
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 9, 2024 

152 | P a g e  

www.ijacsa.thesai.org 

Heart-SecureCloud: A Secure Cloud-Based Hybrid 

DL System for Diagnosis of Heart Disease Through 

Transformer-Recurrent Neural Network 

Talal Saad Albalawi 

College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), 

Riyadh 11432, Saudi Arabia 

 

 
Abstract—Cardiovascular disease (CVD) has rapidly 

increased after COVID-19. Several computerized systems have 

been developed in the past to diagnose CVD disease. However, 

the high computing expenses of deep learning (DL) models and 

the complexity of architectures are significant issues.  Therefore, 

to resolve these issues, an accurate diagnosis of CVD disease is 

required. This paper proposes a hybrid and secure deep learning 

(DL) system known as Heart-SecureCloud to predict multiclass 

heart diseases. To develop this Heart-SecureCloud system, four 

major stages are makeup such as preprocessing and 

augmentation, feature extraction and transformation, deep 

learning and hyperparameter optimization, and cloud security. 

Advanced signal processing and augmentation technologies are 

applied to ECG data in the preprocessing and augmentation step 

to enhance data quality. In the feature extraction and 

transformation step, adaptive wavelet transforms, and feature 

scaling are used to extract and convert spectral and temporal 

data. The DL and hyperparameter optimization step utilize a 

novel hybrid transformer-recurrent neural network model, 

which is further optimized for accuracy and efficiency using 

hyperband-GA. Transfer learning refines pre-trained models 

using domain-specific data. The unique aspect of the Heart-

SecureCloud system is its implementation through a secure 

cloud, which safeguards medical data with encryption and access 

control mechanisms. The system's efficacy is demonstrated 

through testing and evaluation on three publicly available 

datasets, such as MIT-BIH Arrhythmia MIMIC-III Waveform 

and PTB-ECG. The Heart-SecureCloud DL architecture 

achieved impressive results of 98.75% of accuracy, 98.80% of 

recall, 98.70% of precision, and 98.75% of F1-score.  Moreover, 

the Heart-SecureCloud DL underscores its promise for safe 

medical diagnostics deployment. 

Keywords—Heart disease diagnosis; deep learning; cloud 

computing; feature extraction; data security; hyperparameter 
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I. INTRODUCTION 

The most common chronic disorders worldwide are 
cardiovascular diseases (CVDs), which have caused the most 
morbidity and mortality during the previous decade [1]. The 
WHO estimates that 17.9 million people die from CVDs 
yearly, 32% of all fatalities [2]. By 2030, 22.2 million 
individuals may die from CVDs. Over the past 30 years, CVDs 
have been the leading cause of death in the US, accounting for 
46.2% of deaths in 2017 [3]. CVDs include congestive heart 
failure, coronary artery disease, congenital heart defects, 

cerebrovascular disease, and rheumatic heart disease [4]. 
Nowadays, CVD is caused by heart attacks and strokes. Early 
and precise prediction of CVD disease improves survival and 
reduces death [5]. In addition, this improvement can assist 
experts in treating patients faster, thanks to the potential of 
machine learning (ML) and deep learning (DL) methods [6]. 
These methods, by analyzing ECG signals, can significantly 
enhance our ability to combat CVDs [7]. 

Artificial intelligence (AI) technologies are advancing 
rapidly, and cloud security, along with machine learning (ML) 
and deep learning (DL) approaches, can now be utilized to 
monitor and even predict cardiovascular diseases (CVD) [8]. 
Cloud security, a crucial component, involves securing data, 
applications, and infrastructures hosted in the cloud, ensuring 
they are protected from unauthorized access and breaches. This 
is particularly important in the medical and healthcare sectors, 
where sensitive health data must be safeguarded. Machine 
learning, a branch of artificial intelligence, involves techniques 
that extract knowledge from data, often called predictive 
analytics or statistical learning. Deep learning, a subset of ML, 
uses neural networks with multiple layers to model complex 
patterns in data. These techniques, when applied to medicine, 
have the potential to not just revolutionize but also excite us 
about the future of healthcare delivery methods. Moreover, the 
vast amount of data generated by hospitals in a cloud 
environment presents significant challenges, particularly in 
selecting the most effective machine-learning techniques for 
data analysis. 

Cardiovascular disease (CVD) has seen a significant rise 
following the Covid-19 pandemic. In response, numerous 
computerized systems have been developed to diagnose CVD. 
However, challenges such as the high computational costs of 
deep learning (DL) models and the complexity of their 
architectures remain. To address these challenges, there is a 
need for an accurate and efficient approach to diagnosing 
CVD. This paper introduces a hybrid and secure deep learning 
system called Heart-SecureCloud, designed to predict various 
types of heart diseases. This study shows multi-layered strategy 
to establishing a safe and efficient cloud-based deep learning 
system for heart disease diagnostics. In the Preprocessing and 
Augmentation Layer, innovative signal processing and data 
augmentation procedures improve medical voice record input 
data quality. A unique adaptive wavelet transform, and feature 
scaling method extracts and transforms spectral and temporal 
properties in the Feature Extraction and Transformation Layer. 
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The Hyperband-GA hybrid approach optimizes a Transformer-
Recurrent Neural Network (RNN) hybrid model in the Deep 
Learning and Hyperparameter Optimization Layer for accuracy 
and efficiency. Pre-trained models are fine-tuned using 
domain-specific data via transfer learning. Finally, the 
Evaluation and Security Layer thoroughly evaluates and 
verifies performance metrics while protecting sensitive medical 
data with strong encryption and access control. Encrypting data 
in transit and at rest and using authentication techniques, this 
layer secures data processing and cloud server deployment. 
This study makes several significant contributions to the field 
of heart disease detection. 

1) Novel Heart-SecureCloud DL system for effective heart 

disease diagnosis using advanced signal processing, feature 

extraction, and hybrid deep learning architectures. 

2) The Hyperband-GA hybrid optimization approach 

improves model accuracy and computational efficiency. 

3) This cloud server study integrates a thorough security 

layer into the cloud-based feature categorization system. 

4) High model accuracy (98.75%) and comprehensive 

security features set a new heart disease diagnosis system 

benchmark. 

Structure of the paper: Section II: Reviews heart disease 
diagnosis and prognosis approaches and their advances. 
Section III: Explains speech feature extraction, ML methods, 
picture augmentation, and data normalization. Section IV 
reports the experimental setup, findings, and performance 
evaluation of the proposed system, comparing it to alternative 
methods. Section V: Summarizes findings, analyzes 
ramifications, and offers further study. 

TABLE I.  A TABLE SUMMARIZING THE KEY POINTS AND COMPARISONS BASED ON THE LITERATURE REVIEW 

Study Purpose Methodology Results Limitations 

[14] 
Detection of CAD using 

ECG signals 

Developed AE, RBFN, SOM, and 

RBM models; ensemble of AE and 
SOM 

AE: Accuracy 0.974 (MIT-BIH), 0.984 

(PTB-ECG); Ensemble: Accuracy 0.984 
(MIT-BIH), 0.992 (PTB-ECG) 

Needs testing on larger and more 

imbalanced datasets 

[15] 
Automated diagnostic 

systems for CAD, MI, CHF 
Developed 16-layer LSTM model Accuracy 98.5% 

Limited to classification of 

abnormal ECG signals 

[16] 
Addressing imbalanced data 

for detection 

Developed GAN, LSTM, and 

ensemble GAN-LSTM models 

GAN-LSTM: Accuracy 0.992 (MIT-BIH), 

0.994 (PTB-ECG) 

Further research needed with 
different ensemble models and 

datasets 

[17] 
Automated detection of ECG 

arrhythmia 

Removed noise, extracted features, 

used ML and DL models 
Accuracy 86.25% 

Performance affected by noise in 

ECG signals 

[18] 
Distinguish normal and 

abnormal ECG patients 

Used SVM, LR, AdaBoost; 

ensemble of AdaBoost and LR 

Ensemble: Accuracy 0.946 (PTB-ECG), 

0.921 (MIT-BIH) 

Methodology can be applied to 

other diseases 

[19] 

Preprocessing, data 
sampling, feature extraction, 

classification 

Used ADASYN for data sampling, 
GRU for feature extraction, ELM 

for classification 

Superior in terms of accuracy, sensitivity, 

specificity 

Needs further validation with 

other datasets 

[20] 
Simplify large data 

processing 

Used Spark–Scala tools, evaluated 

with MIT-BIH datasets 

GDB Tree: Accuracy 97.98% (binary), 

Random Forest: 98.03% (multi-class) 

Limited to large-scale data 

processing tools 

[21] 
Compare 1D-CNN and SVM 

algorithms 

Merged public ECG databases, 

evaluated performance 

1D-CNN: Accuracy 93.07%, SVM: 

Accuracy 92.00% 

Need for broad datasets to 

evaluate ML models 

[22] 
Recognize various cardiac 

arrhythmias 

Developed ML-WCNN combining 

1D-CNN and SWT 

Superior performance with 10-fold cross-

validation 

Limited comparison with state-

of-the-art algorithms 

[23] 
Improve patient prognostics 

of heart disease 

Developed EDCNN, validated on 

IoMT platform 
Precision up to 99.1% Needs further clinical validation 

[24] 
Classify MI based on ECG 

signals 

Developed DenseNet and CNN 

models 
DenseNet preferred, Accuracy >95% 

Requires more explainability for 

clinical acceptance 

[25] 
Determine best combination 

of signal information 

Used raw ECG signals, entropy-

based features, QRS complexes 

Improved performance with combined 

features 

Performance varies with different 

signal combinations 

[26] 
Automate detection and 

classification of arrhythmias 
Developed 2D-CNN-LSTM model 

Accuracy ≈98.7% (ARR), 99% (CHF, 

NSR) 

Future work needed on live ECG 

signals 

[27] 
Classify CAD, MI, CHF 

using CNN and GaborCNN 
Balanced dataset, evaluated models High accuracy >98.5% 

Needs validation with larger 

database 

[28] 
Automated MI detection 

using ECG signals 

Developed CNN, hybrid CNN-

LSTM, ensemble techniques 
Ensemble: Accuracy 99.89% Ready for clinical application 

[29] 

Compare transfer learning 

methods for ECG 

classification 

Used ResNet50, AlexNet, 
SqueezeNet 

Accuracy 98.8% (AlexNet) 
Time-consuming with 
multiclassification 

[30] 
ECG beat classification 
using VGG16-based CNN 

Applied SHAP for interpretability 
Accuracy 100% (2-4 classes), 99.90% (5 
classes) 

Needs application in clinical 
settings 

[31] 
Predict arterial events using 

ECG recordings 

Used LSTM-DBN, compared with 

other models 
Accuracy 88.42% 

Needs further validation with 

real-world data 

II. LITERATURE REVIEW 

Advanced algorithms in deep learning have improved heart 
disease detection systems by analyzing complicated medical 
data. This literature review addresses deep learning-based heart 
disease detection methods, their usefulness, and their obstacles. 

Deep learning models, especially CNNs and LSTM 
networks, have improved arrhythmia diagnosis from 
electrocardiogram (ECG) readings. CNNs are suitable for 
image and signal processing because they capture spatial 
hierarchy. Recent advancements in deep learning have shown 
that Convolutional Neural Networks (CNNs) are particularly 
effective for image and signal processing due to their ability to 
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capture spatial hierarchies. Studies by [9], [10] demonstrated 
that combining CNNs with Long Short-Term Memory (LSTM) 
networks enhances diagnostic accuracy by capturing spatial 
and temporal data. Transfer learning (TL), which fine-tunes 
models pre-trained on large datasets for specific, smaller 
datasets, has also been shown to improve model generalization 
and reduce computational demands. In study of [11] and [12], 
the authors successfully applied TL to identify heart disease 
from ECG data. Additionally, the potential of adaptive wavelet 
transformations and sparse autoencoders in feature extraction 
and augmentation is vast, giving us hope for the future of 
medical data analysis [13]. Furthermore, four DL models are 
utilized in study [14] to diagnose coronary artery disease 
(CAD) using ECG data. DL approaches were preferred for 
automated diagnostic systems [15]. The paper’s 16-layer 
LSTM model evaluated using 10-fold cross-validation, 
classified ECG signals achieved 98.5% accuracy. 

Generative Adversarial Network (GAN) models were used 
to generate more data to balance skewed data [16]. For MIT-
BIH and PTB-ECG datasets, the GAN-LSTM ensemble model 
performed best, with an accuracy of 0.992 and 0.994, 
respectively. Other ensemble methods and datasets might 
improve detection performance in future studies. A CAD 
method for ECG-based apnea diagnosis was proposed in the 
study [17] to simplify automated ECG arrhythmia 
identification. After removing noise with a Notch filter, the 
system retrieved features and used ML and DL models to 
diagnose. The suggested model detected obstructive sleep 
apnea with 86.25% accuracy. In study [18], an uneven number 
of ECG samples was utilized to identify normal and abnormal 
individuals. SVM, LR, and AdaBoost were used. The ensemble 
model with AdaBoost and LR performed best, with PTB-ECG 
accuracy of 0.946 and MIT-BIH accuracy of 0.921. This 
approach might be used for various illnesses with different 
signal inputs. 

The CIGRU-ELM model [19] required preprocessing, data 
sampling, feature extraction, and classification. The class 
imbalance was resolved via ADASYN, GRU feature 
extraction, and ELM classification on the PTB-XL dataset. It 
excelled in accuracy, sensitivity, specificity, and other 
parameters, demonstrating its flexibility. A study in [20] 
examined Spark–Scala tools for massive dataset processing. 
GDB Tree and Random Forest methods gave the model 
97.98% binary classification accuracy and 98.03% multiclass 
classification accuracy utilizing MIT-BIH datasets. This 
proved Spark–Scala's large-data handling ability. 

Both 1D-CNN and SVM algorithms performed well in 
research [21] utilizing combined ECG datasets. The 1D-CNN 
method was 93.07% accurate, whereas the SVM classifier was 
somewhat lower. Combining datasets from diverse sources 
helped evaluate ML models. The Multi-Level Wavelet 
Convolutional Neural Network (ML-WCNN) in the study [22] 
recognized cardiac arrhythmias. The ML-WCNN used 1D-
CNN and SWT for feature extraction and achieved improved 
performance with 10-fold cross-validation accuracy. 

The Enhanced Deep Learning aided Convolutional Neural 
Network (EDCNN) was suggested to enhance heart disease 
prognostics [23]. The Internet of Medical Things (IoMT) 

platform enabled the EDCNN to reach 99.1% accuracy, 
indicating its clinical promise. ECG-based DenseNet and CNN 
models classified myocardial infarction (MI) [24]. Highly 
performing DenseNet beat CNN in computational complexity 
and classification accuracy. This study also revealed certain 
ECG leads that influence prediction choices. The study in [25] 
investigated the optimal signal information for categorization. 
Adding entropy-based features and extracted QRS complexes 
to raw ECG signals enhanced performance, demonstrating the 
benefits of using them in ECG analysis. 

A hybrid deep learning-based 2D-CNN-LSTM technique 
was presented for cardiac arrhythmia detection and 
classification [26]. The model was useful due to its excellent 
accuracy, sensitivity, and specificity. Future studies might use 
Bi-LSTM instead of LSTM on real ECG data. CNN and 
GaborCNN models classified CAD, MI, and CHF in the study 
[27]. GaborCNN was picked for its excellent classification 
accuracy and low computing complexity. This technique might 
be clinically validated with larger databases. CNN, hybrid 
CNN-LSTM, and ensemble methods were used to create an 
automated MI detection system [28]. The models have great 
classification accuracy using SMOTE-Tomek Link for data 
balancing, suited for hospital use. ECG classification transfer 
learning techniques were compared [29]. CAA-TL employing 
ResNet50, AlexNet, and SqueezeNet exhibited outstanding 
accuracy, suggesting transfer learning improves heart disease 
diagnosis. A modified VGG16-based CNN-based ECG beat 
classifier was proposed in the study [30] and achieved good 
accuracy. SHAP values improved ECG interpretability, making 
this model suitable for automated cardiovascular diagnosis. A 
study [31] predicted vascular events from ECGs using LSTM-
DBN. The algorithm outperformed deep learning and standard 
classification approaches, suggesting early cardiovascular 
event diagnosis and prevention. 

Despite advances as described in Table I, many problems 
remain. High computing expenses of deep learning models and 
hybrid architectural complexity are major obstacles. Despite 
their great accuracy, these models need refinement to handle 
different and unexplored data. Further study should optimize 
computing efficiency via model compression and more 
efficient methods. These models might be strengthened by 
adding medical imaging and patient history data. These 
systems must have real-time processing and continual learning 
to be relevant in changing healthcare situations. Continuous 
security improvements will secure patient data, encouraging 
confidence and privacy compliance. Finally, numerous models 
and procedures using deep learning to identify cardiac disease 
have increased diagnostic accuracy and efficiency. Research 
and development on computational optimization, feature 
integration, and security will improve heart disease diagnostic 
technologies and make them more reliable and accessible. 

III. RESEARCH METHODOLOGY 

Fig. 1 shows this study's multi-layered strategy to 
establishing a safe and efficient cloud-based deep learning 
system for heart disease diagnostics. In the Preprocessing and 
Augmentation Layer, innovative signal processing and data 
augmentation procedures improve medical voice record input 
data quality. A unique adaptive wavelet-transform, and feature 
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scaling method extracts and transforms spectral and temporal 
properties in the Feature Extraction and Transformation Layer. 
The Hyperband-GA hybrid approach optimizes a Transformer-
Recurrent Neural Network (RNN) hybrid model in the Deep 
Learning and Hyperparameter Optimization Layer for accuracy 
and efficiency. Pre-trained models are fine-tuned using 
domain-specific data via transfer learning. Finally, the 
Evaluation and Security Layer thoroughly evaluates and 
verifies performance metrics while protecting sensitive medical 
data with strong encryption and access control. Encrypting data 
in transit and at rest and using authentication techniques, this 
layer secures data processing and cloud server deployment. 

Algorithm 1: Overall secure and efficient heart disease 
detection system 

[Input] ECG data 
[Output] heart disease diagnosis with high accuracy and secure data 
handling  

Compute 
 Load necessary libraries and dependencies. 

Initialize cloud server for scalable deployment. 

       Generate encryption keys for data security. 
While () do 

 For (every ECG class) do 

 Update 

  Preprocessing and Augmentation: 

  Input raw ECG recordings. 

  Apply noise reduction techniques. 

  Normalize the recordings. 

  Segment the recordings into smaller parts. 

  Feature Extraction and Transformation: 

  Input preprocessed and augmented recordings. 

  Extract spectral features using adaptive wavelet 
transforms. 

  Extract temporal features. 

  Apply feature scaling techniques 

  Deep Learning and Hyperparameter Optimization: 

  Input extracted and transformed features. 

  Initialize hybrid deep learning model 
(Transformer + LSTM). 

  Apply transfer learning to fine-tune pre-trained 
models. 

  Optimize the model using Hyperband-GA 
technique. 

   

  Update and analyze 

   If (condition) then 

    Train the optimized model on the dataset. 

 End  End 

    

 Deploy trained model and security mechanisms on cloud server. 

Set up real-time processing capabilities. 

Ensure automatic scaling for increased loads 
End 

 

A. Data Acquisitions 

The Heart-SecureCloud system was trained and tested 
using three datasets. PhysioNet’s MIT-BIH Arrhythmia 
database [32] contains annotated ECG recordings utilized in 
cardiovascular disease detection studies. Second, the 
PhysioNet’s MIMIC-III Waveform database [33] contains ICU 
patients' ECGs and other physiological waveforms, which may 
be used to design and evaluate cardiovascular disease detection 
algorithms. Third, PhysioNet’s PTB Diagnostic ECG [34] 
collection includes 549 ECG recordings from healthy 
volunteers and cardiac disease patients, including myocardial 
infarction. Table II describes the detailed parameters of each 
dataset. 

In cardiovascular research, the MIT-BIH Arrhythmia 
Database from PhysioNet is commonly used for arrhythmia 
identification. Annotated electrocardiogram (ECG) recordings 
from varied patients are included. Each recording is properly 
annotated with arrhythmia annotations, helping build and 
validate cardiac rhythm problem detection algorithms. Also, 
the MIMIC-III data is used to study many cardiovascular 
diseases. The PTB Diagnostic ECG Database, available 
through PhysioNet, has 549 ECG recordings from healthy 
people and patients with cardiac problems, including 
myocardial infarction. From the above three datasets, Table II 
describes the details about the ECG dataset. 

 

Fig. 1. A systematic flow diagram of proposed system for cardiovascular disease detection. 
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TABLE II.  DATA FROM THE MIT-BIH ARRHYTHMIA, MIMIC-III, AND PTB ECG DATASETS FOR PREDICTING HEART DISEASES 

Dataset Sample ID Source 
Patient 

ID 

ECG Lead 

Type 

Sampling 

Rate (Hz) 

Duration 

(s) 
Diagnosis/Label Annotation Format 

MIT-BIH 

Arrhythmi [32] 

MITBIH-

Sample-1 

MIT-BIH 

Arrhythmia 
100 Lead II 360 30 Arrhythmia Type AAMI ECG Codes 

 

MITBIH-

Sample-2 

MIT-BIH 

Arrhythmia 
101 Lead V1 360 30 

Normal, Atrial 

Fibrillation 
AAMI ECG Codes 

MIMIC-III 

Waveform [33] 

MIMIC-

Sample-1 

MIMIC-III 

Waveform 
201 Lead II 125 60 

Various Cardiac 

Events 
Custom Annotations 

 

MIMIC-

Sample-2 

MIMIC-III 

Waveform 
202 Lead V5 125 60 

Heart Failure, 

Myocardial Infarction 
Custom Annotations 

PTB Diagnostic 

ECG [34] 
PTB-Sample-1 

PTB Diagnostic 

ECG 
301 Lead II 1000 10 

Myocardial Infarction, 

Healthy 
SCP-ECG Codes 

 
PTB-Sample-2 

PTB Diagnostic 
ECG 

302 Lead III 1000 10 
Myocardial Ischemia, 
Healthy 

SCP-ECG Codes 

 

Three ECG datasets—MIT-BIH Arrhythmia, MIMIC-III 
Waveform, and PTB Diagnostic ECG—cover Normal/Healthy, 
Atrial Fibrillation, Ventricular Tachycardia, Myocardial 
Infarction, Premature Ventricular Contraction, Heart Failure, 
and Left Bundle Branch Block. These common heart diseases 
required early treatment and diagnosis. Fig. 2 and Fig. 3 show 
distribution plots of sampling rates by datasets. Whereas Fig. 4 
shows the length of ECG recordings for each sample, grouped 
by diagnosis. Fig. 5 provides ECG samples for each cardiac 
sequence. 

 

Fig. 2. Bar chart shows the frequency of each diagnosis across all samples. 

 

Fig. 3. Scatter plot displays the sampling rates for each sample, categorized 

by dataset. 

B. Preprocessing and Data Augmentation 

The preprocessing and augmentation layer enhances the 
quality and diversity of medical ECG recordings, improving 
the performance and generalizability of deep learning models. 
Preprocessing is essential as it eliminates noise and 
irregularities, ensuring the input data is clean and reliable. This 
step is vital for practical model training, as high-quality data is 
a prerequisite. By filtering out background and extraneous 
noise, the clarity of ECG recordings is significantly improved. 
Band-pass filters focus on the relevant frequency range, 
removing unwanted frequencies. Augmentation techniques 
further increase the variety of data, making the model more 
robust to different conditions. This added diversity in the 
dataset enables the model to generalize better to new, unseen 
data. This works in these preprocessing and augmentation steps 
is crucial, as it ensures that the deep learning model provides 
high-quality, diverse data, which is critical for achieving 
accurate and effective medical diagnostics. 

y(t) = ∫ x(τ)h(t − τ)dτ
∞

−∞
   (1) 

where, y(t) is the filtered signal, x(t) is the original signal, 
and h(t) is the impulse response of the band-pass filter. The 
preprocessing involved applying a band-pass filter to each 
synthetic ECG signal to remove noise and isolate the frequency 
range of interest (0.5 Hz to 40 Hz). This preprocessing step as 
shown in Fig. 6 enhances the clarity of the ECG signals and 
prepares them for further analysis and modeling. 
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Fig. 4. This illustrates the duration of ECG recordings for each sample, 

grouped by diagnosis. 

 

Fig. 5. A visual representation of the different ECG patterns associated with 

each condition. 

 

Fig. 6. A preprocess visual representation of the different ECG patterns 

associated with each condition. 

Data Augmentation techniques as shown in Fig. 7 increase 
the diversity of the training data without the need for additional 
data collection. For time-series data, such as medical voice 
recordings, common techniques include: 

Time-Stretching: Altering the speed of the audio without 
affecting the pitch. 

Pitch Shifting: Modifying the pitch of the audio signal. 

 

Fig. 7. This bar chart shows the duration of ECG recordings after data 

augmentation for each sample, adjusted to a unified size of 30 seconds. 
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Adding Noise: Introducing random noise to simulate 
different recording conditions. 

𝑥𝑎𝑢𝑔 = 𝑥𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + 𝜖   (2) 

Where, the parameter 𝑥𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 is the original signal, and 
ϵ is the noise or transformation applied. Divide long recordings 
into smaller segments to focus on relevant portions of the data. 
Techniques: Use sliding windows and overlapping segments to 
ensure that all relevant information is captured. 

Segments = {xi: i + W ∣ i = 0, W/2, W, … }  (3) 

where, the parameter of W is the window size. 

C. Features Extraction and Transformation 

Feature extraction methods depend on job needs, data 
properties, and computational resources. Using various feature 
extraction methods to produce a complete feature set that 
improves model performance frequently delivers best results. 
Short-Time Fourier Transform (STFT) [35] can detect rhythm 
problems by collecting frequency content variations over time. 
Mel-Frequency Cepstral Coefficients (MFCC) [36] are a 
compact representation of spectral features that may 
differentiate circumstances with different patterns. Temporal 
characteristics provide a brief overview of signal data for trend 
analysis but can be lacking in depth. Wavelet features use 
temporal and frequency information to detect localized 
abnormalities and provide a multi-resolution signal view. 

Popular signal processing methods like the STFT and 
MFCC work well together to assess signal frequency content 
over time. STFT breaks a signal into short, overlapping 
segments and Fourier Transforms each for a precise time-
frequency representation. This approach is useful for detecting 
rhythm problems in ECG readings by detecting frequency 
variations over time. The STFT's spectrogram displays the 
signal's frequency components evolving, revealing transient 
patterns and localized abnormalities. This layer extracts and 
transforms essential properties from processed data in DL 
architectures, giving the model relevant input that improves 
learning. Feature extraction finds the most important data 
attributes, whereas transformation makes them learnable. 
Through feature extraction and transformation, the model may 
learn from the most informative input, boosting prediction 
accuracy and dependability. 

In ECG analysis, STFT helps in identifying and 
characterizing transient events, such as arrhythmias or epileptic 
spikes. Spectral features capture the frequency domain 
characteristics of the signal. The STFT is utilized in this paper 
to analyze how the frequency content of the signal changes 
over time. The STFT is given by: 

𝑋(𝑡, 𝑓) = ∑ x[n] ⋅ w[n − t] ⋅ e−j2πfn
𝑛  (4) 

Where x[n] is the signal, www is a window function, and 

e−j2πfn represents the Fourier basis functions. 

Whereas the MFCC technique useful for distinguishing 
conditions with distinct spectral patterns. In fact, the STFT 
delivers a complete time-frequency analysis, capturing detailed 
changes over time, while MFCCs offer a compact and 
perceptually relevant representation of the signals spectral. 

This features blend ensures that the DL architecture receives a 
set of rich features. The MFCCs are calculated as: 

𝐶𝑚 = ∑ log ∣ 𝑋𝑘 ∣ cos[𝑚(𝑘 − 0.5)
𝜋

𝑘
]𝐾

𝑘=1   (5) 

Temporal features include statistical measures like mean, 
variance, and zero-crossing rate, which provide insights into 
the signal’s variability and structure. For instance, the zero-
crossing rate can be computed as: 

ZCR =
1

𝑁
∑ abs(sgn(x[n]) − sgn(x[n − 1]))𝑁−1

𝑛=1  (6) 

where, sgn denotes the sign function. where 1 is the 
indicator function. To perform adaptive wavelet-transform, this 
paper performs multi-resolution analysis of the signal.  Use 
wavelet transforms to capture both frequency and temporal 
information as: 

𝑊𝑥(𝑎, 𝑏) =
1

√𝑎
∫ x(t)ψ (

𝑡−𝑏

𝑎
)

∞

−∞
𝑑𝑡   (7) 

where, ψ is the wavelet function, and a and b are scaling 
and translation parameters. Normalization adjusts the data to fit 
within a standard range, usually between 0 and 1. This step 
helps in reducing biases due to different scales of data features 
and enhances the performance of machine learning algorithms. 
Mathematically, normalization is expressed as: 

xnorm =  
𝑥−𝜇

𝜎
      (8) 

where, x represents the original data value, μ is the mean of 
the dataset, and σ is the standard deviation. This standardizes 
the data to have zero mean and unit variance. 

D. Deep Learning and Hyperparameter Optimization Layer 

Architecture integration of the DL and hyperparameter 
optimization layer is crucial. This phase helps construct a 
reliable cardiac disease detection system. Transformer 
networks and RNN models classify the previous layer features 
first. This layer creates a DL architecture that blends 
Transformer and Recurrent Neural Network strengths. This 
strength helps capture long-term interdependence and 
sequential patterns in features. A novel method called 
Hyperband-GA optimizes the DL architecture 
hyperparameters. The next paragraphs detail this in detail. 

Transformers are powerful models known for their self-
attention mechanisms, which allow them to capture 
dependencies across different parts of the input data without 
being constrained by distance. This characteristic makes 
Transformers exceptionally good at handling long-range 
dependencies and varying input lengths, which are common in 
medical data like ECG signals. The core component of a 
Transformer is the self-attention mechanism, which is 
mathematically defined as follows: 

Attention(Q, K, V) = softmax(
QKT

√𝑑𝑘
)V (9) 

where, Q, K, and V are the query, key, and value matrices, 
and dk is the dimension of the keys. The softmax function 
ensures that the attention scores sum up to 1. 

LSTMs, in particular, address the vanishing gradient 
problem of traditional RNNs, making them more effective at 
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learning long-term dependencies. The combination of 
Transformers and RNNs leverages the strengths of both 
architectures. Transformers handle global dependencies and 
varying input lengths efficiently, while RNNs excel at 
capturing sequential patterns and local dependencies. Capture 
sequential dependencies using Long Short-Term Memory 
(LSTM) networks. The LSTM update equations are: 

𝑓𝑡 = σ(W𝑓 ⋅ [h𝑡−1, x𝑡] + b𝑓) 

𝑖𝑡 = σ(W𝑖 ⋅ [h𝑖−1, x𝑡] + b𝑖) 

𝑂𝑡 = σ(W𝑜 ⋅ [h𝑡−1, x𝑡] + b𝑜)   (10) 

𝐶𝑡
~ = tanh(W𝑐 ⋅ [h𝑡−1, x𝑡] + b𝑐) 

𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × 𝐶𝑡
~ 

ℎ𝑡 = 𝑂𝑡 × tanh (𝐶𝑡) 

where, 𝑓𝑡  is the forget gate, 𝑖𝑡  is the input gate, 𝑂𝑡  is the 
output gate, 𝐶𝑡 is the cell state, and ℎ𝑡 is the hidden state. 

In addition to this, this study performed hyper-parameters 
optimized suing Hyperband-GA, which combines Hyperband’s 
resource allocation with Gas’ evolutionary strategies. 

Hyperband is an iterative method that allocates more 
resources to promising configurations and discards fewer 
promising ones early on, while Genetic Algorithms (GA) use 
evolutionary strategies to explore the hyperparameter space by 
simulating natural selection processes, such as mutation, 
crossover, and selection. Here’s an explanation of how 
Hyperband-GA works: 

P = C1, C2, … , CN} 

F(Ci) = Model Performance(Ci) 

Pselected = Select(P, F) 

Coffspring = Crossover(Cparent1, Cparent2) (11) 

Cmutated = Mutate(Coffspring) 

Pnext = GenerateNext(Pselected, Cmutated) 

Hyperband: 

𝐵 = 𝑅. 𝑙𝑜𝑔1+𝑛(𝑅)  (12) 

and 

𝑇𝑜𝑝 − 𝐾 = 𝑇𝑜𝑝 (
𝑁

𝛼𝑖
)  (13) 

Hyperband-GA leverages the exploratory power of GA and 
the efficiency of Hyperband, leading to an effective and 
efficient hyperparameter optimization strategy. Repeat until the 
budget is exhausted or convergence criteria are met. 

𝒓𝒊+𝟏 = 𝒓𝒊 × 𝛼𝑖    (14) 

E. Cloud-based Computing Environment 

Implementing a Python-based feature classification system 
with a security layer in cloud computing requires setting up the 
cloud infrastructure and establishing a safe and efficient 
classification service. First, choose a cloud provider like AWS, 

Google Cloud, or Azure, then configure a VM or Docker 
container as the computing infrastructure. Google cloud is used 
in this investigation. 

Once the cloud server is established, Python and its 
libraries must be installed. Update the server's package list and 
install Python, NumPy, pandas, scikit-learn, TensorFlow, and 
cryptography using pip. These packages prepare the 
environment for machine learning and security. The feature 
categorization model is developed or deployed next. One may 
import a pre-trained model in HDF5 format (model.h5) using 
TensorFlow. The classification function must preprocess input 
characteristics using scikit-learn's StandardScaler and generate 
predictions using the loaded model. 

System security requires strong encryption to safeguard 
data in transit and at rest. Using the cryptography library, 
symmetric Fernet encryption may be created. Encrypting and 
decrypting data using an encryption key protects features and 
predictions. For sensitive data, encryption is essential to 
prevent unwanted access and maintain data integrity. These 
components may be integrated into Flask to operationalize the 
feature categorization system. A RESTful API endpoint may 
receive HTTP POST requests with encrypted feature data, 
decrypt it on the server, preprocess it, and categorize the 
features using the pre-trained model. 

IV. EXPERIMENTAL RESULTS 

A. Experimental Setup 

The experimental setup began with setting up the 
environment in Google Colab and Google cloud, ensuring all 
necessary libraries were installed using pip. The complete 
parameters of Heart-SecureCloud are described in Table III. 
Feature data was generated to simulate ECG recordings, and 
this data was split into training and testing sets. A hybrid deep 
learning model was built, combining LSTM and Transformer 
layers to effectively capture both sequential and long-range 
dependencies in the data. The model was compiled using the 
Adam optimizer and binary cross-entropy loss function. 
Hyperband-GA was then employed for hyperparameter 
optimization. This optimization steps help to define a search 
space and an objective function to maximize the accuracy of 
the model. Later on, this study used data encryption with AES 
to secure the data during the processing pipeline. The model 
was evaluated again using decrypted data to ensure consistency 
in performance. 

Table IV shows Heart-SecureCloud hyper-parameter setup 
performance data for accuracy (ACC), recall (RE), precision 
(PR), and F1-score. The number of LSTM units, dropout rate, 
learning rate, attention heads, batch size, epochs, and critical 
dimensions vary per setup. The first setup, with 64 of LSTM 
units, 0.2 of dropout, 0.001 of learning, eight attention heads, 
32 of batches, 20 of epochs, and 64 of key dimensions. It 
achieves impressive performance parameters such as 98.50% 
of ACC, 98.60% of RE, 98.40% of PR, and F1-score. The 
second setup, with 128 of LSTM units, 0.3 of dropout, 0.0005 
of learning, 16 of attention heads, 64 of batches, 30 of epochs, 
and 128 of key dimensions.  Other configures are explained in 
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TABLE III.  A TABLE SUMMARIZING THE HYPER-PARAMETERS OPTIMIZATION SETUP FOR THE PROPOSED HEART-SECURECLOUD SYSTEM 

Hyper-parameter Description 

LSTM Units Number of units in the LSTM layer, which controls the dimensionality of the output space. 

Dropout Rate Fraction of the input units to drop for the linear transformation of the inputs. 

Learning Rate Learning rate for the Adam optimizer, which controls the step size during gradient descent updates. 

Number of Heads Number of attention heads in the Transformer layer. 

Batch Size Number of samples per gradient update, affecting the model's convergence and training time. 

Epochs Number of times the entire training dataset is passed through the network. 

Key Dimension Dimensionality of the query, key, and value vectors in the Transformer layer. 

TABLE IV.  IT DEFINES VALUES FOR ACCURACY, RECALL, PRECISION, AND F1-SCORE FOR DIFFERENT HYPER-PARAMETER CONFIGURATIONS FOR HEART-
SECURECLOUD SYSTEM 

Configuration 
LSTM 

Units 

Dropout 

Rate 

Learning 

Rate 

Attention 

Heads 

Batch 

Size 
Epochs 

Key 

Dimension 
ACC RE PR F1 

Config 1 64 0.2 0.001 8 32 20 64 98.50% 98.60% 98.40% 98.50% 

Config 2 128 0.3 0.0005 16 64 30 128 98.75% 98.80% 98.70% 98.75% 

Config 3 64 0.3 0.0005 8 32 30 64 98.60% 98.65% 98.55% 98.60% 

Config 4 128 0.2 0.001 16 64 20 128 98.70% 98.75% 98.65% 98.70% 

Heart-

SecureCloud 
128 0.3 0.0005 16 64 30 128 98.75% 98.80% 98.70% 98.75% 

 

Table IV. With 98.75% of ACC, 98.80% of RE, 98.70% of 
PR, and 98.75% of F1-score, this Heart-SecureCloud setting 
works well. Also, this step is automatically achieved by 
Hyperband-GA algorithm. 

B. Performance Metrics 

This study utilized various statistical measures to evaluate 
Heart-SecureCloud system on the selected dataset. This 
architecture performance assesses the model's accuracy, 
precision, recall, and F1-score. These metrics are described 
below. 

Accuracy used standard performance metrics to evaluate 
the model's effectiveness and it measures the proportion of 
correctly classified samples. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐴𝐶𝐶) =
TP+TN

TP+TN+FP+FN
  (15) 

where, TP is true positives, TN is true negatives, FP is false 
positives, and FN is false negatives. 

Precision metric measures the proportion of true positives 
among predicted positives and is calculated by Eq. (16). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃𝑅) =
TP

TP+FP
   (16) 

Recall is another measure, which is used to detect the 
proportion of true positives among actual positives. It is 
calculated by Eq. (17) as: 

𝑅𝑒𝑐𝑎𝑙𝑙(𝑅𝐸) =
TP

TP+FN
   (17) 

Finally, the F1-Score statistical measure is used, which 
provides harmonic mean of precision and recall. It is calculated 
as follows: 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑅×𝑅𝐸

𝑃𝑅+𝑅𝐸
  (18) 

Protect sensitive medical data using advanced encryption 
and access control techniques. Implement various security 
mechanisms to ensure data protection. The encryption metric 
use AES to encrypt data as: 

𝐶𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 = 𝐴𝐸𝑆𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡, 𝑘𝑒𝑦)  (19) 

Implement role-based access control (RBAC) to restrict 
data access. 

Permissions = RBAC(User Role)   (20) 

Use data masking techniques to obscure sensitive 
information. 

Masked Data = Masking(Original Data)  (21) 

Store data in a secure, encrypted database. 

Encrypted Storage = Secure Storage(Data)  (22) 

C. Results Analysis 

Heart-SecureCloud system contains different four 
components. In this paper, the impact of removing or altering 
each major component are described. The study focuses on 
evaluating the contributions of the four stages compared to 
state-of-the-art approaches. The performance metrics include 
accuracy, recall, precision, and F1-score. When tested on all 
four components, the Heart-SecureCloud system achieved 
ACC of 98.75%, high RE, PR, and F1-score values, indicating 
the model's robustness and effectiveness. It is visually 
represented in Fig. 8. However as shown in this figure, if 
remove the preprocessing and augmentation steps, the Heart-
SecureCloud system results in a drop in ACC to 97.50%.  In 
contrast with this, a separate experiment is performed to test 
the third component of Heart-SecureCloud system. In this 
experiment, features extracted step was removed and used 
direct ECG images. After removing this step, the proposed 
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Heart-SecureCloud system decreases the ACC of 97.00% as 
shown in Fig. 9. It shows that the features extraction and 
transformation step is very important to perform effective 
learning. 

A hybrid transformer-RNN model and hyperband-GA 
optimization steps were removed from Heart-SecureCloud, 
lowering accuracy to 96.50% as shown in Fig. 10. This shows 
that the need of hybrid transformer-RNN model and 
hyperband-GA optimization methods in improving heart 
disease detection. However, removing the Security Layer does 
not affect accuracy, which remains at 98.75% as shown in Fig. 
11. This suggests that while security measures protect sensitive 
data, they don't affect the model's prediction abilities. 
However, these procedures are necessary for data integrity and 
privacy compliance. 

 

Fig. 8. Experiments results of proposed Heart-SecureCloud system with full 

system and without preprocessing and data augmentation. 

 

Fig. 9. Results after excluding the feature extraction from Heart-

SecureCloud system and using direct ECG images. 

 

Fig. 10. Experiment used mean, variance features from ECG signals and 

classifier SVM to recognize heart diseases. 

 

Fig. 11. Removing the security layer does not affect the accuracy of Heart-

SecureCloud system. 

 

Fig. 12. The results in confusion matrix, which is designed for the seven 

classes of proposed Heart-SecureCloud system. 

Fig. 12 shows the result in terms of confusion matrix for 
seven classes by the proposed Heart-SecureCloud system. 
Whereas, the diagonal predictions correctly and the remainder 
erroneous guesses off-diagonal. Table V shows that the 
suggested Heart-SecureCloud system outperforms alternative 
models. The transformer-RNN architecture and hyperband-GA 
optimization of the Heart-SecureCloud system yields an 
impressive 98.75% accuracy, outperforming the Lih-16-layer-
LSTM, Rath-GAN-LSTM, and Ramaraj-GRU-ELM, which 
have 90.85%, 92.10%, and 88.20% accuracy, respectively. The 
Heart-SecureCloud system has superior accuracy, precision, 
recall, and F1-Score, proving its predictive power. The 
suggested system's mix of deep learning, cloud security, and 
sophisticated optimization approaches improves accuracy, data 
integrity, and security. Heart-SecureCloud predicts heart 
disease better than competitors due to its complete 
methodology. 
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TABLE V.  A COMPARISON TABLE BETWEEN THE PROPOSED HEART-SECURECLOUD SYSTEM AND THE OTHER MODELS 

Model Architecture Accuracy Precision Recall F1-Score Key Features 

Heart-SecureCloud 
transformer-RNN 

+ hyperband-GA 
98.75% 98.70% 98.80% 98.75% 

Combines deep learning with cloud security; uses advanced 

optimization 

Lih-16-layer-LSTM [15] 16-layer LSTM 90.85% 90.60% 90.70% 90.65% Focuses on sequential data processing with LSTM layers 

Rath-GAN-LSTM [16] GAN + LSTM 92.10% 91.90% 92.00% 91.95% 
Uses GANs to enhance data diversity for LSTM model 
training 

Ramaraj-GRU-ELM [19] GRU + ELM 88.20% 88.00% 88.10% 88.05% 
Combines GRU for sequential data with ELM for fast 

training and inference 
 

D. Computational Analysis 

The computational time study of Heart-SecureCloud 
system shows that the suggested system is computationally 
demanding, notably during DL model training and 
hyperparameter tuning, yet economical and practical. So, the 
system may be deployed in real life without delays, the 
preprocessing, feature extraction, and security layers take 
minimal time. The system's precision and resilience justify its 
15600 millisecond (15.6 second) processing time as measured 
in Table VI. This research guides future optimizations and 
enhancements by understanding computational efficiency-
model performance trade-offs. 

The efficiency of the employed algorithms keeps the 
preprocessing and augmentation phase, which comprises noise 
removal, normalization, and data augmentation, to 150 ms. 
After that, 200 ms of feature extraction and transformation 
using STFT, MFCCs, and wavelet transformations prepares the 
data for the deep learning model. Due of its complexity, 
training the hybrid model, which uses LSTM and Transformer 
layers, takes 5000 ms. Hyperband-GA hyperparameter tuning, 
which takes 10000 ms iteratively, is another important phase. 
Data is secured by AES encryption and decryption, adding 250 
ms. Overall processing takes 15600 ms. This comprehensive 
technique combines accuracy and computing efficiency to 
ensure system performance in an acceptable time. 

E. Security Analysis 

The Heart-SecureCloud solution protects sensitive medical 
data with appropriate security safeguards, according to one 
analysis. Data encryption, access control, masking, and safe 
storage protect data confidentiality, integrity, and unauthorized 
access. These security measures have low performance 
consequences, keeping the system efficient and effective. 
These security measures as shown in Table VII don't alter the 
model's accuracy, demonstrating the system's real-world 
dependability. 

With a 9/10 efficacy rating, AES encryption protects data. 
Encryption and decryption have a 3/10 performance effect, but 
the security benefits are worth it. Encryption has no influence 
on system correctness and does not alter the model's prediction 
performance. With an 8/10 effectiveness rating, RBAC restricts 
data access to authorized workers, reducing data breaches. 
Implementing access control measures has a 2/10 performance 
impact and a 0/10 impact on system correctness. With a 7/10 
efficacy rating, data masking protects sensitive data during 
development and testing, but not as well as encryption for data 
at rest or in transit. Data masking has a significant overhead, 
mostly impacting data processing stages, scored 3/10 for 
performance effect, and does not influence model correctness 

in production, rated 0/10 for system accuracy. Secure storage, 
with a 9/10 efficacy rating, encrypts data at rest to prevent 
unwanted access and alteration. Due to the decryption process, 
encrypted storage can increase data retrieval times, but this 
performance effect is normally acceptable at 4/10 and does not 
damage the model's predictive ability, retaining a 0/10 impact 
on system accuracy. 

The proposed Heart-SecureCloud detection system 
improves input data quality and diversity through advanced 
preprocessing and augmentation, captures essential features 
using advanced extraction methods, and achieves high 
accuracy with a hybrid deep learning model optimized by 
Hyperband-GA. The main advantages of proposed system are 
described in Table VIII and disadvantages are described in 
Table IX. The system's cloud server implementation allows 
scalability and easy data administration, and strong security 
measures protect sensitive medical data. However, these gains 
may be offset by significant computational costs, feature 
extraction and model implementation complexity, resource-
intensive optimization methods, and security precautions. Data 
privacy and compliance are other challenges with cloud 
architecture, and despite its great accuracy, certain vital 
applications may still fail. 

The heart disease detection system will use model 
compression and more efficient algorithms to optimize 
computational efficiency and minimize processing time and 
resources. We use automated feature engineering and ECG and 
medical history data to improve feature extraction. We will 
employ ensemble approaches and sophisticated neural network 
topologies to increase model accuracy and generalization. 
Advanced encryption, differential privacy, and federated 
learning will improve security and privacy. Real-time 
processing and scalable infrastructure are essential for 
managing higher loads and giving timely insights. Finally, we 
want to include continuous learning, updates, and maintenance 
to maintain the system current with new data and 
methodologies and secure in the long run. 

TABLE VI.  A COMPUTATIONAL TIME ANALYSIS OF THE PROPOSED 

SYSTEM, INCLUDING EACH MAJOR COMPONENT, IN MILLISECONDS 

Component Processing Time (ms) 

Preprocessing and Augmentation 150 

Feature Extraction and Transformation 200 

Deep Learning Model Training 5000 

Hyperparameter Optimization 10000 

Security (Encryption and Decryption) 250 

Total Time 15600 
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TABLE VII.  SECURITY ANALYSIS OF PROPOSED HEART-SECURECLOUD SYSTEM 

Security 

Mechanism 
Description Method Effectiveness 

Performance 

Impact 

Impact on System 

Accuracy 

Data Encryption 
Encrypts data to prevent unauthorized access and 

tampering. 
AES 9/10 3/10 0/10 

Access Control 
Restricts data access based on user roles and 

permissions. 
RBAC 8/10 2/10 0/10 

Data Masking 
Obscures sensitive information to protect data during 

non-production phases. 

Masking 

techniques 
7/10 3/10 0/10 

Secure Storage 
Ensures data is stored in an encrypted format to protect 

it from unauthorized access. 

Encrypted 

databases 
9/10 4/10 0/10 

TABLE VIII.  ADVANTAGES OF CURRENT HEART-SECURECLOUD SYSTEM 

No. Terms Explains 

1. Preprocessing and Augmentation Enhances quality and diversity of input data through sophisticated techniques. 

2. Feature Extraction Captures essential spectral and temporal characteristics for efficient learning. 

3. Deep Learning Architecture Handles complex medical voice data with hybrid Transformer and LSTM architecture. 

4. Hyperparameter Optimization Ensures peak performance and high accuracy with Hyperband-GA optimization and transfer learning. 

5. Security Measures Protects sensitive data with AES encryption, RBAC, data masking, and secure storage. 

6. Cloud Deployment Provides practical and scalable data processing and management. 

7. Model Accuracy Achieves a high accuracy of 98.75% in diagnosing heart disease. 

TABLE IX.  DISADVANTAGES OF CURRENT HEART-SECURECLOUD SYSTEM 

No. Terms Explains 

1 Preprocessing and Augmentation Potentially high computational cost due to sophisticated techniques. 

2 Feature Extraction Complex feature extraction methods may require significant processing time. 

3 Deep Learning Architecture Hybrid model architecture may be challenging to implement and fine-tune. 

4 Type of Dataset HEART-SECURECLOUD utilized only ECG type of recording. 

5 Security Measures Security measures add additional layers of complexity and may impact performance. 

6 Cloud Deployment Dependence on cloud infrastructure may raise concerns about data privacy and compliance. 

7 Model Accuracy Accuracy, although high, might still be insufficient for certain critical applications. 
 

V. CONCLUSION 

The Heart-SecureCloud heart disease detection system uses 
superior preprocessing, feature extraction, deep learning, and 
security. Advanced noise reduction, normalization, and 
segmentation improve input data quality and diversity. 
Augmentation methods boost model generalization. The 
complete feature extraction methodology, which incorporates 
spectral and temporal methodologies, captures key medical 
voice recording properties, enabling deep learning model 
learning and convergence. The Transformer network-LSTM 
layer hybrid model captures long-range relationships and 
sequential patterns in medical speech data. The innovative 
Hyperband-GA optimization approach with transfer learning 
deliver peak model performance and 98.75% accuracy. 
Validation using conventional performance criteria proves the 
model's heart disease diagnosis accuracy. 

AES encryption, RBAC, data masking, and secure storage 
protect sensitive medical data across the processing pipeline, 
preventing data breaches and illegal access. These security 
measures boost the system's credibility and privacy 
compliance. The system's cloud server deployment ensures 
secure and efficient data processing and administration in real-
world scenarios. The suggested heart disease detection system 

advances medical diagnostics by setting new standards for 
accuracy and dependability. Its novel hybrid methodology, 
improved security architecture, and optimized performance 
metrics might help doctors diagnose and treat heart disease 
earlier. Integrating more data kinds, real-time processing, 
enhanced optimization, and upgrading security mechanisms to 
handle new threats may be future goals. This strong, accurate, 
and secure technology improves heart disease management 
patient outcomes. 
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