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Abstract—Geographically-distributed wide-area networks 

(WANs) offer expansive distributed and parallel computing 

capabilities. This includes the ability to advance Wide-Area Big 

Data (WABD). As data streaming traverses foreign networks, 

intrusion detection systems (IDSs) and intrusion prevention 

systems (IDSs) play an important role in securing information. 

The authors anticipate that securing WAN network topology with 

IDSs/IPSs can significantly impact wide-area data streaming 

performance. In this paper, the researchers develop and 

implement a geographically distributed big data streaming 

application using the Python programming language to 

benchmark IDS/IPS placement in hub-and-spoke, custom-mesh, 

and full-mesh network topologies. The results of the experiments 

illustrate that custom-mesh WANs allow IDS/IPS placements that 

maximize data stream packet transfers while reducing overall 

WAN latency. Hub-and-spoke network topology produces the 

lowest combined WAN latency over competing network designs 

but at the cost of single points of failure within the network. 

IDS/IPS placement in full-mesh designs is less efficient than 

custom-mesh yet offers the greatest opportunity for highly 

available data streams. Testing is limited by specific big data 

systems, WAN topologies, and IDS/IPS technology. 
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big data; wide-area networks; wide-area streaming 

I. INTRODUCTION 

Increasingly, organizations must collect large amounts of 
data that is located in physically distanced data centers. 
Geographically-distributed big data server clusters provide 
massive scale data analytic capabilities across wide-area 
networks (WANs). Several big data frameworks in use at the 
time of this writing such as Apache Spark are deployed within 
single data centers [1]. However, big data clusters that run in 
local area networks (LANs) do not necessarily have the same 
challenges as WANs. For instance, LANs have certain 
advantages like bandwidth, shorter distance routing, and highly 
available communication at cheaper costs. LANs also have 
limitations spanning from local resources to global connectivity 
[2]. 

WANs enlarge the capabilities of LANs, offering expansive 
resources and connectivity for geo-distributed data streaming. 
For instance, WANalytics research is investigating how to 
optimize distributed structured query language (SQL) queries 
across WANs [3]. Subsequently, unsupervised machine learning 
provides several possibilities to enhance geo-distributed data 
streaming. For example, a sliding version of the hidden Markov 
model (SlidHMM) improves bottleneck detection in WAN data 
analytics [4]. Despite the latter progress, a survey on geo-

distributed frameworks found that research is lacking in several 
areas. This includes decentralized architecture, data streaming, 
multi-clusters, information security, and privacy [1]. The 
objective of this work is to investigate the role of information 
security in geo-distributed big data analytic framework literature 
and provide subsequent steps toward securing this infrastructure 
in future research. 

Organization of the paper is as follows. The authors perform 
a review of literature on the influence of information security on 
geographically-distributed big data systems in Section II. A 
methodology develops from the review that identifies 
procedures to test the performance of secured WAN topologies 
in Section III. The results of the testing and a discussion are 
given in Section IV and Section V respectively. Finally, Section 
VI concludes the study. 

II. RELATED WORK 

To better understand big data frameworks and their 
geographically-distributed contributions, Bergui [1] performed 
a survey of existing literature. A theme in progression centers 
around optimizing big data systems for the ever-increasing 
changes in network topology. Tuning these systems for WANs 
is complex, yet not always clear in existing literature. For 
example, in [1], bandwidth-aware systems do not always use 
resource managers like yet another resource negotiator (YARN) 
with specific WAN tuning capabilities. The researchers also 
emphasize further work is necessary to study information 
security and system architectures in geo-distributed big data 
systems. Trust models become more complex when distributing 
data between different governments. Researchers encourage 
designing authentication strategies and decentralized 
architecture frameworks capable of supporting more complex 
geo-distributed clusters [1]. 

To better understand research that helps optimize big data 
systems, the writers review data querying, transfer, placement, 
and their environments, which includes network topology. 

A. Querying Data 

Research on optimal geo-distributed computing 
architectures is ongoing. In study [3], the researchers introduce 
the term WANalytics, which they contrast with Wide-Area Big 
Data (WABD). WABD typically copies data from multiple data 
centers to a single data center where data analytics transpire. 
WANalytics is designed to support massive scale geo-
distributed analytics across multiple data centers. Its goal 
focuses on reducing expensive WAN bandwidth while 
maintaining compatibility with data sovereignty restrictions [3]. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 9, 2024 

12 | P a g e  

www.ijacsa.thesai.org 

Initial experimentations demonstrate that WANalytics can 
reduce data transfer costs by as much as 360 times compared to 
centralized data center methods. This occurs by allowing users 
to test SQL queries between data centers in Europe, North 
America, and South-East Asia. While WANalytics shows 
tremendous progress toward optimizing geo-distributed 
computing architectures, information security appears to be 
distant in this literature [3]. 

Demand for wide-area data analytics enforces the need to 
advance the capabilities of geo-distributed big data systems. For 
instance, Wang and Li [4] propose the Lube system framework 
to monitor, detect, and resolve bottlenecks in in geo-distributed 
data analytic queries. Benchmarks show optimizing scheduling 
policies across distributed data centers can lower query response 
times up to 33 percent when compared to other big data systems 
like Apache Spark. Similar to Lube [4], Turbo [5] has the ability 
to improve geo-distributed data analytics queries at runtime. 
Using  machine learning, Turbo optimizes data analytic query 
execution plans across multiple physically distanced data 
centers. In a geo-distributed Google Cloud environment that 
spanned eight regions, Turbo lowered query completion times 
by 41% [5]. 

In study [6], the authors focus on common executions in 
wide-area network streaming analytics queries. Examples of 
common execution elements include shared data processing and 
input data. While improvements are achievable using common 
query executions in streaming analytics, researchers emphasize 
that without WAN awareness, weaker performance can exist in 
geo-distributed data center communications. WAN-aware 
multi-query optimizations that leverage common executions can 
reduce WAN bandwidth as much as 33% in contrast to systems 
that fail to use shared execution components. Therefore, multi-
query efficiency may have some dependency on WAN-
awareness [6]. Despite the advancements of wide-area data 
analytics in geo-distributed analytics, many questions remain. 
Researchers in [1] note that further work is beneficial to address 
variations in the structure of data, determine the optimal features 
to reduce query completion times, and construct a larger range 
of performance metrics to measure bottlenecks. Another 
complementary vein of research focuses on bulk data transfer. 

B. Bulk Data Transfer 

Transferring bulk data within inter-datacenter networks 
requires efficient strategies to reduce associated costs. 
Multimedia big data such as video streams and gaming content, 
compete for leftover bandwidth in backbone transport networks 
that connect geographically-distributed data centers. However, 
the exponential increase of data transfer these services need can 
degrade backbone networks [7]. Though certain algorithms can 
efficiently manage guaranteed traffic and reassignment [8], it is 
well understood that middleware and control plane protocols are 
amongst several layers of the architecture that require greater 
attention in research [9]. As one example of progress toward the 
latter goal, software defined networking (SDN) helps dissociate 
the control plane from data paths. This leads to more dynamic 
adjustment of data routing as network environmental attributes 
change [10]. 

Particularly when sending bulk data transfers between geo-

distributed data centers, researchers in study [10] highlight three 
primary services. This includes 1) task admission control, 2) 
data routing, and 3) store-and-forward. Task admission control 
rejects or accepts network transfer requests based upon whether 
they can be completed by a specified deadline. Data routing 
must choose the best path data should take to reach its 
destination, which can include rerouting through intermediate 
data centers. The concept of store-and-forward decides whether 
it is more efficient to store data temporarily within intermediate 
data centers and forward it at a more optimal time than the 
immediate time of execution. If so, decisions must be made to 
determine where the data is temporarily stored until it reaches 
its destination [10]. 

C. Data Placement 

Subsequent focus on efficiently distributing data between 
data centers are algorithms that calculate cloud service provider 
(CSP) costs [11]. Certain data sent between CSPs can tolerate 
delays, which can be transferred using store-and-forward 
intermedia storage nodes with off-peak internet service provider 
(ISP) bandwidth that is already financed [12]. Multi-rate 
bandwidth on-demand (BoD) brokers employ scheduling 
algorithms to optimize the use of this residual bandwidth. As an 
example, the BoD broker in study [6] uses standby wavelengths 
within the wavelength division multiplexing (DWDM) layer to 
decrease peak network bandwidth. Adjustments are possible 
based on delay-intolerant and delay-tolerant transfer requests. 
Compared to relational algorithms like First-Come-First-Served 
(FCFS), more precise use of time slots in all wavelengths is 
optimal when peak bandwidth results in delayed or blocked 
requests [7]. 

When inter-datacenter networks are congested, certain 
storage decisions can help reduce additional network load. This 
includes the use of intermedia storage (IS) and edge storage 
(ES). ES allows certain types of jobs like bulk data transfers to 
leverage storage at the edge of network domains and forward it 
during periods of off-peak CSP bandwidth. In study [13], as 
network load increases there is a linear decrease in the success 
of bulk transfers. Bulk data transfers are optimal when the 
allowed wait time is twice the aggregated network load. In 
summary, the authors found that ES and IS perform similar 
when peak bandwidth times are small. Medium or less network 
load results in little difference between ES and IS. However, in 
this research IS performed significantly better than ES in times 
of high network load [13]. 

Research on bulk data transfer across low latency or 
congested links is helping advance several needs including 
scheduling optimization [9], bandwidth costs [11], and delay 
tolerance [12]. In reviewing related literature, information 
security is not a central component of big data transfers between 
geo-distributed cloud data centers [7, 10], inter-datacenter bulk 
transfers [11, 13], or research networks [8]. Additionally, while 
certain testing considers differences in specific network 
topology [7, 10] others do not [8, 12]. Therefore, opportunities 
may exist to study the influence of information security and 
network topology on bulk data transfers in low latency network 
environments. To explore this further, the authors turn to the role 
of network topology and geo-distributed big data systems. 
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D. Network Topology 

Network topology influences several dimensions of geo-
distributed big data systems, including the elasticity of nodes in 
a cluster [12]. A challenge of big data streaming is resource 
provisioning across shared cloud infrastructure. Particularly 
when the cloud tenant does not own infrastructure, it can be 
challenging to decipher the cause of poor performance on 
collective physical hardware that runs virtual machines (VMs). 
In study [14], the authors highlight the need for the dynamic 
rescheduling of big data streaming tasks using multitenant-
aware resource provisioning that is independent of the VM 
hypervisor. Software defined networking (SDN) plays an 
impactful role in this provisioning by supporting load balancing 
between cloud-based VM clusters. In contrast to other network 
topologies, SDN can define its topology in real time. This in turn 
allows for additional cloud node elasticity [14]. In study [12], 
researchers focus on optimizing bulk data transfer in a geo-
distributed data center system using SDN architecture. SDN 
elasticity promotes dynamic routing decisions using bulk data 
transfers in pieces in contrast to handling transfers as endless 
flows [12]. 

Like [13], researchers in study [15] highlight a need to 
optimize big data streaming strategies between geo-distributed 
data centers. The authors note that traditional methods for 
distributed data streaming such as task assignment are 
insufficient when high throughput data exists along with low 
latency WAN links [15]. Researchers also emphasize the need 
to perform data mining on data sent between WANs from 
streaming applications that perform user-clicks, social networks, 
and Internet of Things (IoT) hardware [16]. A proposed 
advancement is an SDN-based resource provisioning framework 
capable of monitoring WANs, identifying an optimal selection 
of big data worker nodes, and more efficiently assigning tasks to 
the chosen nodes. In initial tests, SDN resource provisioning 
results in minimal processing time that is 1.64 times faster on 
the tested environment, which included Apache Flink, Apache 
Spark, and Apache Storm [15]. 

One of the challenges of geo-distributed and wide-area 
network data analytics streaming is identifying performance 
problems when infrastructure is not under the control of the 
customer. Multitenant-aware resource provisioning using SDN 
network topology is a proposed solution when cloud computing 
hardware is shared amongst multiple customers [14]. 
Monitoring and increasing performance of multitenant 
streaming analytics also requires more advanced worker node 
and IoT placement strategies in low latency network topology. 
Streaming platforms like S4, Apache Storm, and Apache Spark 
were not initially designed for low latency analytics shared 
between users and applications in distributed IoT systems. 
However, improvements are being made in the streaming 
platforms. For instance, Apache Spark supports structured 
streaming via PySpark, a Python API. Spark streaming has the 
capability to stream data in micro-batches [1]. In study [16], the 
GeeLytics platform is introduced as an alternative streaming 
platform to address low latency networks. This includes more 
dynamic mechanisms to balance real-time streaming in the 
cloud and network edges. The proposed design is expected to 
reduce edge-to-cloud bandwidth use for IoT data analytics. It is 

also engineered to increase customer insight into multi-tenancy 
system efficiency [16]. 

Proposed in study [17], a worker node placement framework 
focuses on wide-area streaming analytics. It builds upon the 
Simple Additive Weighting (SAW) method. In this model, a 
central global manager determines how tasks are assigned across 
multiple edge data centers using a proposed SAW-based Node 
Ranking (SNR) algorithm. Task slots are determined based upon 
the amount of input data and processing power of each slot. 
Additionally, task slots communicate over the WANs links. This 
allows the global manager to maintain the status of key link 
metrics including cost, delay, and bandwidth as well as identify 
network topology changes. Researchers tested the SNR 
algorithm on Apache Flink, Apache Spark, and Apache Storm 
using small, medium, and large graphs to simulate different 
network sizes. Each big data system shows performance 
improvements compared to other worker node placement 
strategies [17]. 

WAN traffic costs are central to several recent advancements 
in geo-distributed streaming analytics research. Costs are 
influenced by network design. For instance, the hub-and-spoke 
design includes several network edges that interconnect via 
WANs to a central data warehouse. Popular streaming analytics 
service providers use this model at the time of this writing [18]. 
Important to this network model is determining the optimal 
amount of computation that should exist at the center of the 
topology or the edge. Based on the hub-and-spoke network 
topology, researchers have identified staleness or the delay in 
retrieving data results and WAN traffic as pivotal metrics. 
Experiments using common analytics from large CDNs 
highlight the need to minimize both latter metrics [18]. 

AggNet is a subsequent advancement in research focused on 
reducing WAN traffic costs. Developed on the Apache Flink 
framework, AggNet [19] reduces WAN bandwidth by 
aggregating a percentage of real-time data analytics closer to the 
location of end users. Aggregation from AggNet 
implementation has shown 47% to 83% decreases in traffic costs 
when compared to traditional costs from relevant industry 
organizations that included Akamai and Twitter [19]. 

Although the hub-and-spoke network model is a cornerstone 
in recent geo-distributed streaming analytics work [18-19], 
researchers understand current network topology must change to 
meet the future needs of big data analytics. In study [20], 
researchers argue that high communication cost, data 
sovereignty, and data privacy challenge the feasibility of central 
data center designs. Proposing the concept of geo-distributed 
machine learning (Geo-DML), parameter server (PS) placement 
remains a challenge for distributing raw machine learning data 
between WANs. A proposed solution is using approximation 
algorithms capable of selecting the optimal data center for 
training using network cost. Results of using this strategy reduce 
communication cost up to 21.78% over other Internet network 
topology. However, the potential effect of IDS/IPS hardware is 
unknown [20]. 

E. Summary 

Several advancements are occurring that improve geo-
distributed big data systems. AggNet helps reduce WAN traffic 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 9, 2024 

14 | P a g e  

www.ijacsa.thesai.org 

by placing data closer to end users [19]. In study [18], 
researchers develop a hybrid online algorithm to determine 
optimal computation at the network edges versus the center in a 
hub-and-spoke WAN model. In small to large network topology, 
the SNR algorithm shows capability to optimize tasks across 
geo-distributed data centers using the simple-additive weighting 
method [17]. Subsequently, an approximation algorithm finds 
the best data center as the parameter server for machine learning 
training on two network topologies, which included a Google 
private WAN and a United States Internet with nine 
interconnected data centers [20]. Like research on bulk data 
transfer between geo-distributed data centers, little emphasis 
exists on information security in these papers [17-20]. 
Additionally, network topologies are limited to only a few 
different types of WANs [20] as well as traditional hub-and-
spoke designs [18]. SDN-based networks also show promise in 
helping optimize resource provisioning but may need additional 
consideration as they gain more traction in geo-distributed 
WAN analytics [14]. 

The research that follows presents an elementary 
investigation into whether IDS/IPS placement impact the 
performance of big data systems operating between low-latency 
network topologies. 

III. METHODOLOGY 

The research design follows the information systems 
research framework outlined in study [21]. Three pillars of the 
framework include the environment, information systems 
research, and the coinciding knowledge base. Within the 
environment stage of the latter research methodology, this paper 
focuses on building modern IT infrastructure to support 
massive-scale data analytics. Subsequently, the research stage 
focuses on WAN simulations to evaluate supporting network 
topology for capable big data systems. The researchers add to 
the existing knowledge base by reporting on the effects of 
IDS/IPS placement on real-time data streaming systems in 
network topologies able to migrate into modern SDN-enabled 
WANs. 

Following the design science methodology, business needs 
are the driver for building new information system artefacts [21]. 
Wide-area data analytics is gaining traction due to the increased 
need for businesses to analyze real-time data streams in multiple 
physical locations [6]. Notably, big data systems in geo-
distributed data centers provide immense opportunity to support 
streaming massive amounts of data on low-latency WAN 
connections. Provisioning resources across modern SDN WAN 
architectures, provides big data systems like Apache Spark with 
more expansive horizontal scalable than centralized data centers 
[15]. To support the growing business need for geo-distributed 
streaming, the researchers design and implement current WAN 
topologies capable of efficiently and securely connecting 
physically distanced big data systems. 

Investigators design and implement three well recognized 
Software-defined-wide area network (SD-WAN) arbitrary 
topologies outlined by study [22], including hub-and-spoke, 
full-mesh, and custom-mesh. Each are implemented across ISP 
leased lines. The applied network topology uses the 
specifications engineered by Cisco Systems in their Cisco 
Extended Enterprise SD-WAN Design Guide.  These are located 

in Fig. 7 Hub-and-Spoke Topology with Cisco IR1101 and Fig. 
8 Mesh Topology with Cisco IR1101 and SD-WAN in study 
[23]. 

A. Experimental Network 

The experimental Cisco Systems network resides in an 
enterprise-class data center. Within the research network, the 
authors design and implement wide area network (WAN) data 
centers in four major United States cities. The central data center 
is located in New York, New York. From the New York data 
center, WAN links connect to data centers via routers in the 
cities of Orlando, Florida, Los Angeles, California, and Seattle, 
Washington. Router placement and configuration for each WAN 
parallel Cisco IR1101 and SD-WAN in [23]. WAN network 
latency between the latter data centers equals averages, at the 
time of this writing, in milliseconds (MS) published by AT&T 
in study [24]. The full-mesh network topology, which includes 
network latency for all WAN links, is outlined in Fig. 1. 

 

Fig. 1. WAN network latency. 

B. Big Data System Architecture 

The experimental environment includes four big data server 
clusters in each data center. Clusters are connected by the WANs 
and secured by intrusion detection systems (IDSs) and intrusion 
prevention systems (IPSs). All server and router hardware are 
the same make and model. Hardware has precisely the same 
specifications including physical CPUs, memory, and solid state 
disks. Each data center houses a Dell PowerEdge server running 
an updated Microsoft Hyper-V Server 2019. Virtual machines 
hosted in Hyper-V consist of Intel Xeon processors with five 
physical CPU cores and 24 gigabytes of memory. 

Fig. 2 shows the big data system architecture for cluster one 
(C1) connected to the New York WAN. Each of the four system 
clusters parallel this architecture. The clusters consist of six big 
data system VMs running the Ubuntu 22.04 Long Term Support 
(LTS) server operating system. Two VMs are dedicated Apache 
Hadoop name nodes. The primary and secondary name nodes 
connect to four data nodes with a replication factor of three. Data  
nodes are configured as both Apache Hadoop and Apache Spark 
worker nodes. Name nodes connect to the WAN through a router 
and an IDS/IPS. The WAN routers at each site also have one 
external facing Dell PowerEdge server with 5 physical CPU 
cores and 24 gigabytes of memory. The latter WAN-connected 
Ubuntu 22.04 LTS servers measure and collect performance 
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data between the geo-distributed data centers. The edge servers 
are also the source of all external data streams sent to the big 
data clusters. Table I shows the corresponding software and 
versions of the big data systems. 

 

Fig. 2. Cluster architecture. 

Experiments use Suricata for the intrusion detection system 
(IDS) and intrusion prevention system (IPS). Suricata is well 
supported by the open-source community as a modern world-
class IDS/IPS [25]. It allows researchers to customize packet 
bundling techniques to analyze stream data sets efficiently and 
effectively [26]. Suricata is compiled with the emerging threats 
open ruleset [25]. Specific Suricata rules allow the unique public 
IP addresses of the streaming clients to connect to a primary and 
secondary name node in each data center cluster. Streams and 
associated IPS rules use the customized TCP port range of 9990 
– 9999 on each big data cluster. With the exception of the 
experimental data streams and SSH for system administrator IP 
addresses, no other external traffic is allowed into the data center 
networks by the IDSs/IPSs. 

TABLE I.  EXPERIMENTAL SOFTWARE VERSIONS 

Software Version 

Hadoop 3.3.6 

Iptables 1.8.7 

Nmon 16 

OpenJDK 8u412 

Pdsh 2.31-3 

Pyspark 3.5.1 

Python 3.10.12 

Spark 3.5.1 

Suricata 6.0.4 

Tcpdump 4.99.1 

Ubuntu 22.04.4 

C. Streaming Architecture 

Within the big data system architecture, the primary and 
secondary name nodes are configured as Apache Spark 
streaming servers. Fig. 3 outlines the big data streaming 
architecture. From an Ubuntu server on each WAN, 1 GB 
streams are sent to the primary and secondary name nodes. To 

process the data streams the authors developed a big data 
streaming application using Apache PySpark. The application 
facilitates the unstructured data streams to Apache Spark on the 
primary and secondary name nodes. It uses the Spark context 
object and PySpark streaming class instudy [27] to develop the 
streaming functions. Each application instance processes word 
counts on the data streams. Word counts are aggregated using 
key value pairs using Spark in-memory computation and 
subsequently written across the Hadoop Distributed File System 
(HDFS) for long-term data analytics. HDFS block sizes are 
configured for 128 MBs. 

D. Benchmarking Technologies 

Simulation is one of several methods in the design science 
research framework [21] that helps assess and refine novel 
artifacts. Central to this work is determining how modern 
IDS/IPS placements impact the performance of geo-distributed 
big data system clusters. The researchers use raw network 
performance statistics between connecting WANs to evaluate 
real-time data streams. In study [28] researchers evaluate raw 
network performance using httping and iperf3 on anonymous 
circuit-based communications. The networking utilities were 
able to effectively measure the average latency and throughput 
between hubs in a metropolitan area. Iperf3 is also used in WAN 
environments to test network capacity. Researchers investigated 
the transfer of science big data across WANs in study [29] using 
NVMe over Fabrics (NVMe-oF). NVMe-oF is able to provide 
enhanced non-volatile memory functionality for storage 
networking fabrics. Methods in the study successfully use iperf3 
to test for bottlenecks in the networks [29]. 

 

Fig. 3. Streaming architecture. 

Like [29] iperf3 measures latency between the geo-
distributed data centers in this study. In Fig. 2, iperf3 resides on 
the name node servers, IDS/IPS servers, and the WAN servers. 
Network latency is measured between the edge of each WAN 
and the name node clusters. Similar to study [26], the authors 
combine TCP packets into streams to analyze the network data. 
Libpcap, tcpdump [30], and Nigel's performance Monitor for 
Linux (nmon) [31] facilitate the raw network packet captures. 
Nmon uses the “-s” option to collect network packets every 
second throughout the duration of the Apache Spark streaming 
tests. 

In addition to using network bitrate to test data streaming 
performance, it also determines the optimal location of the 
IDSs/IPSs in this study. To establish the optimal IDS/IPS 
placement in each network topology, researchers iteratively run 
the experiments with each recommendation in the Cisco 
Extended Enterprise SD-WAN Design Guide [23]. The authors 
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base the final IDS/IPS location selection on the best raw network 
bitrate for each topology in the testing that follows. 

The proposed research methodology uses a design science 
approach to investigate the impact of IDS/IPS placement on geo-
distributed big data systems. It outlines the system architectures 
and benchmarking processes in the coinciding experiments. 
Next, the authors implement the proposed tests and report the 
results of the evaluations. 

IV. RESULTS 

Hub-and-spoke in Fig. 4 is the first experimental network 
topology (T1) that tests the IDS/IPS performance of geo-
distributed big data systems. WAN connections source from a 
central data center in New York, NY to the remote cities of 
Seattle, Los Angeles, and Orlando. The authors automated the 
tests using the Python programming language and Bourne-
Again SHell (bash) scripting. This includes a start and stop 
script. 

A. Experimental Environment 

A start script prepares a consistent experimental 
environment for each iteration of the performance testing. A stop 
script resets the environment to the original state, ensuring each 
test begins with the same configuration. The start script begins 
by starting each Suricata IDS/IPS service and checking the 
compiled security rules. After the IDS/IPS is functioning 
properly, the script starts Apache Hadoop and Spark. At this 
stage, a health check ensures HDFS is operating correctly across 
the clusters. If the distributed file system is unhealthy, it exits 
after logging error codes. If HDFS is healthy, TCP ports 9990-
9999 open for Apache Spark streaming. 

Each name node on four geo-distributed big data clusters 
runs a parallel Python application that facilitates the system and 
network performance benchmarking. The Python application 
invokes the PySpark streaming application, establishing 1 GB 
data streams to the primary and secondary names nodes. 
Throughout the experiments, a health check monitors the 
Apache Hadoop and Spark logs. If the Python application fails 
in-memory processing or HDFS writes at any time during the 
real-time stream, the application exits after logging error codes. 
The start script sleeps for 30 seconds following invocation of the 
Python application to ensure streaming is functional. 

Following successful execution of streaming services, a 
series of bash shell commands collect and aggregate raw 
network performance statistics using libpcap, tcpdump, nmon, 
and iperf3. Data aggregation is per cluster. For example, data 
combines from the two name nodes and two IDSs/IPSs for each 
site into a single file. Measurement and results are from 
transmission control protocol (TCP) network traffic. Tcpdump 
and nmon results are collected from real-time TCP traffic. 
Intervals for each tool are set to write performance data every 
second. Nmon executes with the default settings with the 
exception of the “-s” syntax for seconds. Iperf3 uses the IP 
address of each server, the connecting port, and the interval in 
seconds, and the bidirectional traffic syntax. 

Tests invoke in parallel across each cluster using the start 
script. To ensure saturation, the authors ran the tests ten times 
for twelve minutes each. Each test produces 720 unique rows of 

data, of which the middle 600 rows are selected for analysis to 
avoid potential anomalies at the beginning or ending of the 
testing. Data analysis begins and ends on the same timestamp 
for each cluster. 

 

Fig. 4. WAN network topology (T). 

 

Fig. 5. Hub-and-spoke topology (T1) bitrate. 

B. Hub-and-Spoke Topology 

Topology 1 (T1) represents the hub-and-spoke WAN 
experiments. The New York data center connects to Orlando, 
Seattle, and Los Angeles. WAN latency is 30 milliseconds to 
Orlando, 58 milliseconds to Seattle, and 59 milliseconds to Los 
Angeles. Consistent with the cluster architecture in Fig. 2, Spark 
streams run from the WAN VM through dual Suricata 
IDSs/IPSs before reaching the primary and secondary Apache 
Hadoop name nodes. Data streams over three WANs are sent to 
the primary and secondary name nodes of each big data cluster. 
The name nodes load balance 128 MB HDFS block writes with 
a replication factor of three across the data nodes. 
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Fig. 5 outlines the network bitrate from the WANs to the 
name nodes measured in megabits per second (mbits/sec). From 
the New York data center, the rates are 416.496 mbits/sec to 
Seattle, 409.346 mbits/sec to Los Angeles, and 796.833 
mbits/sec to Orlando. The mean bitrate for the hub-and-spoke 
topology is 540.892 mbits/sec. 

C. Custom-Mesh Topology 

Topology 2 (T2) represents the custom-mesh WAN 
experiments. In the custom-mesh network topology, the 
IDSs/IPSs protect the big data systems at the edge of each LAN. 
Dual routes exist through each IDS/IPS to the primary and 
secondary Hadoop name nodes. WANs have redundant paths to 
each LAN, allowing data streams alternative routes in case of a 
network failure. Testing establishes a total of eight data streams 
to Apache Spark. For example, in Fig. 4, New York has a data 
stream from Seattle and Orlando. 

In the custom-mesh topology, the New York data center 
connects to Orlando and Seattle. WAN latency is 30 
milliseconds to Orlando and 58 milliseconds to Seattle. Data 
streams from New York to Los Angeles route through either 
Seattle or Orlando. The Los Angeles data center connects to 
Seattle and Orlando. WAN latency from Los Angeles is 26 
milliseconds to Seattle and 52 milliseconds to Orlando. 

Fig. 6 outlines the network bitrate from the WANs to the 
name nodes measured in megabits per second (mbits/sec). From 
the New York data center, the rates are 795.578 mbits/sec to 
Orlando and 415.931 mbits/sec to Seattle. Rates from Los 
Angeles to Seattle are 915.41 mbits/sec and Los Angeles to 
Orlando 464.22 mbits/sec. The mean bitrate for the custom-
mesh topology is 647.729 mbits/sec, which is 106.837 mbits/sec 
greater than the hub-and-spoke network topology. 

 

Fig. 6. Custom-mesh topology (T2) bitrate. 

D. Full-Mesh Topology 

Topology 3 (T3) is a full-mesh WAN design. As highlighted 
in Fig. 4, data centers have WAN paths to each city, providing 
the most redundancy of the designs. Twelve data streams are 
sent to the primary and secondary name nodes of each big data 
cluster through dual IDSs/IPSs. This is shown in the cluster 
architecture in Fig. 2. 

Within the full-mesh topology, New York has WAN 
connections to data centers in Orlando, Seattle, and Los 
Angeles. In sequence, WAN latency from the New York data 

center to Orlando is 30 milliseconds, to Seattle 58 milliseconds, 
and to Los Angeles 59 milliseconds. Likewise, the Los Angeles 
data center connects to Seattle, Orlando, and New York. Los 
Angeles WAN latency to Seattle is 26 milliseconds and 52 
milliseconds to Orlando. Orlando to Seattle WAN latency is the 
largest at 71 milliseconds. 

Fig. 7 shows the network bitrate from the WANs to the name 
nodes measured in megabits per second. New York data center 
bitrates are 761.068 mbits/sec to Orlando, 414.98 mbits/sec to 
Seattle, and 409.33 mbits/sec to Los Angeles. Los Angeles  data 
center bitrates are 462.771 mbits/sec to Orlando and 870.065 
mbits/sec to Seattle. Seattle bitrates are 882.696 mbits/sec to Los 
Angeles, 414.995 mbits/sec to New York, and 341.19 mbits/sec 
to Orlando. The mean bitrate for the full-mesh topology is 
544.637 mbits/sec. The mean rate is 3.745 mbits/sec more than 
the hub-and-spoke topology and 103.092 mbits/sec less than the 
custom-mesh topology. 

 

Fig. 7. Mean WAN data stream transfers in gigabytes. 

E. Streaming Data Transfers 

Fig. 8 highlights the mean data transfer rates of the Apache 
Spark streams through the WAN links. Fig. 9 illustrates the total 
data transfer rates of the Apache Spark streams through the 
WANs. 

 

Fig. 8. Full-mesh topology (T3) bitrate in mbits/sec. 

Gigabytes were converted from megabytes for the total data 
stream transfers. Total gigabytes transferred across the WAN 
network links for the hub-and-spoke network topology is 
116.116. Mean gigabytes transferred between the data center 
sites is 38.705. Custom-mesh produces a mean of 46.364 
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gigabytes and a total of 370.915 gigabytes. Full-mesh network 
topology delivers a mean of 38.956 gigabytes and a total data 
transfer of 467.474 gigabytes. 

Full-mesh has a mean data transfer rate slightly greater than 
hub-and-spoke. On the contrary, mean custom-mesh data 
transfer produces 7.659 gigabytes more than the hub-and-spoke 
network topology and 7.408 gigabytes more than the full-mesh 
topology. 

 

Fig. 9. Sum WAN data stream transfer in gigabtyes. 

F. WAN Performance 

Table II highlights the total WAN latency of each network 
topology along with the total amount of data transfer from the 
data streams. Table II also notes the number of internet service 
provider (ISP) leased lines used for each WAN topology in the 
experiments. Hub-and-spoke network topology results in an 
average of 38.705 gigabytes of data transfer per ISP leased line. 
Custom-mesh has an average data transfer of 92.728 gigabytes 
per leased line while full-mesh has an average data transfer of 
77.912 gigabytes per leased line. 

TABLE II.  WAN LATENCY VERSUS DATA TRANSFER 

Topology 
ISP Leased 

Lines 

Total WAN 

Latency 

Total Data 

Transfer 

Hub-and-
spoke 

3 147 ms 116.1166 Gbs 

Custom-

mesh 
4 166 ms 370.9158 Gbs 

Full-mesh 6 296 ms 467.4745 Gbs 

G. Summary 

To measure whether IDS/IPS placement impacts geo-
distributed big data systems, the researchers study WAN 
connections between the remote cities of Los Angeles, Orlando, 
New York, and Seattle. Data centers in each city host big data 
clusters running Apache Hadoop and Spark. Data streams are 
sent through the IDSs/IPSs from the WANs to each of the four 
big data clusters. The researchers develop a novel Python 
application that uses PySpark streaming classes to facilitate real-
time geo-distributed massive data streaming. Performance 
measures use raw network traffic data to demonstrate the results 
of three prominent network designs; hub-and-spoke, custom-
mesh, and full-mesh. Results illustrate the ability to load balance 
data streams through IDS/IPS locations with the lowest WAN 
latency in custom-mesh topology while continuing to offer 

alternative network paths to geo-distributed data centers. Next, 
the authors discuss these results. 

V. DISCUSSION 

Live data streams across four unique geo-distributed data 
centers show variability in real-life scenarios. Though 
researchers were able to optimize bandwidth through three 
different WAN topologies, there are clear performance 
differences that decision makers should consider when 
architecting secure clusters for WABD. 

A. Geo-Distributed IDS/IPS Placement Performance 

Researchers were able to achieve the fastest data streams 
across geo-distributed data centers using a custom-mesh 
network design. IDS/IPS placement in the custom-mesh 
network topology achieves a mean of 106.836 mbits/sec more 
network bitrate than the optimized hub-and-spoke topology. 
Similarly, on average the custom-mesh topology is 103.091 
mbits/sec faster than the full-mesh design. 

In this study, IDS/IPS placement within the full-mesh 
network design results in slightly faster mean bandwidth 
available for WABD data streams than the hub-and-spoke 
network topology. Full-mesh benefits from a mean of 3.745 
additional mbits/sec across the WAN architecture. While full-
mesh network topology has additional benefits over both hub-
and-spoke and custom-mesh such as more fault tolerance, this 
comes at the cost of expensive WAN bandwidth [22]. 

In the experiments, hub-and-spoke has three ISP leased 
lines. Custom-mesh has four leased lines while full-mesh has six 
leased lines. When reviewing Table II, custom-mesh is able to 
transfer 54.023 more gigabytes of streaming data through the 
IDSs/IPSs per leased line than the hub-and-spoke network 
topology. This comes at a cost of only one additional ISP leased 
line in these experiments. However, it also adds an extra path of 
redundancy between each site, eliminating potential single 
points of failure in the hub-and-spoke network topology. 

Custom-mesh also transfers 14.916 gigabytes more data per 
leased line than the full-mesh topology. Despite this result, full-
mesh benefits from an additional redundant path to subsequent 
data centers. Similar to custom-mesh, full-mesh provides more 
bandwidth than the hub-and-spoke topology. In comparison, 
full-mesh produces 39.206 gigabytes more data per leased line 
than hub-and-spoke. While data centers in the full-mesh design 
could experience several network failures before losing 
complete connectivity to another site, it also comes at the cost of 
three additional ISP leased lines over the custom-mesh topology. 

B. Limitations 

This paper does not address pricing, which limits the 
analysis of geo-distributed IDS/IPS placements specific to big 
data streaming. Although the results of this study give some 
indication of potential efficiency of various IDS/IPS locations 
for geo-distributed big data systems, it is financially 
inconclusive as many variables determine the costs of 
implementing and maintaining each of the network designs in 
real-life environments. For instance, in study [15], custom 
topology resulted in considerable pricing differences for data 
transfer alone, ranging from $0.02 to $0.25 per GB of data 
transfer. 
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Research efforts are advancing big data worker node 
placement using several available data points. For example, in 
study [17] the simple-additive weighting method strategically 
places data streaming tasks using data transmission cost, 
latency, and bandwidth. However, algorithms lean upon 
available network data without considering human factors. 
Future research is important to consider more closely defined 
pricing models for IDS/IPS placement specific to geo-
distributed WAN data streaming. 

This paper is also limited to initial benchmarking of three 
traditional WAN topologies that use manual IDS/IPS placement 
methods. To advance this research, existing algorithms could 
consider IDS/IPS latency within avant-garde WAN topologies. 
For example, the approximate parameter server placement 
(APSP) algorithm proposed by study [20] could be tested in 
IDS/IPS environments to identify if the randomized rounding 
method is still applicable. Similarly, future research could test 
IDS/IPS locations using WAN topology-aware frameworks 
introduced in study [15] and study [17]. 

Finally, IDS/IPS benchmarking is limited to a Python 
streaming application engineered for Apache Spark. Similar to 
study [17], researchers may consider other big data streaming 
systems like Apache Flink and Apache Storm along with varied 
streaming applications developed in Scala and/or Java. 

VI. CONCLUSION 

This paper develops a PySpark streaming application in 
Python capable of benchmarking geo-distributed data centers 
secured by IDSs/IPSs. The application sends data streams across 
the WAN topologies of hub-and-spoke, custom-mesh, and full 
mesh. In each topology, the researchers optimize IDS/IPS 
placement using industry best practices and experimentation. 
The proposed placements show several tradeoffs. Hub-and-
spoke has the least aggregate WAN latency and the fewest 
number of ISP leased lines but at the cost of single points of 
failure within the WAN topology. Custom-mesh network 
topology benefits from the fastest raw network performance. It 
also has dual paths to geo-distributed data centers at a cost of 
only one additional ISP leased line. Full-mesh offers the most 
fault tolerance and raw data streaming bandwidth. However, it 
requires a minimum of two additional ISP leased lines over 
custom-mesh. In summary, IDS/IPS placement in custom-mesh 
network topology allows engineers to customize the amount of 
high availability across WANs while reducing  associated costs 
of leased lines. Advancing this work could include evolving 
network topology for WANalytics, automating IDS/IPS 
placement, testing alternative big data streaming systems, and 
incorporating financial costs into IDS/IPS placement 
determination. Subsequently, researchers may consider testing 
existing or new worker node placement algorithms in WABD 
IDS/IPS environments. 
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