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Abstract—Accurate defect detection of navel oranges is the key 

to ensuring the quality of navel oranges and extending their 

storage life. An improved DeeplabV3+ model integrating attention 

mechanism is proposed to increase the current low recognition 

accuracy and slow detection speed of defect detection in navel 

oranges grading and sorting process. The improved lightweight 

backbone network HECA-MobileV3 is applied in the DeeplabV3+ 

model to reduce the amount of computational data and improve 

the image processing speed. In addition, the Convolutional Block 

Attention Module (CBAM) and Channel Space Parallel 

Mechanism CSPM are integrated to the DeeplabV3+ model. ASPP 

structure is redesigned and the low feature extraction network is 

optimized to enhance the capture of target edge information and 

improve the segmentation effect of the model. Experimental 

results show that the proposed model exhibits a better MIoU and 

MPA with 89.50% and 94.02%, respectively, while reducing 

parameters by 49.42M and increasing detection speed by 55.6fps, 

which are 7.27% and 3.51% higher than the basic model.  The 

results are superior than U-Net, SegNet and PSP-Net semantic 

segmentation networks. As a results, the proposed method 

provides better real-time performance, which meets the 

requirements of industrial production for detection accuracy and 

speed. 
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I. INTRODUCTION 

Jiangxi Gannan, home to the world's largest navel oranges 
plantation, has an annual output of up to one million tons 
annualy. However, despite its large-scale production, the 
harvesting and sorting processes still rely heavily on manual 
methods leading to high labour cost, prominent seasonality and 
high labour intensity. As the production of navel oranges 
increases year by year and sales channels continue to expand, 
the automation of grading and sorting of navel oranges are 
gradually emerging. After being picked from the trees, navel 
oranges need to go through disinfection and cleaning, 
sterilization and waxing, drying and weighing, colour and size 
grading, skin defect sorting, sugar content density quality 
analysis, and packaging and labeling before the fruit can be 
shipped to various parts of the world [1]. At present, the navel 
orange sorting line can quickly sort navel oranges based on their 
size and colour, but the recognition of local defects on the skin 
is not accurate at lower detection rate, which affected the overall 
quality, delayed the storage time and sorting process of navel 

oranges. Recent trends in machine vision and advancement in 
deep learning have led to a proliferation of studies that apply 
both methods in the field of navel oranges skin defect detection. 

The traditional machine vision algorithm is mainly used to 
grade and classify navel orange defects based on the differences 
in data such as the RGB colour of the navel orange peel, surface 
brightness distribution, spectral imaging band curve and edge 
threshold. Abdelsalam et al. [2] detected the external defects of 
orange citrus fruits using multi-spectral imaging sensor. They 
segmented the defects based on the near-infrared (NIR) and 
RGB images of orange fruits and used threshold technology to 
detect defects in seven colour components of orange fruits. The 
overall accuracy of the algorithm exceeded 95%. Rong et al. [3] 
designed a fast edge detection algorithm for navel oranges 
surface defects to solve the problem of low defect detection 
accuracy caused by surface brightness by using the threshold 
edge segmentation method. Zhang et al. [4] proposed an Otsu 
threshold segmentation method based on image segmentation 
according to the different characteristics of navel orange surface 
defects, and the defect recognition rate is approximately 92.7%. 
Luo et al. [5] used a visible-near-infrared hyperspectral imaging 
system with a wavelength range of 325 to 1000 nm to collect 
citrus hyperspectral images, and used guided soft shrinkage 
(BOSS) and BOSS-SPA (BOSS-continuous projection 
algorithm) combined algorithms to optimize the spectral 
variables. Based on the extracted four defect wavelength images, 
they proposed a fast multispectral image processing algorithm 
combined with global threshold theory for rotten orange 
detection, with an overall classification accuracy of up to 98.6%. 

Nowadays, deep learning techniques have been widely 
applied mainly on 1) object detection and 2) semantic 
segmentation. Object detection involves recognizing and 
locating target objects in an image, including algorithms such as 
R-CNN, YOLO and SSD. Semantic segmentation assigns 
semantic labels to each pixel in the image, including FCN, U-
Net, Deeplab, SegNet and PSPNet. Iqbal et al. [6] determined 
the difference in fruit surface quality by training the RGB image 
combination data based on different fruit surface colour data. 
Asriny et al. [7] applied deep convolutional neural networks to 
grade the quality of navel oranges, establishing a database of 
over 1000 navel orange images and achieving a detection 
accuracy of 96% for different categories of navel oranges. Cai 
et al. [8] proposed a multi-resolution knowledge distillation 
strategy by integrating multi-scale pyramid modules and semi-
resolution reconstruction branches, training the FastSegfermer 
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model, which effectively improved the segmentation accuracy 
of the network, achieving a MIoU of 88.78%. 

However, it can be concluded that there are several 
shortcomings in the navel orange defect detection research. The 
research up to now has been mainly based on traditional 
machine vision algorithms where the key challenge is the 
algorithm is too complex with computational burden resulting in 
difficulty to achieve real-time online detection. Although there 
are few common types of surface defects such as anthrax, sun 
spots and scratches, the highest chances to detect the similarity 
defect are low due to the nature of the fruit. Especially in the 
same image, precise segmentation is not achievable, particularly 
for small defects, thus failing to meet the requirements for 
grading and classification. 

With the rapid development of computing power and 
artificial intelligence, researchers are also developed other fruit 
and vegetable detection using spectral technology, ultrasonic 
imaging and deep learning. Da Costa et al. [9] introduced the 
ResNet50 model into tomato external defect detection with the 
accuracy rate of 94.6%. Liang et al. [10] proposed a semantic 
segmentation method based on BiSeNet V2 deep learning for 
apple defect detection, and its average pixel accuracy MPA 
value approximately 99.66%. Hao et al. [11] applied the 
DeeplabV3+ model for kiwi defect recognition, using the 
lightweight convolutional neural network MobileNetV2 to 
extract image features, reducing the training time and achieving 
an average classification recognition rate of 96%. Gu et al. [12] 
used the phantom network and coordinate attention module to 
construct CA-ChostNet as the backbone feature extraction 
network of DeeplabV3+ for tomato target recognition, which 
reduced the number of network parameters while improving the 
model's segmentation capacity for small target categories. In 
order to improve the real-time performance of apple defect 
detection, Fan et al. [13] reduced the number of channels and 
network depth in the YOLOV4 network, reducing the size of the 
network model to 8.82MB with lower detection time of only 
8.36ms for each image. It can be concluded that there is growing 
interest in deep learning application as main method for fruit and 
vegetable detection. 

A. Navel Oranges Defect Types 

There is multiple type of navel orange defects which are 
spots, scars, mildew, damage, blemishes, and enlarged fruit 
heads. If navel oranges are simply divided into good and 
defective fruits can cause great waste. Therefore, it is necessary 
to accurately identify the type and size of defects to better 
achieve navel orange grading and sorting. 

Semantic segmentation algorithms include classic 
algorithms such as FCN, U-Net, SegNet, as well as modern deep 
learning algorithms such as PSPNet, Deeplab, and Mask R-CNN. 
Among them, the Deeplab network is a model with outstanding 
semantic segmentation performance at present, and has been 
gradually optimized from DeeplabV1 to DeeplabV3+. In 2018, 
DeeplabV3+ introduced an encoder-decoder structure, 
integrated multi-scale information, and improved the accuracy 
of image segmentation, becoming the most outstanding model 
for semantic segmentation. In view of the problems existing in 
the current research on navel oranges defect detection, combined 
with the problems of DeeplabV3+ model with many parameters 

and weak extraction of small target boundary features, this study 
proposes an improved DeeplabV3+ navel oranges defect real-
time detection and segmentation model. The main research 
contributions of this paper are: 

1) MobileNetV3 is used to replace the backbone network 

Xception, and the improved ECA attention mechanism is used 

to replace the SE mechanism in the MobileNetV3 network, 

which greatly reduces the amount of calculation parameters and 

improves the real-time performance of detection. 

2) Redesigned the Atrous Spatial Pyramid Pooling (ASPP) 

structure of the DeeplabV3+ model. The CBAM attention 

mechanism and the CSPM mechanism are integrated to 

dynamically adjust the weight share of the feature channel to 

increase the attention to important areas of the image and 

comprehensively improve the recognition capacity of different 

types of navel orange defects. 

3) The CBAM attention mechanism is added to the 

extraction of low-order feature information to make the 

extracted low-order features more representative and 

discriminative, and improve the segmentation effect and 

stcapacity of the model for boundary features. 

4) Navel orange images are collected and a database of 

more than 2,000 navel orange defects is created to reduce model 

overfitting and provide more accurate and reliable model 

evaluation. 

II. DEEPLABV3+ NETWORK MODEL WITH IMPROVED 

ATTENTION MECHANISM 

A. DeeplabV3+ Model 

The Deeplab model was proposed in 2015. Over the years, 
with the continuous iteration and optimization of algorithms and 
technologies, DeeplabV1 [14], DeeplabV2 [15], and DeeplabV3 
[16] models have been proposed one after another, continuously 
improving the model structure while improving the image 
segmentation. To address the issues of reduced image resolution, 
lower accuracy, and loss of details caused by max pooling and 
downsampling in deep convolutional neural networks (DCNNs), 
DeeplabV1 introduces the Atrous convolution algorithm and 
fully connected CRF structure. This approach expands the 
receptive field and connects DCNNs with CRF, thereby 
improving segmentation accuracy. DeeplabV2 improves the 
model's backbone network from VGG to ResNet and constructs 
an ASPP structure. This configuration captures information at 
multiple scales with high accuracy and capacity through parallel 
sampling. DeeplabV3 enhances the capacity to capture multi-
scale information in images by varying the unit dilated rate of 
Atrous convolutions. To solve the problem of prolonged 
processing time and incomplete detail information in high-
resolution images with DeeplabV3, DeeplabV3+ introduces an 
encoder-decoder structure, enhancing network capacity while 
ensuring the accuracy of feature extraction. 

DeeplabV3+ consists of DCNN with dilated convolution and 
ASPP as the main structure of the encoder. Due to pooling and 
strided convolutions in the feature extraction process, some 
image details, particularly boundary features, are lost. To 
address this, the model integrates high-level features from the 
encoder with low-level features from the DCNN, enhancing 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 9, 2024 

201 | P a g e  

www.ijacsa.thesai.org 

boundary segmentation accuracy. The DCNN utilizes the 
Xception backbone, a complex structure with Entry, Middle, and 
Exit flow layers, leading to a high number of computational 
parameters and slower training and inference speeds. The ASPP 
module includes one 1x1 convolution, three 3x3 convolutions 
with different dilation rates, and one image pooling layer, aimed 
at dimensionality reduction, multi-scale context information 
extraction, and global context capture of the input image, 
respectively. The decoder connects low-level feature maps from 
the DCNN through a 1x1 convolution with the encoder's 4x 
upsampled high-level semantic feature maps. It further refines 
features with 3x3 convolutions and produces accurate prediction 
maps after another 4x upsampling. The DeeplabV3+ model 
architecture is illustrated in Fig. 1. 

 
Fig. 1. DeeplabV3+ model structure diagram. 

Although the DeeplabV3+ model has demonstrated 
excellent performance, it still faces challenges such as complex 
network and large amount of computation, limited capacity to 
capture details, and strong data dependency. Currently, many 
scholars have replaced lightweight backbone networks (such as 
MobileNet and Thin-xception) [17] to reduce the amount of 
computation and improve real-time performance, or introduced 
attention mechanisms (such as SE and CBAM) [18] in the model 
to improve the accurate segmentation of details, or added more 
multi-scale feature fusion modules (such as FPN [19] and ASPP 
[20]) to improve the recognition capacity for large-scale targets. 

B. Improved MobileNetV3 Backbone Network 

The DeeplabV3+ model employs the Xception network as 
the backbone for feature extraction, which inadequate for navel 
orange grading and sorting since the network required a large 
number of parameters and not suitable for the real-time 
application. Therefore, an improved lightweight MobileNetV3 
backbone network is proposed to replace Xception. 

The MobileNet network was proposed by the Google team 
in which MobileNetV3 is a lightweight network model that is 
continuously improved and optimized based on V1 and V2, 
which achieved excellent performance in tasks such as image 
classification and semantic segmentation [21]. Since traditional 
convolutional neural networks have large computational 
complexity and consume a lot of memory, depthwise 
convolution and pointwise convolution are combined in 
MobileNetV1 to construct a deep separable convolution 
structure, reducing its parameter volume and computational 
complexity to one square of the convolution kernel. After 
continuous verification, it was found that most of the 

computational parameters of V1's depthwise convolution were 
zero, limiting its effectiveness. Therefore, MobileNetV2 
incorporated the inverted residual block and optimized 
activation functions, resulting in improvements in segmentation 
accuracy and processing time compared to the V1 structure. 
MobileNetV3 retains the depthwise separable convolution and 
inverted residual block from V2, adds the SE attention 
mechanism, updates activation functions, and redesigns the 
structure of time-consuming layers [22]. The network structure 
of MobileNetV3 is shown in Fig. 2. 

 
Fig. 2. MobileNetV3 model structure diagram. 

The attention mechanism allows the model to improve its 
representation ability by focusing on different parts or features 
of the data during processing data. The main attention 
mechanisms currently include SE (Squeeze-and-Excitation 
Networks), ECA (Efficient Channel Attention Module), CA 
(Coordinate Attention) and CBAM (Convolutional Block 
Attention Module) [23]. The core idea of the SE module is to 
enhance the feature map by learning the importance of each 
channel. The SE module first uses a global average pooling 
operation to capture the global information of each channel, then 
learns the weight of each channel through two fully connected 
layers, and finally uses the sigmoid function to normalize the 
weight of each channel. The ECA module aims to reduce the 
computational costs by improving the SE model and capturing 
inter-channel relationships over a larger spatial range. It captures 
global information by adaptively determining the size of the 
one-dimensional convolution kernel through the channel 
dimension function. Since it does not involve global average 
pooling, it can reduce the computational cost. The CBAM 
module connects channel attention and spatial attention in series, 
allowing the model to dynamically focus on important 
information in the image in both the channel and spatial 
dimensions. The structures of the ECA and CBAM models are 
illustrated in Fig. 3. 

Hard-sigmoid is used for the ECA attention mechanism 
instead of Sigmoid linear activation function as the function 
offers higher computational efficiency and effectively addresses 
the vanishing gradient problem. The improved H-ECA attention 
mechanism is shown in Fig. 4. After feature extraction, the 
Hard-sigmoid activation function is used to obtain the weight w 
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of each channel, and finally multiplied with the corresponding 
element of the original feature map to obtain the final output 
feature map. 

 
(a) ECA attention mechanism. 

 
(b) CBAM attention mechanism. 

Fig. 3. ECA and CBAM model structure diagram. 

 
Fig. 4. Improved H-ECA attention mechanism. 

To ensure the efficiency of navel oranges sorting, high 
recognition speed of images during the sorting process is 
required. The SE attention mechanism with high complexity is 
used in MobileNetV3, which will affect the response speed and 
real-time performance of the model. Therefore, to reduce the 
computational complexity and the number of parameters, the H-
ECA mechanism replaces the SE mechanism in Bneck, and the 
feature information of different scales is better captured through 
local cross-channel convolution operations. The Bneck structure 
diagram of the improved backbone network HECA-
MobileNetV3 is shown in Fig. 5. 

 
Fig. 5. Improved Bneck structure diagram. 

The number of parameters occupied by the attention 
mechanisms are quantified in both the original MobileNetV3 
and the improved HECA-MobileNetV3 networks, as well as 
their proportion of the total parameters as shown in Table I. The 
H-ECA attention mechanism replaced the SE attention 
mechanism in layers 3, 5, 6, 8, 12, 13, 14, and 15. Since H-ECA 
is not affected by the number of input and output channels, the 
size of its convolution kernel K is 5, Params = K*1+1, and the 
calculated Params is 6, accounting for almost 0.00%. It can be 
seen that the H-ECA attention mechanism occupies only a very 
small number of parameters. 

TABLE I. STATISTICS OF ATTENTION MECHANISM PARAMETERS IN 

MOBILENETV3 NETWORK BEFORE AND AFTER IMPROVEMENT 

Layer 
SE H-ECA 

Params 
Params 

Proportion 
Params 

Params 

Proportion 

3 0.003M 0.107% 6 0.000% 

5 0.007M 0.228% 6 0.000% 

6 0.007M 0.228% 6 0.000% 

8 0.105M 3.526% 6 0.000% 

12 0.231M 6.722% 6 0.000% 

13 0.231M 6.722% 6 0.000% 

14 0.460M 13.166% 6 0.000% 

15 0.460M 13.166% 6 0.000% 

Total 1.504M 43.865% 48 0.000% 

C. Improved DeeplabV3+ Network Model 

In the actual grading and sorting of navel oranges, a large 
amount of image data needs to be collected. Even for the same 
navel orange, images need to be collected from multiple angles, 
and the detection speed of the results needs to be controlled 
within the millisecond. At the same time, although the shape of 
the navel orange does not change much, the details inside the 
peel are random and variable. The location, size and shape of the 
defects, the size of the navel and the thickness of the head are all 
different. Therefore, this study proposes an improved 
DeeplabV3+ lightweight network model that integrates the 
attention mechanism. The main improvements are in the 
following parts: 

1) The improved lightweight backbone network HECA-

MobileNetV3 is used to replace Xception, which not only 

reduces the model calculation amount and improves the real-

time detection, but also is very easy to add to embedded systems 

or mobile devices, improving the applicability of the research. 

2) In the ASPP structure of the DeeplabV3+ model, the 

CBAM attention mechanism and the Channel Space Parallel 

Mechanism (CSPM) were introduced to redesign the ASPP 

structure. CBAM uses the output of the channel mechanism as 

the input of the spatial mechanism, with a faster calculation 

speed and can gradually enhance the expressiveness of the 

feature map. At the same time, in order to address the key 

information loss problem that may exist in the CBAM 

mechanism, a parallel mechanism of channel attention and 

spatial attention is added to obtain the global dependency 
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information of the input navel orange image in channels and 

space, and finally the splicing and fusion are passed to the 

decoding layer. 

3) CBAM attention mechanism is added to the backbone 

network to extract low-level feature information of the image 

and adaptively adjust the feature map weights that can enhance 

key low-order features, suppress noise and redundant 

information, improve the model's generalization ability, and 

provide clearer and more effective features as shown in Fig. 6. 

 
Fig. 6. Improved deeplabV3+ network model. 

III. DATA COLLECTION AND EXPERIMENTAL EVALUATION 

INDICATORS 

A. Data Collection 

November to December every year is the harvest season for 
navel oranges in southern Jiangxi. The shelf life of navel oranges 
is as long as three to six months. The fruit is available 
everywhere in the market, which facilitates data collection. In 
actual fruit and vegetable grading and sorting equipment, 
multiple industrial depth cameras are often used to collect videos 
of navel oranges from different angles, convert the videos into 
pictures, and send them to the controller for intelligent 
processing [24]. In this study, a smartphone is used to collect 
image data with a resolution of 3200 x 1440 and 64 mega pixels. 
All images are collected in a static state, and the size of the 
collected images is 3472 x 4624. A high-performance computer 
is used to process image data and optimize, train and analyze 
deep learning network models. The computer specification is 
tabulated in Table II. 

Various image of navel oranges placed under natural light in 
the living environment and artificial lighting after harvesting are 
recorded for database. A total of 800 original images were 
obtained, including 100 spotted, 100 navel, 100 moldy, 100 
thick-heads, 200 damaged, and 200 other defects. Considering 
the limited number of images, data augmentation techniques 
were applied using Python's OpenCV and Pillow libraries to 

rotate, crop, and adjust the brightness of the images to enhance 
the generalization ability of the model. This process increased 
the dataset to 2400 images, with the image size is adjusted to 
512 x 512. 

The collected images were labeled using the labelme tool. 
By segmenting the details of the navel orange peel, six semantic 
labels were obtained, including spots, mildew, damaged, navel, 
head hypertrophy and other defects. The json file generated by 
the labeling tool is created as a dataset, and the data was divided 
into training set and test set in a ratio of 8:2, resulting in 1920 
training sets and 480 validation sets. 

TABLE II. COMPUTER HARDWARE AND SOFTWARE CONFIGURATION 

Hardware and 

Software 
Configuration 

Hardware 

CPU：Intel(R) Core(TM) i7-14700KF CPU @ 3.4GHz 

GPU：NVIDIA RTX4070Ti Super 16G 

Memory：32G 

Operating System：Windows 11 

Software 

Deep Learning Frameworks：pytorch 2.2.0 

Image processing software：Open CV 14.2 

Compiled Language：Python 3.12.1 
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B. Experimental Evaluation Metric Parameters 

This study uses the intersection over union (IoU), mean 
intersection over union (MIoU), and mean pixel accuracy (MPA) 
parameters to evaluate the accuracy of the model, and uses the 
parameter quantity and detection speed (FPS) of the model 
indicators to evaluate the capacity and real-time performance of 
the model. In all segmentation, recognition, and classification 
experiments, four types of results exist: true positive (TP), where 
the actual positive sample is correctly predicted as positive; true 
negative (TN), where the actual negative sample is correctly 
predicted as negative; false negative (FN), where the actual 
positive sample is incorrectly predicted as negative; and false 
positive (FP), where the actual negative sample is incorrectly 
predicted as positive. By evaluating the proportions of these 
outcomes, the effectiveness of the model's predictions can be 
determined [25]. MIoU is the average IoU of all different 
semantic categories, where IoU is the ratio of the intersection to 
the union between the predicted and the ground truth annotations. 
The formulas for calculating IoU and MIoU are as follows: 

IoU =
Predictive Value ∩ True Value

Predictive Value ∪ True Value
=

TP

TP + FP + FN

=
Pii

Pij + Pji + Pii

 

𝑀𝐼𝑜𝑈 =
1

𝐾 + 1
∑

𝑃𝑖𝑖

∑ 𝑃𝑖𝑗 + ∑ 𝑃𝑗𝑖 − 𝑃𝑖𝑖
𝑘
𝑗=0

𝑘
𝑗=0

𝑘

𝑖=0

 

MPA is the mean pixel accuracy, which calculates the 
proportion of correctly classified pixels for each semantic 
category and determine the average value. Due to the 
imbalanced distribution of positive and negative samples in this 
study, this indicator is can be used to measure the proposed 
method performance. The calculation formula is as follows: 

MPA =
1

K + 1
∑

pij

∑ pij
k
j=0

k

i=0
 

where i represents the true value, j represents the predicted 
value, and k represents the number of semantic categories. 

The size and complexity of the model have a great impact on 
the requirements of the device’s hardware performance. The 
number of model parameters is an important measurement 
indicator, which is related to the number of input and output 
channels and the size of the convolution kernel; the number of 
frames per second represents the images that the model can 
detect per second, and its calculation formula is as follows: 

Params = ∑ Kl
2Cl−1Cl + ∑ Cl

D

l=1

D

l=1

 

FPS= 
𝑛

𝑡𝑖𝑚𝑒
 

where K is the convolution kernel size, C is the number of 
channels, n is the number of images segmented by the model, 
and time is the total time required for model segmentation. 

IV. EXPERIMENTAL RESULTS 

This study uses stochastic gradient descent for training. After 
repeated optimization, the initial learning rate was set to 0.005 
and the batch size was set to 8. The data size was 512 × 512, 
with a batch size of 4, and the number of training iterations is 
100. The first 50 iterations were used for frozen training, during 
which the backbone feature extraction network was frozen to 
accelerate training, while the remaining 50 iterations were used 
for unfrozen training to fine-tune the parameters. The Adam 
optimizer was selected for this study as this optimizer uses the 
first-order momentum and the second-order momentum, which 
can dynamically adjust the learning rate and make the model 
converge faster. 

A. Ablation Experiment 

To validate the effectiveness of the various improvements 
made to the DeeplabV3+ model in enhancing the segmentation 
accuracy for navel orange defects, ablation studies were 
conducted by modifying the backbone network, adding the 
CBAM mechanism, and incorporating the CSPM mechanism. 
The experimental results of these segmentation effects are 
presented in Table III. 

As shown in Table III, the DeeplabV3+ model with the 
HECA-MobileNetV3 backbone exhibits the lowest parameter 
count and the highest frame rate after improvements; after 
incorporating the CBAM attention mechanism into the basic 
model, MIoU increased by 3.73% and MPA increased by 2.47%. 
As CSPM attention mechanism is incorporated into the model, 
MIoU increased by 3.41% and MPA increased by 1.99%; and 
after adding both CBAM and CSPM mechanisms to the model, 
MIoU reached 89.50%, an increase of 8.01%, and MPA reached 
94.02%, an increase of 3.86%. These results indicate that the 
improvements proposed in this study effectively enhance the 
accuracy and precision of navel orange defect segmentation. 

B. Cross-Entropy Loss Function 

In per-class segmentation experiments, the cross-entropy 
loss function is often used to check each pixel one by one, and 
the predicted value is compared with the actual value to average 
the loss. Since the individual differences of some defective navel 
oranges are small, it is easy to cause semantic recognition errors 
of defects. Therefore, the multi-classification cross-entropy loss 
function is used to measure the segmentation effect. The loss 
curve for the DeeplabV3+ model only with the HECA-
MobileNetV3 backbone is illustrated in Fig. 7(a), while the loss 
curve for the DeeplabV3+ model incorporating the attention 
mechanisms is shown in Fig. 7(b). 

The horizontal axis represents the number of iterations, and 
the vertical axis represents the calculated loss value. The train 
loss represents the loss calculated during training; the val loss 
represents the loss calculated in the confirmation; the smooth 
train loss and smooth val loss represent the smooth loss values 
during training and verification respectively. It was found that 
the loss values of the two models gradually stabilize with the 
increase of the number of iterations during the training process. 
The Deeplabv3+ model improved by the fusion attention 
mechanism with the smallest loss value, stronger convergence 
and more stability. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 9, 2024 

205 | P a g e  

www.ijacsa.thesai.org 

TABLE III. SEGMENTATION ACCURACY OF DIFFERENT BACKBONE NETWORKS AND MODELS WITH ATTENTION MECHANISM 

Model MIoU/% MPA/% Params/M FPS/fps 

D+X 82.23 90.51 56.14 15.2 

D+M 80.71 89.27 6.61 72.3 

D+H 81.49 90.16 5.83 76..5 

D+H+CB 85.22 92.63 6.58 74.1 

D+H+CS 84.95 92.15 6.47 74.9 

D+H+CB+CS 89.50 94.02 6.92 70.8 

D：DeeplabV3+，X：Xception，M：MobileNetV3，H：HECA-MobileNetV3，CB：CBAM，CS：CSPM 

 
(a) Change HECA-MobileNetV3 loss curve. 

 
(b) Fusion attention mechanism loss curve. 

Fig. 7. Loss curve of multi-classification cross entropy loss function. 

C. Comparative Experiments 

To ensure the validity of the research, several classical 
networks were applied to this navel orange dataset for 
comparative experiments. These experiments aim to verify the 
effectiveness of the improved DeeplabV3+ model incorporating 
the CBAM attention mechanism in segmenting navel oranges 
defects. The experimental results are shown in Table IV. 

As shown in Table IV, the DeeplabV3+ model with 
MobileNetV3 as the backbone network has the fewest 
parameters and the highest frame rate, but lower MIoU and 
MPA. The improved DeeplabV3+ model significantly 
outperforms the other five models in terms of MIoU and MPA. 
Specifically, the MIoU of the improved DeeplabV3+ model is 
21.74%, 16.06%, 13.01%, 7.27%, and 8.79% higher than those 
of Unet, SegNet, PSPNet, DeeplabV3+ with Xception backbone, 
and DeeplabV3+ with MobileNetV3 backbone, respectively. In 
terms of MPA, it is 29.31%, 14.35%, 7.57%, 3.51%, and 4.75% 
higher, respectively. The improved DeeplabV3+ model reduces 
the number of parameters by 49.42MB and increases the frame 
rate by 55.6fps compared to the DeeplabV3+ model with 
Xception backbone. Although its parameter count and frame rate 
are slightly lower than those of the DeeplabV3+ model with 
MobileNetV3 backbone, its MIoU and MPA are significantly 
higher than those of the unimproved DeeplabV3+ model. 

To provide a more intuitive comparison of the segmentation 
performance of different models, this study selected five 
representative images for visual contrast. The effectiveness of 
the improved DeeplabV3+ model incorporating the attention 
mechanism is compared with Unet, SegNet, PSPNet, 
DeeplabV3+ with Xception backbone, and DeeplabV3+ with 
MobileNetV3 backbone in navel orange defect segmentation, as 
shown in Fig. 8. 

The result shows the improved DeeplabV3+ model provides 
the clearest segmentation boundaries and accurately identifies 
small defects in navel oranges, achieving higher detection 
performance compared to other models. The unimproved 
DeeplabV3+ model performs better than the other networks but 
still exhibits some issues with fuzzy boundary segmentation and 
misidentification of small targets. Unet, SegNet, and PSPNet 
networks also suffer from varying degrees of recognition errors 
and fuzzy boundary segmentation. 

TABLE IV. COMPARISON OF EXPERIMENTAL RESULTS WITH THE CLASSIC NETWORK 

Model Backbone network MIoU/% MPA/% Params/MB FPS/fps 

U-Net ResNet50 67.76 64.71 23.9 38.9 

SegNet VGG16 73.44 79.67 21.8 45.8 

PSP-Net ResNet101 76.49 86.45 27.6 42.3 

DeeplabV3+ Xception 82.23 90.51 56.14 15.2 

DeeplabV3+ MobileNetV3 80.71 89.27 6.61 72.3 

Improved DeeplabV3+ HECA-MobileNetV3 89.50 94.02 6.72 70.8 
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Fig. 8. Effects of navel orange defect segmentation detection using different models. 

V. DISCUSSION 

Unlike other improved DeeplabV3+ methods, this study 
does not simply replace the complex Xception network with a 
lightweight backbone network MobileNetV3, but uses the 
improved H-ECA mechanism to replace the SE attention 
mechanism in the MobileNetV3+ structure. The Hard-sigmoid 
activation function is applied to the ECA structure, which can 
effectively improve the model calculation efficiency and 
improve the gradient disappearance problem. ECA is an 
improved structure based on the SE mechanism. The Hard-
sigmoid activation function is combined with ECA and applied 
to the MobileNetV3 structure, which not only makes the 
backbone network lighter and ensures the real-time detection, 
but also effectively improves the ability to extract image features. 
At the same time, the CBAM and CSPM attention mechanisms 
are flexibly integrated into the shallow and deep feature 
extraction networks of DeeplabV3+, and the weights of the 
feature maps are adaptively adjusted in the two dimensions of 
channel and space, which improves the sensitivity to navel 
orange defects, focuses more on high-level semantic 
information, captures key information that is easily lost in model 
up and down sampling, integrates global and local features, 
improves the model's feature representation and generalization 
capabilities, and achieves more accurate semantic segmentation. 
Experimental results show that DeeplabV3+ with integrated 
attention mechanism has faster segmentation speed and higher 
accuracy. 

The improved DeeplabV3+ model integrates attention 
mechanisms at multiple levels, which plays an important role in 
the convolution of each layer of the model. It has good 
segmentation performance for multiple categories of defects on 
the surface of navel oranges, but for some defects without 
obvious boundaries and light colors, the segmentation 

performance of this model is not as good as other defects. In 
future research, the DeeplabV3+ model will be further improved, 
such as using a more powerful backbone network, introducing a 
residual structure, improving the loss function, applying 
adaptive feature pyramid technology, and proposing a new 
model structure, which will be applied to navel orange defect 
segmentation in order to obtain better results, which can further 
applied to other fruit and vegetable defect detection and other 
image segmentation fields. 

VI. CONCLUSION 

In this paper, an improved new semantic segmentation 
model DeeplabV3+ model is proposed that incorporates an 
attention mechanism to solve the problems of low recognition 
accuracy and slow detection speed of similar defects and small 
targets in the navel orange defect grading and sorting task. By 
employing the improved HECA-MobileNetV3 backbone 
network, the model reduces parameters and enhances real-time 
detection. The CBAM mechanism is integrated into the ASPP 
structure and an additional CSPM mechanism is introduced to 
improve distinguishing and recognition capabilities for similar 
defect features. Furthermore, CBAM is incorporated into the 
low-level feature extraction structure to enhance segmentation 
of small target boundary features. Comparative study with 
DeeplabV3+ model was conducted resulting in improvement of 
MIoU of 89.50% and MPA of 94.02%, while reducing 
parameters by 49.42M and increasing detection speed by 
55.6fps. In comparison to other semantic segmentation networks, 
the proposed model achieves higher detection accuracy and 
segmentation effectiveness while maintaining advantages in 
parameter efficiency and speed. The algorithm presented in this 
paper effectively meets the precision and speed compatibility 
requirements for navel orange defect grading and sorting in 
industrial applications. 
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