in 
Table III, shows that it can handle a significantly higher number 
of events per hour compared to Systems A and B, especially 
under high load conditions. This robustness and scalability are 
critical for real-world applications where the volume of 
incoming data can fluctuate widely. 

Moreover, the efficiency comparison in Table IV reveals 
that despite a longer training period, the GNN-based system 
achieves faster detection times and a higher overall efficiency 
score. This implies that the initial investment in training time 
pays off in the form of quicker and more accurate detections, 
which is beneficial for operational efficiency. 

Finally, the generalization ability of the system, as depicted 
in Fig. 4, indicates that the FDSS based on GNN can maintain 
high performance across different datasets. This adaptability is 
essential for deploying the system in diverse environments 
where data characteristics may vary. 

While the results are promising, there are potential areas for 
further investigation. Future work could focus on optimizing 
the training phase to reduce the initial time required, exploring 
hybrid models that combine the strengths of GNNs with other 
techniques, and conducting more extensive testing on varied 
datasets to further validate the system's generalization 
capabilities. 

In summary, the experimental results underscore the 
robustness and efficiency of the GNN-based FDSS, positioning 
it as a powerful tool for anomaly detection and intelligent 
security applications. Its ability to handle large volumes of data, 
respond quickly, and generalize well makes it a valuable 
addition to the field of anomaly detection systems. 

0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94

Dataset A

Dataset B

Dataset C

Machine learning models Machine learning models

Traditional methods FDS& GNN
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VI. CONCLUSION 

In this study, we have proposed a fuzzy decision support 
system (FDSS) based on Graph Neural Networks (GNNs) for 
anomaly detection and intelligent security applications. 
Extensive experimental evaluations demonstrate the superior 
performance of our system compared to traditional statistical 
methods, machine learning models, and deep learning models. 
Our results show that the GNN-based FDSS achieved the 
highest F1 score and AUC on the selected datasets, highlighting 
its effectiveness in accurately identifying anomalies. 
Furthermore, the system demonstrated consistently fast 
response times in various emergency scenarios, underscoring 
its capability to initiate incident response services promptly and 
effectively. In terms of system processing efficiency, the GNN-
based system managed a significantly higher number of events 
per hour under high load conditions, outperforming alternative 
systems. Evaluations also revealed that despite a longer training 
period, the GNN-based system achieved rapid detection times 
and a high overall efficiency score. Additionally, the system 
exhibited strong generalization ability across different datasets, 
demonstrating robustness and adaptability. These results 
confirm the reliability and efficiency of the GNN-based FDSS, 
making it a viable solution for anomaly detection in complex 
decision-making environments. 

In terms of future work, efforts will focus on several key 
areas to further enhance the capabilities of the fuzzy decision 
support system (FDSS) based on Graph Neural Networks 
(GNNs). One direction involves optimizing the training process 
to reduce the initial time required, potentially through the use 
of more advanced optimization algorithms or distributed 
computing frameworks. Another area of interest is the 
development of hybrid models that integrate the strengths of 
GNNs with other machine learning techniques, such as 
reinforcement learning, to improve the system's adaptability 
and decision-making capabilities. Additionally, there is a need 
for more extensive testing across a broader range of datasets 
and real-world scenarios to further validate the system's 
generalization and robustness. Lastly, exploring the integration 
of user feedback mechanisms could help refine the fuzzy rule 
base, making the system even more responsive to evolving 
security threats and user-specific requirements. These 
enhancements aim to solidify the position of the GNN-based 
FDSS as a leading solution in anomaly detection and intelligent 
security applications. 
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