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Abstract—The K-Nearest Neighbor (KNN) algorithm is a 

widely used classical classification tool, yet enhancing the classifi-

cation accuracy for multi-feature large datasets remains a chal-

lenge. The paper introduces a Compactness-Weighted KNN 

classification algorithm using a weighted Minkowski distance 

(CKNN) to address this. Due to the variability in sample distribu-

tion, a method for deriving feature weights based on compactness 

is designed. Subsequently, a formula for calculating the weighted 

Minkowski distance using compactness weights is proposed, 

forming the basis for developing the CKNN algorithm. Compara-

tive experimental results on five real-world datasets demonstrate 

that the CKNN algorithm outperforms eight existing variant 

KNN algorithms in Accuracy, Precision, Recall, and F1 perfor-

mance metrics. The test results and sensitivity analysis confirm 

the CKNN's efficacy in classifying multi-feature datasets. 

Keywords—K-nearest neighbors; feature weight; Minkowski 

distance; compactness 

I. INTRODUCTION 

In the domains of data science and machine learning, the 
KNN (K-Nearest Neighbors) algorithm, widely recognized as 
one of the top 10 classification algorithms [1], plays a crucial 
role in revealing the inherent patterns and structures of data, 
effectively grouping data points into distinct categories, espe-
cially in market segmentation, social network analysis, bioin-
formatics, image processing, and other fields [2, 3]. Since Fix 
and Hodges [4] introduced the KNN algorithm, KNN has 
emerged as a classic and efficient classification tool widely 
applied in data mining, data classification, and other fields [5, 
6]. For instance, Uddin et al. [5] have applied the KNN algo-
rithm for disease risk prediction, and Han et al. [6] have used it 
to estimate the photometric redshift of quasars. 

However, the KNN algorithm faces several challenges in 
practice, such as the choice of  𝑘 value, selection of nearest 
neighbors, nearest neighbor search, and determination of clas-
sification rules [7]. Consequently, researchers have proposed 
various improvement strategies to enhance the performance of 
KNN [8-10]. For example, Zhang and Li [8] bolstered the 
classification performance of the KNN algorithm and reduced 
computational costs through sparse learning and group lasso 
techniques. Meanwhile the weighted KNN [11] approach ad-
justs the influence of each neighbor on the classification deci-
sion by assigning different weights, enhancing the efficiency 
and accuracy of classification. In this method, weights are 
usually based on the distance or similarity of neighbors to the 
query point, giving closer neighbors more significant influence 
in classification decisions. This strategy effectively improves 
the algorithm's ability to handle uneven distributions or irregu-
lar data structures. Nevertheless, weighted KNN algorithms 

also face challenges. Firstly, selecting and calculating appro-
priate weights is a crucial issue, as different weight distribution 
strategies directly affect the accuracy of classification results. 
Secondly, the algorithm may encounter efficiency issues when 
handling large datasets, especially in scenarios requiring real-
time or near-real-time processing [12]. In response, researchers 
have proposed various variants of the weighted KNN algorithm, 
such as the Improved K-Nearest Neighbor rule combining 
Prototype Selection and Local Feature Weighting 
(IKNN_PSLFW) algorithm developed by Zhang et al. [13], 
which combines prototype selection with local feature 
weighting, and the Option out-of-bag (Opt_OOB), a KNN 
ensemble learning method based on feature weighting and 
model selection proposed by Gul et al. [14] Chen and Hao [15] 
introduced a KNN prediction model based on a feature weight 
matrix by modifying the standard Euclidean distance. Chen and 
Gou [16] proposed a series of weighted distance functions for 
classifying attributes and applied these functions to develop 
nearest neighbor classifiers. 

However, these weighted KNN algorithms, without consid-
ering datasets with non-uniform feature distributions, still have 
room for improvement in classification efficiency for unevenly 
distributed datasets and may be limited in handling high-
dimensional classification problems. Therefore, this paper will 
consider the compactness of data distribution and introduce a 
dynamic weight adjustment mechanism based on feature com-
pactness. By reconstructing the feature weights, a new 
weighted KNN algorithm is proposed. The main contributions 
of this paper are: 

 Inspired by the uneven distribution of data, a weight 
calculation method based on compactness is proposed; 

 Inspired by the weighted KNN, the CKNN algorithm 
based on weighted Minkowski distance is proposed; 

 In real-world datasets, the CKNN algorithm was em-
ployed for classification purposes and was subsequently 
compared and analyzed against recent weighted KNN 
algorithms. Additionally, the CKNN algorithm under-
went a sensitivity analysis along with Friedman’s and 
Nemenyi’s post-hoc tests. These evaluations demon-
strated that the CKNN algorithm possesses specific su-
perior performance characteristics. 

The rest of this paper is organized as follows: Section II 
elaborates on the related research work of KNN; Section III 
details the construction process of the CKNN algorithm; Sec-
tion IV implements the CKNN algorithm and compares it with 
other existing variant weighted KNN algorithms; finally, the 
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advantages and limitations of the CKNN algorithm are ana-
lyzed in this section. Finally, the paper is concluded in Section 
V. 

II. RELATED WORK 

A. KNN 

Based on similarity, the KNN classifier first identifies the 
nearest 𝑘 neighbors of an unknown sample [4]. Then, it deter-
mines its category based on the most frequently occurring 
(highest probability) category among the K-Nearest Neighbor. 
Below is an outline of the basic principles of the KNN algo-
rithm. 

Given a set of labeled samples:  𝐷 = {𝑥1, 𝑥2, … , 𝑥𝑛} , a 

training set 𝐷𝑇 = {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑁  is constructed, where 𝑥𝑛 ∈ 𝐷 is 

a point in n-dimensional space, 𝑦𝑖  is the category label corre-
sponding to 𝑥𝑖 and 𝑁 is the number of samples in the training 
set. For a query point q with an unknown category, KNN first 
calculates the Euclidean distance between this point and each 
sample point 𝑥𝑖 in the training set, as shown in Eq. (1). 

𝐷(𝑥𝑖 , 𝑥𝑗) = √∑ (𝑥𝑖𝑣 − 𝑥𝑖𝑣)2𝑛
𝑘=1                 (1) 

Within this framework, 𝑥𝑖𝑣 denotes the coordinate value of 

the 𝑖𝑡ℎsample point along the 𝑣𝑡ℎdimension. Subsequently, the 
computed distances for 𝑁  points are arranged in ascending 
order, from which the nearest 𝑘 neighbors are selected. At this 
juncture, the distance set comprising the 𝑘 nearest neighbors to 

the query point 𝑞  can be represented as 𝐷𝑇
∗ = {(𝑥̂𝑖 , 𝑦̂𝑖)}𝑖=1

𝑘 . 
Subsequently, the category label of the query point q is pre-
dicted through the majority vote of its nearest neighbors, result-
ing in the target equation, as shown in Eq. (2). 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐∈𝐶 ∑ 𝐼(𝑥𝑖 = 𝑐)𝑘
𝑖=1           (2) 

In Eq. (2), 𝐶 represents the set of all possible categories, 𝑘 
is the number of nearest neighbors, 𝑥𝑖 is the category of the ith 
nearest neighbor, and 𝐼(𝑥𝑖 = 𝑐)  is an indicator function that 
equals 1 when 𝑦𝑖  equals category 𝑐, and 0 otherwise. The KNN 
algorithm is described as shown in Algorithm 1. 

Algorithm 1: KNN algorithm 

Input: A test sample and some training samples  

Output: The test sample’s category  

Process: 
1. For number of training samples do 

2.     calculate the similarity between the test sample    and a 
training sample 

3. End for 

4. find the k training samples that are most like the test sam-
ple 

5. determine test sample’s category 

However, the classical KNN algorithm has faced several 
challenges: (1) Noise sensitivity. The KNN algorithm deter-
mines a sample's category based on the 𝑘 nearest neighbors' 
labels, making it sensitive to noise and outliers.  (2) Redundant 
sample testing. The nearest neighbors are searched for each test 
sample given, but this is not necessarily optimal for all test 

cases. (3) Dependence on the hyperparameter 𝑘. The perfor-
mance of the algorithm varies with different 𝑘 parameters. (4) 
Poor stability. The algorithm performs well on some datasets 
and poorly on others. 

To address these issues, researchers have proposed various 
KNN variants. To tackle the challenge of classifying imperfect 
data in high-dimensional spaces, Gong et al. [17] improved the 
traditional KNN method by synchronizing neighborhood 
search and feature weighting, proposing an enhanced KNN 
algorithm—AEKNN. Bian et al. [18] improved the traditional 
fuzzy KNN [19] by adaptively selecting the optimal number of 
nearest neighbors (the 𝑘 value) for each test sample Gou et al. 
[20] optimized the classifier by capturing the proximity and 
geometric characteristics of the 𝐾-nearest neighbors and learn-
ing the contribution of each neighbor to the classification of the 
test sample through linear representation methods, thereby 
reducing the algorithm's sensitivity to 𝑘  and enhancing its 
performance. 

B. Weighted Distance KNN 

In response to issues such as class overlap and the difficulty 
in choosing the 𝑘 factor, researchers have embarked on explo-
rations and achieved many research results. For instance, 
Zhang et al. [13] have developed the IKNN_PSLFW algorithm, 
which combines prototype selection with local feature 
weighting. In this method, the prototype selection part divides 
the training set into multiple pure subsets, where each subset 
contains instances of only one class label. Following this, the 
scope of prototype selection and the weights of features are 
updated through local feature weighting, optimizing the objec-
tive function as illustrated in Eq. (3). 

𝑟𝑤𝑠 = 𝑚𝑎𝑥𝑗=1,2,…,𝑛√∑ 𝑤𝑠
𝑗
(𝑤𝑠

𝑗
− 𝑥𝑖

𝑗
)

2
𝑑
𝑗=1    

In Eq.(3), 𝑤𝑗 = 𝑢𝑗 ∑ 𝑢𝑗𝑑
𝑗=1⁄ ， 𝑢𝑗 =

{

1

𝑣𝑗 , (𝑣𝑗 ≠ 0)

10 × 𝑚𝑎𝑥 {
1

𝑣𝑗 |𝑖 ≠ 𝑗, 𝑣𝑗 ≠ 0} , (𝑣𝑗 = 0)
, and 𝑣𝑗   is the vari-

ance of the 𝑗𝑡ℎ feature in the subset. Ultimately, a representa-
tive example is chosen from each subset as a prototype, and 
both the boundary of the subset and the total count of instances 
it includes are recorded. During the classification phase, de-
pending on the weighted distance between an unknown in-
stance and each prototype, three potential scenarios are identi-
fied: the instance falls within the range of a single prototype, 
within an overlap area, or outside the range of all prototypes, 
with different rules applied to predict its category accordingly. 
Throughout the process, there is no need to predetermine the 
value of 𝑘 , and the time complexity of the IKNN_PSLFW 
algorithm is o(𝑛2). This method effectively reduces the num-
ber of instances and overlap areas, thereby enhancing the accu-
racy and efficiency of classification. 

Gul et al. [14] introduced an ensemble learning method for 
the 𝑘 nearest neighbor, termed Opt_OOB, predicated on fea-
ture weighting and model selection. This method selects the 
best model by leveraging the out-of-bag prediction error to 
assemble the ultimate ensemble classification model. This 
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methodology establishes an objective function utilizing the 
distance Eq. (4). 

𝐷𝑤(𝑋1×𝑝′
′ , 𝑋1×𝑝′) = {∑ 𝑤(𝑥𝑗

′ − 𝑥𝑗)
2𝑝′

𝑗=1 }

1

2
          (4) 

In Eq. (4), feature weights 𝑤  are determined by 𝑤 =
𝑎𝑟𝑔𝑚𝑎𝑥𝑤[𝑚𝑖𝑛{𝑑𝐻(𝜓(𝑥))}] , to identify Out-of-Bag (OOB) 
observations during the bootstrap sampling process. Subse-
quently, the prediction error for each base model on its corre-
sponding OOB observations is calculated. Models are then 
ranked according to the magnitude of OOB error, and a certain 
proportion of the best-performing models are selected to form 
the final ensemble classification model. This method reduces 
the dependency on the parameter 𝑘 and ensures the diversity 
and accuracy of the ensemble model, although its performance 
may decrease on tiny datasets. 

Chen and Hao [15] have proposed a K-nearest neighbors 
predictive model based on a feature weighting matrix by modi-
fying the standard Euclidean distance. The core of this algo-
rithm lies in improving prediction accuracy by altering the 
positional relations of sample points. The feature weighting 
matrix is shown in Eq. (5). 

 𝑃 =

{

𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛(𝑓1) 0 … 0

0 𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛(𝑓2) 0 ⋮
⋮ 0 ⋱ 0
0 … 0 𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛(𝑓𝑛)

}         

(5) 

In Eq. (5), 𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛(𝐴) = √𝐼𝑛𝑓𝑜(D) − 𝐼𝑛𝑓𝑜𝐴(𝐷) , 

𝐼𝑛𝑓𝑜(𝐷) = − ∑
|𝐶{𝑖,𝐷}|

|𝐷|
𝑙𝑜𝑔(

|𝐶{𝑖,𝐷}|

|𝐷|
)𝑖∈{−1，+1} , and 𝐼𝑛𝑓𝑜𝐴(𝐷) =

∑
|𝐷𝑗|

|𝐷|

𝑣
𝑗=1 𝐼𝑛𝑓𝑜(𝐷𝑗). Here, 𝐷 represents the dataset, |𝐷| denotes 

the size of the dataset, and 𝐶{𝑖,𝐷} represents the subset of the 

dataset 𝐷  that belongs to class 𝐶𝑖 . This method has certain 
advantages for large-scale or complex datasets, but the effec-
tiveness of the model depends on the accuracy of the feature 
weighting matrix, which requires sufficient prior knowledge or 
data analysis to determine appropriate weights. 

In pursuit of an optimal distance metric for precisely quan-
tifying the dissimilarities among classified samples, Chen and 
Gou [16] introduced a series of weighted distance functions 
tailored for categorical attributes, which have been applied to 
advance nearest neighbor classifiers. The Global Gini K-
nearest neighbors (GGKNN) incorporate a weighting scheme 
as depicted in Eq. (6). 

𝜔𝑑
(𝐺𝐺)

= 𝑒−
𝑀

𝑀−1
∑ 𝑃(𝑆𝑑)×𝐺𝐺(𝑆𝑑)𝑠𝑑∈𝑠𝑑                   (6) 

In Eq. (6), 𝐺𝐺(𝑠𝑑) =

− ∑ 𝑃(𝑚|𝑠𝑑) log2 𝑝(𝑚|𝑠𝑑)
𝑀

𝑚=1
, 𝑝(𝑠𝑑) =

1

𝑁
∑ 𝐼(𝑥𝑑 =(𝑋,𝑦)∈𝑡𝑟

𝑠𝑑),and 𝑝(𝑚|𝑠𝑑) =
∑ 𝐼(𝑥𝑑=𝑠𝑑)(𝑋,𝑦)∈𝑐𝑚

∑ 𝐼(𝑥𝑑=𝑠𝑑)(𝑋,𝑦)∈𝑡𝑟
. Herein, 𝑡𝑟 represents the 

training dataset, 𝑀  denotes the number of classes contained 
within the training dataset, |𝑠𝑑|indicate the discrete values of 

the 𝑑𝑡ℎ attribute. The weighting for Global Entropy K-nearest 
neighbors (GEKNN) is shown in Eq. (7). 

𝜔𝑑
(𝐺𝐸)

= 𝑒
−

1

𝑙𝑜𝑔2 𝑀
∑ 𝑃(𝑆𝑑)×𝐺𝐸(𝑆𝑑)𝑠𝑑∈𝑠𝑑                (7) 

In Eq. (7), 𝐺𝐸(𝑠𝑑) = 1 − ∑ [𝑃(𝑚|𝑠𝑑)]2𝑀

𝑚=1
. These meth-

ods use global statistical approaches to weight attributes, con-
sidering the information from all data points to determine the 
importance of each attribute. Conversely, the weighting for 
Local Gini K-nearest neighbors (LGKNN) is shown in Eq. (8). 

𝜔𝑚𝑑
(𝐿𝐺)

= 𝑒
−

|𝑠𝑑|

|𝑠𝑑|−1
×𝐿𝐺(𝑚,𝑑)

                     (8) 

In Eq. (8), 𝐿𝐺(𝑚, 𝑑) = 1 − ∑ [𝑃(𝑠𝑑|𝑚)]2
𝑠𝑑∈𝑠𝑑

,𝑝(𝑠𝑑|𝑚) =
1

|𝑐𝑚|
∑ 𝐼(𝑥𝑑 = 𝑠𝑑)(𝑋,𝑦)∈𝑐𝑚

,and 𝑐𝑚  represents the 𝑚𝑡ℎ  class 

within the training dataset tr. The weighting for Local Entropy 
K-nearest neighbors (LEKNN) is shown in Eq. (9). 

𝜔𝑚𝑑
(𝐿𝐸)

= 𝑒
−

1

𝑙𝑜𝑔2|𝑠𝑑|
×𝐺𝐸(𝑚,𝑑)

                            (9) 

In Eq. (9), 𝐿𝐸(𝑚, 𝑑) = − ∑ (𝑠𝑑|𝑚) log2 𝑝(𝑠𝑑|𝑚)𝑠𝑑∈𝑠𝑑
.  

This employs a local method for computing weights, meaning 
that it adjusts attribute weights based on the local information 
surrounding each data point. This method achieves soft feature 
selection for categorical data, thereby improving the quality of 
classification. 

Furthermore, researchers have introduced multiple varia-
tions of the KNN algorithm that utilize weighted distance 
measures for optimization. Açıkkar and Tokgöz [21] have 
enhanced the conventional KNN algorithm by introducing a 
new weighted voting mechanism and adaptive 𝑘-value selec-
tion techniques. These modifications have improved the per-
formance of the KNN algorithm in scenarios with complex or 
nonlinear decision boundaries, especially in the context of 
processing datasets with noise or outliers.  

III. COMPACTNESS-WEIGHTED K-NN CLASSIFICATION 

ALGORITHM 

This section delineates an improved K-Nearest Neighbors 
algorithm (CKNN) predicated on compactness and local fea-
ture weighting, devised to augment the classification efficacy 
of the KNN algorithm. The research methodology unfolds in 
two pivotal steps: Initially, the compactness for each feature is 
ascertained, forming the groundwork for the recalibration of 
feature weights. After that, a CKNN algorithm, hinged on 
compactness, is introduced. 

In most pattern recognition tasks, the relevance of different 
features differs, particularly in classification tasks. Even if all 
features in the dataset are relevant, their degrees of relevance 
may vary. To address this, we propose the concept of feature 
compactness, as illustrated in Fig. 1. 

 

Fig. 1. Feature Compactness, with Feature A having greater compactness 

than Feature B. 
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Fi. 1 shows that the sum of distances between the elements 
in set A and their centroid is significantly less than that in set B, 
leading to the conclusion that feature A possesses greater com-
pactness than B Various distance metrics are utilized to meas-
ure feature compactness, such as Euclidean distance, Manhat-
tan distance, and Minkowski distance. The Minkowski distance 
[22], in particular, allows for adjusting the parameter 𝑝 accord-
ing to different scenarios and is widely employed. Inspired by 
this, the article adopts the Minkowski distance to measure the 
distances of features. Within a dataset 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} 
comprising 𝑛  samples, each with m  features, 𝑥𝑖  represents a 
feature vector of dimension 𝑚. Assuming the centroid vector c 
represents the arithmetic mean of all sample point feature vec-

tors, the compactness 𝑐𝑗 for the 𝑗𝑡ℎfeature, based on the Min-

kowski distance, is defined as the Minkowski distance between 
the values of all sample points for that feature and the value of 
the centroid for that feature. The calculation is as shown in Eq. 
(11). 

𝐶𝑗 = ∑ |𝑥𝑖𝑗 − 𝑐𝑗|
𝑝𝑛

𝑗=1                             (11) 

In Eq. (11), n represents the total number of samples in the 
cluster, Cj denotes the compactness of the 𝑗th feature, 𝑥𝑖𝑗  is the 

value of the 𝑗th feature for the 𝑖th sample, 𝐶𝑗 is the value of the 

𝑗th feature of the cluster centroid, and p is the exponent parame-
ter of the Minkowski distance. From Eq. (11), it is inferred that, 
under the conditions of a given number of samples and a de-
fined centroid, a smaller value of 𝐶𝑗 indicates greater compact-

ness, and vice versa. 

Specifically, for a given dataset and its corresponding cen-
troid, the initial step involves calculating the difference be-
tween each data point and the centroid across all dimensions. 

Subsequently, these differences are raised to the 𝑝𝑡ℎ  power 
using the Minkowski formula, where 𝑝 is a predefined parame-
ter. The steps for solving compactness will be detailed in Algo-
rithm 2. 

Algorithm 2: Calculate Compactness (CL, P) 

Input:   CL: feature vector 
P: Minkowski index 

Output: A one-dimensional array containing the disper- sion 

of each feature 𝑆 = {𝑠
1

, 𝑠
2

, … , 𝑠
𝑘
}  

Process: 
1.     Set 𝐶←The arithmetic mean of the eigen vectors of all 

points in the cluster 

2.    For each feature in the feature space do 

3.           Add 𝑆←Discrete degree calculated by Eq. (11) 

4.    End for 

To address the discrepancy that arises from the assumption 
in the canonical KNN algorithm, where each feature is as-
signed an equal weight reflecting an assumption of equal con-
tribution to the decision-making process—a scenario often 
divergent from real-world applications where the importance of 
features can vary significantly. This study introduces a meth-
odology grounded in compactness to determine the weights of 
different features. Inspired by the findings in study [23] and 

assuming a given dataset is presumed to contain 𝐾 categories, 
with each category corresponding to a distinct cluster, this 
paper proposes a novel objective function. This function repre-
sents the sum of weighted averages across different classifica-
tion sets, as calculated in Eq. (12). 

J = ∑ ∑ 𝑤𝑐𝑣
𝛽

𝐶𝑐𝑣
𝑉
𝑣=1

𝐾
𝑐=1                        (12) 

where, 𝐾 represents the total number of categories, 𝑉 repre-
sents the total number of features, 𝑤𝑐𝑣  is the weight of the 𝑣th 
feature in the 𝑐th category, and β is a weight adjustment param-
eter. The adjustment parameter β is used to control the extent 
of the weight influence. When β>1, it indicates a higher em-
phasis on features with high weights, when β=1, the model 
degenerates to a traditional equal-weight model. 𝐶𝑐𝑣 is an indi-
cator measuring the compactness of the 𝑣 th feature in the 𝑐 th 
category, calculated by ∑ ||𝑥𝑐𝑣 − 𝑐𝑣||𝑝𝑛

𝑣=1 ,, where  𝑥𝑐𝑣  is the 
𝑣 th feature value of the 𝑐 th sample, and n represents the total 
number of samples in the cluster. 

By assigning different weights to various classes, the goal 
is to minimize the weighted average compactness within each 
class, thereby improving the compactness of classification. To 
this end, Eq. (12) can be converted into Eq. (13). Within this 
framework, the degree of classification compactness can be 
obtained, and the weights of each feature, 𝑤𝑐𝑣 , can be solved. 

∑ ∑ 𝑤𝑐𝑣
𝛽

𝐶𝑐𝑣
𝑉
𝑣=1

𝐾
𝑐=1 = ∑ ∑ {𝑤𝑐𝑣

𝛽 ∑ ||𝑥𝑐𝑣 − 𝑐𝑣||𝑝𝑛
𝑣=1 }𝑉

𝑣=1
𝐾
𝑐=1   (13) 

Considering the weights of different features satisfy the 
constraints: ∑ 𝑤𝑐𝑣 = 1𝑉

𝑣=1  and 𝑤𝑐𝑣≥0, it is evident that Eq. (13) 
represents a nonlinear programming equation while also satis-
fying convex function constraints. To enhance the compactness 
within classes by optimizing feature weights, the Lagrangian 
function 𝐿 is employed to minimize Eq. (14): 

𝐿 = ∑ 𝑤𝑐𝑣
𝛽

𝐶𝑐𝑣
𝑉
𝑣=1 + 𝜆(1 − ∑ 𝑤𝑐𝑣

𝛽𝑉
𝑣=1 )             (14) 

Taking the partial derivative of 𝑤𝑐𝑣
𝛽

 in Eq. (14), and then 
setting it to zero to find the extremum, as shown in Eq. (15): 

𝜕𝐿

𝜕𝑤𝑐𝑣
= 𝛽𝑤𝑐𝑣

𝛽−1
𝐶𝑐𝑣 − 𝜆 = 0                  (15) 

Solving Eq. (15) yields the weight 𝑤𝑐𝑣 , as shown in Eq. 
(16): 

𝑤𝑐𝑣 = (
λ

β𝐶𝑐𝑣
)

1

β−1
             (16) 

Given the weight constraints  ∑ 𝑤𝑐𝑣 = 1𝑉
𝑣=1  and 𝑤𝑐𝑣≥0, Eq. 

(16) can be further derived to obtain Eq. (17). 

∑ (
𝜆

𝛽𝐶𝑐𝑣
)

1

𝛽−1
= 1 ⇔𝑉

𝑣=1 (
𝜆

𝛽
)

1

𝛽−1
=

1

∑ (
1

𝐶𝑐𝑣
)

1
𝛽−1𝑉

𝑣=1

    (17) 

Simplifying Eq. (17) gives the formula for solving weight 
𝑤𝑐𝑣 , as shown in Eq. (18). From Eq. (18), it can be seen that 
under compact classification, the weight of feature 𝑣 in catego-
ry 𝐶 can be obtained by solving the Minkowski distance. 

𝑤𝑐𝑣 =
1

∑ (
𝐶𝑐𝑣
𝐶𝑐𝑢

)

1
𝛽−1𝑉

𝑢=1

                       (18) 
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Building on Eq. (18), it can be determined that the weights 
of various features can be calculated given a classification. 
However, in the KNN classification process, both the classifi-
cation and the weights are the objectives to be determined. 
Inspired by the varying importance of different features and the 
concept of compactness as discussed in references, a weighted 
Minkowski distance based on compactness weights is proposed, 
as shown in Eq. (19). 

𝑑𝑤(𝑥𝑖 , 𝑥𝑗) = √∑ 𝑤𝑐𝑣(𝑥𝑖𝑣 − 𝑥𝑗𝑣)
𝑝𝑉

𝑣=1

𝑝

             (19) 

In Eq. (19), for given data samples𝑥𝑖 ,𝑥𝑗∈C, where β is a 

user-defined parameter, 𝑤𝑐𝑣is the weight of feature weight 𝑣. 
In this case, the weight of each feature no longer depends on a 
specific cluster but is based on the feature distribution across 
the entire dataset. Feature weights should be non-negative and 
satisfy  ∑ 𝑤𝑐𝑣

𝑉
𝑣=1 = 1, and 𝑤𝑐𝑣 ≥ 0. 

Leveraging the concept of compactness-weighted distances 
within the framework of the KNN algorithm, this section intro-
duces the Compactness-weighted KNN (CKNN) algorithm. 
The CKNN algorithm begins by calculating the compactness of 
each feature in the dataset according to Eq. (11). This calcula-
tion necessitates using the Minkowski distance measure to 
ascertain the compactness of each feature relative to its cen-
troid. Drawing on the principle of compactness, the weights for 
each feature can be determined using Eq. (18). Subsequently, a 
compactness-weighted Minkowski distance, as delineated in 
Eq. (19), is constructed to facilitate the computation of distanc-
es between samples. Ultimately, the CKNN algorithm replaces 
the Euclidean distance traditionally employed in KNN with the 

weighted Minkowski distance, selects the K-nearest neighbors 
based on this distance, and utilizes a voting mechanism predi-
cated on the category labels of these neighbors to ascertain the 
category of the target sample. The steps to implement the 
CKNN algorithm are outlined in Algorithm 3. 

Algorithm 3: Compactness-weighted KNN algorithm 

Input:   𝐷𝑇: Training data set, 

𝐾: The number of nearest neighbors 

𝑇: Test Dataset 

𝛽: Minkowski index 

Output: 𝑌: classification result  

Process: 

1: Set 𝑌 ← ∅, 𝐶←calculateCompactness(CL,P), 𝑤 ←
1

𝑉
 

2: For The weight of each feature 𝑤 do 

3:              Update the weight 𝑤
𝑐𝑣

 of each feature through Eq. (18) 

4: End For 

5: For Each sample in the test dataset 𝑇 do 

6:        Set list ←  ∅ 

7: For Training data set 𝐷
𝑇
 do 

8:        Compute weighted Minkowski distance by Eq. (19). 
9:     Add distance to list 
10:     Assign test sample category by majority vote from K nearest 

neighbors. 
11:      Add Classification Results to Y 

12： End For 
13:   Return 𝑌 as the classification results for all samples in 𝑇 

IV. ALGORITHM IMPLEMENTATION 

This section elucidates the datasets employed by the CKNN 
algorithm, the performance evaluation metrics utilized, and an 
analysis of the experimental outcomes. The experiments were 
conducted on a computer with a 12th Gen Intel(R) Core (TM) 
i7-12700H CPU, clocked at 2.70GHz, and 16.0GB RAM, 
running the Windows 11 operating system. The Python3.10 
programming language executed the implementation. 

A. Dataset and Evaluation Metrics 

The implementation adopted five datasets from the UCI 
Machine Learning Repository (Wine, Breast Cancer, Promot-
ers, Mc2, Car) as benchmark datasets 
(http://archive.ics.uci.edu/). Table I shows the essential charac-
teristics of the five datasets, including the total number of sam-
ples, the number of features, and the number of classes. For 
datasets with some features as strings, traditional label encod-
ing methods will be used. The Car dataset comprises 1728 
samples, representing a multi-sample dataset. The Wine, Mc2, 
Promoters, and Breast Cancer datasets consist of 13, 39, 57, 
and 30 feature attributes, thus categorizing them as high-
dimensional datasets. Wine and Car datasets have three and 
four categories, respectively. 

To evaluate the classification results, this paper uses four 
evaluation metrics: Accuracy, Recall ,  Precision, and F1 (F1-
measure) to measure the performance of algorithms. Among 
them, Recall refers to the ratio of correctly predicted positive 
instances to positive instances; precision refers to the ratio of 
correctly predicted positive instances to optimistic predictions. 
Based on the F1  measure, the experiments used macro-F1 
(Macro-F1, the average F1 values within classes) for evalua-
tion [22]. All these indicators range from [0, 1], with values 
closer to 1 indicating better model performance. Accuracy, 
precision, recall, and F1 are shown in Eq. (20), (21), (22), and 
(23) respectively. TP, TN, FP, and FN represent the propor-
tions of true positives, true negatives, false positives, and false 
negatives in the result data. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
               (20) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                         (21) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                      (22) 

𝐹1 =
2 × 𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
                     (23) 

TABLE I.  BASIC CHARACTERISTICS OF THE DATASETS USED IN THE 

EXPERIMENT 

Item Dataset Instances Features Classes 

1 Wine Dataset 178 13 3 

2 Mc2 Dataset 161 39 2 

3 Car Dataset 1728 6 4 

4 Promoters Dataset 106 57 2 

5 Breast Cancer Dataset 699 30 2 

http://archive.ics.uci.edu/
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B. Analysis of Results 

The article selects eight existing improved KNN classifica-
tion algorithms (KNN [4], FWKNN [15], LEKNN [16], 
LGKNN [16], GEKNN [16], GGKNN [16], IKNN_PSLFW 
[13], and Opt_OOB [14]) for comparison with CKNN. Among 
them, KNN represents the classic K-Nearest Neighbor algo-
rithm. FWKNN is a K-Nearest Neighbor prediction model 
based on a feature weighting matrix. LEKNN calculates feature 
weights through local entropy, while LGKNN calculates fea-
ture weights through local Gini. GEKNN uses global entropy 
to calculate feature weights, and GGKNN uses global Gini for 
the same purpose. IKNN_PSLFW is an ensemble learning 
method based on prototype selection combined with local 
feature weighting, and Opt_OOB is a K-Nearest Neighbor 
ensemble learning method based on feature weighting and 
model selection. The implementation results are shown in 
Table Ⅱ (the highest values for each dataset are indicated in 
bold). 

Table Ⅱ shows that CKNN exhibits superior performance, 
especially on the Promoters dataset, where its accuracy reached 
0.8439, significantly higher than other algorithms. After com-
paring the performances of different algorithms across multiple 
datasets, it was observed that the proposed method demon-
strates superiority in all evaluation metrics. Specifically, on the 
Wine dataset, compared to the Opt_OOB algorithm, CKNN 
showed improvements of 3.71% in Accuracy, 3.69% in the 
Recall, 3.42% in Precision, and 3.64% in F1 score, the im-
provement on the MC2 dataset was even more significant, with 
CKNN surpassing the LEKNN algorithm by 2.04% in Accura-
cy. Although the improvements in Recall, Precision, and F1 
score were closer, they still reflected our algorithm's advantage. 
On the Car dataset, compared to the FWKNN algorithm, the 
improvement was particularly notable, with increases of 1.54% 
in Accuracy, 2.81% in Recall, 11.17% in Precision, and 7.06% 
in F1 score. On the Promoters dataset, compared to the second-
ranked KNN, there were increases of 6.26% in Accuracy, 6.27% 
in Recall, 6.25% in Precision, and 6.26% in F1 score. Regard-
ing the Breast Cancer dataset, the method also demonstrated its 
superior performance. Compared to the IKNN_PSLFW algo-
rithm, CKNN improved by 0.58% in Accuracy, 0.47% in Re-
call, 0.81% in Precision, and 0.62% in F1 score. 

To further comprehensively evaluate the performance of 
the CKNN algorithm, based on the implementation results in 
Table Ⅱ, the following will analyze the Sum of Ranking Dif-
ferences (SRDs) [24], Friedman test [26], Nemenyi test [27], 
and Bonferroni correction [28]. 

First, a comparative analysis of the Sum of Ranking Differ-
ences (SRDs) was conducted, a multi-criteria decision-making 
method that achieves evaluation objectives by calculating the 
sum of absolute differences between each algorithm's actual 
rankings and reference rankings. Table Ⅱ presents the values of 
four evaluation metrics for various algorithms across five da-
tasets; according to the SRDs method, the reference vector 
contains 20 elements, each of which is the best score among 
the algorithms. After scaling the SRD values to the [0, 100] 
interval, their theoretical distribution approximates a normal 
distribution. Thus, the normal quantiles of each algorithm can 
serve as the actual SRD values compared to the reference vec-

tor, with the implementation results shown in Fig. 2. The 
scaled Sum of Ranking Differences (SRD) values are plotted 
on the x-axis and the left y-axis, while the right y-axis displays 
the relative frequency (black curve). The Gaussian fitting pa-
rameters are 𝑚=66.72, 𝑠 =9.87. The SRD values at the 5% 
probability level (XX1), the median (Med), and 95% (XX19) 
are also provided. 

TABLE II.  COMPARISON OF NINE ALGORITHMS ON DIFFERENT DATASETS 

Dataset Methods Accuracy Recall Precision F1 RANK 

Wine 

Proposed  0.963 0.963 0.961 0.963 1 

KNN 0.740 0.726 0.726 0.726 3 

FWKNN 0.740 0.726 0.726 0.726 4 

LEKNN 0.537 0.532 0.538 0.534 8 

LGKNN 0.648 0.644 0.652 0.644 7 

GEKNN 0.444 0.425 0.488 0.402 9 

GGKNN 0.648 0.645 0.680 0.656 6 

IKNN 0.740 0.730 0.723 0.722 5 

Opt_OOB 0.925 0.926 0.926 0.926 2 

Mc2 

Proposed  0.714 0.613 0.613 0.613 1 

KNN 0.612 0.546 0.537 0.534 6 

FWKNN 0.612 0.546 0.537 0.534 7 

LEKNN 0.693 0.600 0.595 0.597 2 

LGKNN 0.653 0.516 0.517 0.517 8 

GEKNN 0.673 0.558 0.558 0.558 4 

GGKNN 0.673 0.558 0.558 0.558 4 

IKNN 0.673 0.614 0.596 0.600 3 

Opt_OOB 0.693 0.543 0.554 0.545 5 

Car 

Proposed 0.942 0.859 0.909 0.879 1 

KNN 0.859 0.633 0.766 0.681 4 

FWKNN 0.926 0.831 0.797 0.809 2 

LEKNN 0.778 0.419 0.432 0.415 8 

LGKNN 0.724 0.465 0.606 0.493 6 

GEKNN 0.791 0.485 0.528 0.500 5 

GGKNN 0.791 0.485 0.528 0.500 5 

IKNN 0.774 0.390 0.543 0.414 7 

Opt_OOB 0.890 0.667 0.849 0.715 3 

Promoters 

Proposed  0.843 0.845 0.843 0.843 1 

KNN 0.781 0.782 0.781 0.781 2 

FWKNN 0.750 0.752 0.752 0.750 3 

LEKNN 0.718 0.727 0.741 0.716 5 

LGKNN 0.718 0.723 0.726 0.718 6 

GEKNN 0.656 0.660 0.662 0.655 8 

GGKNN 0.656 0.660 0.662 0.655 8 

IKNN 0.687 0.690 0.690 0.687 7 

Opt_OOB 0.750 0.749 0.749 0.749 4 

Breast 
Cancer 

Proposed  0.976 0.971 0.978 0.974 1 

KNN 0.941 0.933 0.933 0.936 5 

FWKNN 0.941 0.933 0.933 0.936 4 

LEKNN 0.614 0.562 0.570 0.561 9 

LGKNN 0.713 0.660 0.695 0.666 7 

GEKNN 0.731 0.674 0.722 0.682 6 

GGKNN 0.660 0.619 0.629 0.621 8 

IKNN 0.970 0.966 0.970  0.968  2 

Opt_OOB 0.953 0.946 0.952 0.949 3 
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Fig. 2. Evaluation of algorithms using the sum of rank differences. 

As can be discerned from Fig. 2, the CKNN algorithm is 
positioned on the left side of the curve, indicating that CKNN 
is the algorithm closest to the ideal state. At the same time, 
CKNN is at a certain distance compared to Opt_OOB and 
IKNN_PSLFW, signifying a clear advantage of CKNN over 
Opt_OOB and IKNN_PSLFW. Moreover, aside from GEKNN, 
LGKNN, GGKNN, and LEKNN, the ranking of the remaining 
five algorithms shows a significant difference from random 
ranking (α=0.05). 

To highlight the advantages of CKNN, this paper further 
conducts a Friedman test [26]. Based on the Accuracy, Preci-
sion, Recall, and F1 metrics of CKNN, Table Ⅲ presents the 
Friedman statistic FF and the corresponding p-values for KNN, 
FWKNN, LEKNN, LGKNN, GEKNN, GGKNN, 
IKNN_PSLFW, and Opt_OOB in terms of accuracy, precision, 
recall, and F1 metrics. Table Ⅲ shows that the null hypothesis 
(i.e., all compared algorithms will have equivalent performanc-
es) is significantly rejected at the significance level of α=0.05 
for each evaluation metric, meaning there is a significant dif-
ference between CKNN and the other algorithms. However, it 
does not specify which algorithms are superior or inferior. 

To further observe the differences among algorithms, this 
paper uses the Nemenyi test to assess the competitiveness of 

algorithms. In this test, if the difference in average ranks be-
tween two classifiers reaches at least the critical difference 

CD=q
α
√

k(k+1)

6N
, it is considered that there is a significant differ-

ence in performance between these two classifiers. At a signifi-
cance level of α=0.05, q

α
 is 3.102, and the CD value is 5.369 

(where 𝑘=9，𝑁=5). Fig. 3 presents the CD diagram of the nine 

algorithms under Accuracy, Precision, Recall, and F1 metrics. 
In Fig. 2, any algorithm whose average rank is within a CD 
interval of CKNN is highlighted with a red line to show its 
association; otherwise, it indicates a significant performance 
difference from CKNN. For example, in recall, CKNN's aver-
age rank is 1.20, and with the addition of the CD value, the 
critical value becomes 6.57. At this point, LGKNN and 
GEKNN, with average ranks of 7.20 and 6.70 respectively, 
perform poorly. However, for algorithms within the CD inter-
val, it is currently not impossible to determine the performance 
gap between them and CKNN. 

Based on the Nemenyi test, this paper uses the Bonferroni 
correction [27] to control the type I error (i.e., falsely rejecting 

a true null hypothesis). Let ∆ξ=ξ̅algorithm-ξ̅CKNN , when ∆ξ  is 

more excellent than CDα, it is marked with "Y", indicating that 
CKNN outperforms the corresponding algorithm on the respec-
tive metric; otherwise, it is not marked. At a significance level 
of α=0.05, the critical value q

α
 becomes 2.724. 

As shown in Table Ⅳ, the Bonferroni assessment results 
indicate that CKNN's performance exceeds that of LEKNN, 
LGKNN, GGKNN, and GEKNN algorithms. 

TABLE III.  SUMMARY OF THE FRIEDMAN STATISTIC FF (K = 9, N = 5) 

Evaluation Criteria FF Critical Value (α=0.05) 

Accuracy 22.86 

15.51 
Recall 19.96 

Precision 23.16 

F1 score 21.30 

Note: k represents the number of algorithms being compared; N represents the number of datasets 

 

（a）Accuracy    （b）Recall 

 

（c）Precision    （d）F1 score 

Fig. 3. Nemenyi test of CKNN (control algorithm) with other variant KNN algorithms.
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TABLE IV.  COMPARISON OF CKNN WITH OTHER VARIANT KNN 

ALGORITHMS 

 Accuracy Recall Precision F1 

KNN -- -- -- -- 

Opt_OOB -- -- -- -- 

FWKNN -- -- -- -- 

IKNN_PSLFW -- -- -- -- 

LEKNN Y Y Y Y 

LGKNN Y Y Y Y 

GEKNN Y Y Y Y 

GGKNN Y Y Y Y 

Confidence intervals [25] are employed to assess the degree 
of performance improvement among different algorithms. This 
paper utilizes confidence intervals to evaluate the performance 
of CKNN against eight compared variant KNN algorithms. 
Confidence intervals for comparisons among the eight algo-
rithms were constructed to quantify these differences, assum-
ing normality for the ranking differences as depicted in Eq. 
(24). 

∆𝜉

√𝑘(𝑘+1)

6𝑁

~𝑁(0,1)                             (24) 

At a 95% confidence level, Fig. 4 shows the confidence in-
tervals for Accuracy, Recall, Precision, and F1 metrics for the 
nine algorithms. From Fig. 4, it is observed that except for 
KNN, IKNN_PSLFW, and FWKNN, all intervals for 
Opt_OOB, LEKNN, LGKNN, GGKNN, and GEKNN appear 
to be less than 0, indicating significant differences between 
these algorithms and CKNN. For KNN, IKNN_PSLFW, and 
FWKNN, although the upper bounds of some evaluation met-

rics' confidence intervals are more significant than or close to 0, 
the estimated parameter values within the confidence intervals 
remain below 0, suggesting that CKNN, on the whole, outper-
forms KNN, IKNN_PSLFW, and FWKNN, with 
IKNN_PSLFW showing the closest performance to CKNN. 

From the analyses based on the Sum of Ranking Differ-
ences (SRDs), Friedman test, Nemenyi test, and Bonferroni 
correction, it is evident that the CKNN algorithm outperforms 
the compared algorithms, including KNN, FWKNN, LEKNN, 
LGKNN, GEKNN, GGKNN, IKNN_PSLFW, and Opt_OOB 
in terms of performance. 

 

Fig. 4. Confidence intervals for rank differences. 

C. Sensitivity Analysis 

This section, using the Promoters dataset as an example, 
will analyze the impact of the Minkowski exponent (𝑝-value) 
and the tuning parameter β on the performance of the proposed 
CKNN algorithm. The importance of 𝑝 and β values in affect-
ing the classifier's performance will be demonstrated through 
specific experimental results, which are displayed in Fig. 5. 

 
(a) The effect of different 𝑝 and β on Accuracy.   (b) The effect of different 𝑝 and β on Recall. 

 
(c) The effect of different 𝑝 and β on Precision.   (d) The effect of different 𝑝 and β on F1 score. 

Fig. 5. The effect of different Minkowski indices and tuning parameter β on classifier performance.
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From Fig. 5, it can be observed that (1) For a specific value 
of β, the trend of accuracy increasing with an increase in 𝑝 is 
quite apparent. The highest accuracy combination occurs at 
β=6 and p=4, 5, 6, with accuracies all reaching 0.8438. This 
indicates that a higher combination of β and 𝑝 values is more 
likely to produce higher accuracies in this data group. Despite 
some fluctuations, a general trend can still be seen accuracy 
tends to increase with an increase in the value of 𝑝. The effect 
of the tuning parameter β seems less direct. However, it can be 
observed that when the value of the tuning parameter β reaches 
6, the accuracy reaches a higher level, especially at higher 𝑝 
values. (2) Recall rates show a certain upward trend with the 𝑝 
increase. Especially at 𝑝=3 and subsequent values, recall rates 
are relatively high, notably at β=2 and β=5, 6, indicating that 
an increase in 𝑝 has a positive effect on enhancing recall rates. 
At β=2, 5, 6 and 𝑝=3,4, the recall rates all reached the highest 
value of 0.8824. Overall, as 𝑝 increases, there is a trend for an 
increase in recall rates, although this trend exhibits some fluc-
tuations under different β  values. (3) At β  =2, precision in-
creases significantly with 𝑝 , reaching a peak (0.875), then 
decreasing. For other β values, precision does not vary much 
across different 𝑝 values, but overall, when β increases to 6, 
precision reaches its highest at p=4, 5, 6. This suggests that 
larger values of β and 𝑝 might be more beneficial for increas-
ing precision in this specific model. Generally, precision tends 
to improve with an increase in β, especially at higher 𝑝 values. 
(4)F1 score varies under different combinations of β and 𝑝 . 
Especially at β=2, the F1 score corresponding to 𝑝 significantly 
surpasses other 𝑝 values, showing the highest score at 0.8485. 
At β=6 and 𝑝=4, 5, 6, the highest F1 scores were observed, 
each being 0.8571. This finding aligns with previous analyses 
of precision, suggesting that the model's overall performance 
may be better with larger values of β and 𝑝. 

Therefore, CKNN performance metrics (Accuracy, Recall, 
Precision, and F1 score) generally improve with the increase of 
the parameter p and perform optimally at larger β values. Rea-
sonable adjustment of the Minkowski index and the tuning 
parameter β can further optimize the classification performance 
of the CKNN algorithm. 

V. CONCLUSION 

This study proposes an improved K-nearest neighbor (KNN) 
classification algorithm based on compactness weights, which 
initially updates feature weights by calculating the compact-
ness of each feature and then employs a compactness-weighted 
Minkowski distance to calculate the distances between samples, 
serving as the basis for classification decisions. Experimental 
results indicate that the CKNN algorithm surpasses traditional 
KNN and variant KNN algorithms in Accuracy, Recall, Preci-
sion, and F1 scores across the selected five datasets, notably 
showing significant performance improvements on the Pro-
moters dataset. 

The analysis of experimental results suggests that when the 
Minkowski exponent is two and the tuning parameter β is 2, 
the CKNN algorithm achieves relatively better classification 
effects. The CKNN algorithm can better balance the local and 
global information between samples, enhancing classification 
accuracy. Additionally, the overall results from the SRDs rank-
ing, Friedman test, Nemenyi test, and Bonferroni correction 

analysis of the CKNN algorithm are superior to those of the 
compared variant KNN algorithms, confirming the better per-
formance of the CKNN algorithm. Sensitivity analysis results 
indicate that the performance of the CKNN algorithm is jointly 
influenced by the Minkowski exponent and the tuning parame-
ter β , and an appropriate selection of these parameters can 
further enhance the algorithm's performance. 

Although the CKNN algorithm proposed in this study en-
hances the performance of the KNN algorithm, the perfor-
mance of the KNN algorithm performance remains a key area 
of research. Therefore, future research will focus on further 
enhancing the scalability of the K-Nearest Neighbors (KNN) 
algorithm in large-scale datasets and real-time applications, 
with an emphasis on exploring parallel processing and distrib-
uted computing technologies to improve the efficiency of KNN 
in big data scenarios. At the same time, by combining the abil-
ity of deep learning models to automatically extract features 
and optimize weights, the KNN algorithm is expected to per-
form more effectively in handling high-dimensional and un-
structured data. 
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