
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

229 | P a g e

www.ijacsa.thesai.org

Compactness-Weighted KNN Classification

Algorithm

Bengting Wan, Zhixiang Sheng*, Wenqiang Zhu, Zhiyi Hu

School of Software and IoT Engineering, Jiangxi University of Finance and Economics, Nanchang 330013, China

Abstract—The K-Nearest Neighbor (KNN) algorithm is a

widely used classical classification tool, yet enhancing the classifi-

cation accuracy for multi-feature large datasets remains a chal-

lenge. The paper introduces a Compactness-Weighted KNN

classification algorithm using a weighted Minkowski distance

(CKNN) to address this. Due to the variability in sample distribu-

tion, a method for deriving feature weights based on compactness

is designed. Subsequently, a formula for calculating the weighted

Minkowski distance using compactness weights is proposed,

forming the basis for developing the CKNN algorithm. Compara-

tive experimental results on five real-world datasets demonstrate

that the CKNN algorithm outperforms eight existing variant

KNN algorithms in Accuracy, Precision, Recall, and F1 perfor-

mance metrics. The test results and sensitivity analysis confirm

the CKNN's efficacy in classifying multi-feature datasets.

Keywords—K-nearest neighbors; feature weight; Minkowski

distance; compactness

I. INTRODUCTION

In the domains of data science and machine learning, the
KNN (K-Nearest Neighbors) algorithm, widely recognized as
one of the top 10 classification algorithms [1], plays a crucial
role in revealing the inherent patterns and structures of data,
effectively grouping data points into distinct categories, espe-
cially in market segmentation, social network analysis, bioin-
formatics, image processing, and other fields [2, 3]. Since Fix
and Hodges [4] introduced the KNN algorithm, KNN has
emerged as a classic and efficient classification tool widely
applied in data mining, data classification, and other fields [5,
6]. For instance, Uddin et al. [5] have applied the KNN algo-
rithm for disease risk prediction, and Han et al. [6] have used it
to estimate the photometric redshift of quasars.

However, the KNN algorithm faces several challenges in
practice, such as the choice of 𝑘 value, selection of nearest
neighbors, nearest neighbor search, and determination of clas-
sification rules [7]. Consequently, researchers have proposed
various improvement strategies to enhance the performance of
KNN [8-10]. For example, Zhang and Li [8] bolstered the
classification performance of the KNN algorithm and reduced
computational costs through sparse learning and group lasso
techniques. Meanwhile the weighted KNN [11] approach ad-
justs the influence of each neighbor on the classification deci-
sion by assigning different weights, enhancing the efficiency
and accuracy of classification. In this method, weights are
usually based on the distance or similarity of neighbors to the
query point, giving closer neighbors more significant influence
in classification decisions. This strategy effectively improves
the algorithm's ability to handle uneven distributions or irregu-
lar data structures. Nevertheless, weighted KNN algorithms

also face challenges. Firstly, selecting and calculating appro-
priate weights is a crucial issue, as different weight distribution
strategies directly affect the accuracy of classification results.
Secondly, the algorithm may encounter efficiency issues when
handling large datasets, especially in scenarios requiring real-
time or near-real-time processing [12]. In response, researchers
have proposed various variants of the weighted KNN algorithm,
such as the Improved K-Nearest Neighbor rule combining
Prototype Selection and Local Feature Weighting
(IKNN_PSLFW) algorithm developed by Zhang et al. [13],
which combines prototype selection with local feature
weighting, and the Option out-of-bag (Opt_OOB), a KNN
ensemble learning method based on feature weighting and
model selection proposed by Gul et al. [14] Chen and Hao [15]
introduced a KNN prediction model based on a feature weight
matrix by modifying the standard Euclidean distance. Chen and
Gou [16] proposed a series of weighted distance functions for
classifying attributes and applied these functions to develop
nearest neighbor classifiers.

However, these weighted KNN algorithms, without consid-
ering datasets with non-uniform feature distributions, still have
room for improvement in classification efficiency for unevenly
distributed datasets and may be limited in handling high-
dimensional classification problems. Therefore, this paper will
consider the compactness of data distribution and introduce a
dynamic weight adjustment mechanism based on feature com-
pactness. By reconstructing the feature weights, a new
weighted KNN algorithm is proposed. The main contributions
of this paper are:

 Inspired by the uneven distribution of data, a weight
calculation method based on compactness is proposed;

 Inspired by the weighted KNN, the CKNN algorithm
based on weighted Minkowski distance is proposed;

 In real-world datasets, the CKNN algorithm was em-
ployed for classification purposes and was subsequently
compared and analyzed against recent weighted KNN
algorithms. Additionally, the CKNN algorithm under-
went a sensitivity analysis along with Friedman’s and
Nemenyi’s post-hoc tests. These evaluations demon-
strated that the CKNN algorithm possesses specific su-
perior performance characteristics.

The rest of this paper is organized as follows: Section II
elaborates on the related research work of KNN; Section III
details the construction process of the CKNN algorithm; Sec-
tion IV implements the CKNN algorithm and compares it with
other existing variant weighted KNN algorithms; finally, the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

230 | P a g e

www.ijacsa.thesai.org

advantages and limitations of the CKNN algorithm are ana-
lyzed in this section. Finally, the paper is concluded in Section
V.

II. RELATED WORK

A. KNN

Based on similarity, the KNN classifier first identifies the
nearest 𝑘 neighbors of an unknown sample [4]. Then, it deter-
mines its category based on the most frequently occurring
(highest probability) category among the K-Nearest Neighbor.
Below is an outline of the basic principles of the KNN algo-
rithm.

Given a set of labeled samples: 𝐷 = {𝑥1, 𝑥2, … , 𝑥𝑛} , a

training set 𝐷𝑇 = {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑁 is constructed, where 𝑥𝑛 ∈ 𝐷 is

a point in n-dimensional space, 𝑦𝑖 is the category label corre-
sponding to 𝑥𝑖 and 𝑁 is the number of samples in the training
set. For a query point q with an unknown category, KNN first
calculates the Euclidean distance between this point and each
sample point 𝑥𝑖 in the training set, as shown in Eq. (1).

𝐷(𝑥𝑖 , 𝑥𝑗) = √∑ (𝑥𝑖𝑣 − 𝑥𝑖𝑣)2𝑛
𝑘=1 (1)

Within this framework, 𝑥𝑖𝑣 denotes the coordinate value of

the 𝑖𝑡ℎsample point along the 𝑣𝑡ℎdimension. Subsequently, the
computed distances for 𝑁 points are arranged in ascending
order, from which the nearest 𝑘 neighbors are selected. At this
juncture, the distance set comprising the 𝑘 nearest neighbors to

the query point 𝑞 can be represented as 𝐷𝑇
∗ = {(𝑥̂𝑖 , 𝑦̂𝑖)}𝑖=1

𝑘 .
Subsequently, the category label of the query point q is pre-
dicted through the majority vote of its nearest neighbors, result-
ing in the target equation, as shown in Eq. (2).

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐∈𝐶 ∑ 𝐼(𝑥𝑖 = 𝑐)𝑘
𝑖=1 (2)

In Eq. (2), 𝐶 represents the set of all possible categories, 𝑘
is the number of nearest neighbors, 𝑥𝑖 is the category of the ith
nearest neighbor, and 𝐼(𝑥𝑖 = 𝑐) is an indicator function that
equals 1 when 𝑦𝑖 equals category 𝑐, and 0 otherwise. The KNN
algorithm is described as shown in Algorithm 1.

Algorithm 1: KNN algorithm

Input: A test sample and some training samples

Output: The test sample’s category

Process:
1. For number of training samples do

2. calculate the similarity between the test sample and a
training sample

3. End for

4. find the k training samples that are most like the test sam-
ple

5. determine test sample’s category

However, the classical KNN algorithm has faced several
challenges: (1) Noise sensitivity. The KNN algorithm deter-
mines a sample's category based on the 𝑘 nearest neighbors'
labels, making it sensitive to noise and outliers. (2) Redundant
sample testing. The nearest neighbors are searched for each test
sample given, but this is not necessarily optimal for all test

cases. (3) Dependence on the hyperparameter 𝑘. The perfor-
mance of the algorithm varies with different 𝑘 parameters. (4)
Poor stability. The algorithm performs well on some datasets
and poorly on others.

To address these issues, researchers have proposed various
KNN variants. To tackle the challenge of classifying imperfect
data in high-dimensional spaces, Gong et al. [17] improved the
traditional KNN method by synchronizing neighborhood
search and feature weighting, proposing an enhanced KNN
algorithm—AEKNN. Bian et al. [18] improved the traditional
fuzzy KNN [19] by adaptively selecting the optimal number of
nearest neighbors (the 𝑘 value) for each test sample Gou et al.
[20] optimized the classifier by capturing the proximity and
geometric characteristics of the 𝐾-nearest neighbors and learn-
ing the contribution of each neighbor to the classification of the
test sample through linear representation methods, thereby
reducing the algorithm's sensitivity to 𝑘 and enhancing its
performance.

B. Weighted Distance KNN

In response to issues such as class overlap and the difficulty
in choosing the 𝑘 factor, researchers have embarked on explo-
rations and achieved many research results. For instance,
Zhang et al. [13] have developed the IKNN_PSLFW algorithm,
which combines prototype selection with local feature
weighting. In this method, the prototype selection part divides
the training set into multiple pure subsets, where each subset
contains instances of only one class label. Following this, the
scope of prototype selection and the weights of features are
updated through local feature weighting, optimizing the objec-
tive function as illustrated in Eq. (3).

𝑟𝑤𝑠 = 𝑚𝑎𝑥𝑗=1,2,…,𝑛√∑ 𝑤𝑠
𝑗
(𝑤𝑠

𝑗
− 𝑥𝑖

𝑗
)

2
𝑑
𝑗=1 

In Eq.(3), 𝑤𝑗 = 𝑢𝑗 ∑ 𝑢𝑗𝑑
𝑗=1⁄ ， 𝑢𝑗 =

{

1

𝑣𝑗 , (𝑣𝑗 ≠ 0)

10 × 𝑚𝑎𝑥 {
1

𝑣𝑗 |𝑖 ≠ 𝑗, 𝑣𝑗 ≠ 0} , (𝑣𝑗 = 0)
, and 𝑣𝑗 is the vari-

ance of the 𝑗𝑡ℎ feature in the subset. Ultimately, a representa-
tive example is chosen from each subset as a prototype, and
both the boundary of the subset and the total count of instances
it includes are recorded. During the classification phase, de-
pending on the weighted distance between an unknown in-
stance and each prototype, three potential scenarios are identi-
fied: the instance falls within the range of a single prototype,
within an overlap area, or outside the range of all prototypes,
with different rules applied to predict its category accordingly.
Throughout the process, there is no need to predetermine the
value of 𝑘 , and the time complexity of the IKNN_PSLFW
algorithm is o(𝑛2). This method effectively reduces the num-
ber of instances and overlap areas, thereby enhancing the accu-
racy and efficiency of classification.

Gul et al. [14] introduced an ensemble learning method for
the 𝑘 nearest neighbor, termed Opt_OOB, predicated on fea-
ture weighting and model selection. This method selects the
best model by leveraging the out-of-bag prediction error to
assemble the ultimate ensemble classification model. This

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

231 | P a g e

www.ijacsa.thesai.org

methodology establishes an objective function utilizing the
distance Eq. (4).

𝐷𝑤(𝑋1×𝑝′
′ , 𝑋1×𝑝′) = {∑ 𝑤(𝑥𝑗

′ − 𝑥𝑗)
2𝑝′

𝑗=1 }

1

2
 (4)

In Eq. (4), feature weights 𝑤 are determined by 𝑤 =
𝑎𝑟𝑔𝑚𝑎𝑥𝑤[𝑚𝑖𝑛{𝑑𝐻(𝜓(𝑥))}] , to identify Out-of-Bag (OOB)
observations during the bootstrap sampling process. Subse-
quently, the prediction error for each base model on its corre-
sponding OOB observations is calculated. Models are then
ranked according to the magnitude of OOB error, and a certain
proportion of the best-performing models are selected to form
the final ensemble classification model. This method reduces
the dependency on the parameter 𝑘 and ensures the diversity
and accuracy of the ensemble model, although its performance
may decrease on tiny datasets.

Chen and Hao [15] have proposed a K-nearest neighbors
predictive model based on a feature weighting matrix by modi-
fying the standard Euclidean distance. The core of this algo-
rithm lies in improving prediction accuracy by altering the
positional relations of sample points. The feature weighting
matrix is shown in Eq. (5).

 𝑃 =

{

𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛(𝑓1) 0 … 0

0 𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛(𝑓2) 0 ⋮
⋮ 0 ⋱ 0
0 … 0 𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛(𝑓𝑛)

}

(5)

In Eq. (5), 𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛(𝐴) = √𝐼𝑛𝑓𝑜(D) − 𝐼𝑛𝑓𝑜𝐴(𝐷) ,

𝐼𝑛𝑓𝑜(𝐷) = − ∑
|𝐶{𝑖,𝐷}|

|𝐷|
𝑙𝑜𝑔(

|𝐶{𝑖,𝐷}|

|𝐷|
)𝑖∈{−1，+1} , and 𝐼𝑛𝑓𝑜𝐴(𝐷) =

∑
|𝐷𝑗|

|𝐷|

𝑣
𝑗=1 𝐼𝑛𝑓𝑜(𝐷𝑗). Here, 𝐷 represents the dataset, |𝐷| denotes

the size of the dataset, and 𝐶{𝑖,𝐷} represents the subset of the

dataset 𝐷 that belongs to class 𝐶𝑖 . This method has certain
advantages for large-scale or complex datasets, but the effec-
tiveness of the model depends on the accuracy of the feature
weighting matrix, which requires sufficient prior knowledge or
data analysis to determine appropriate weights.

In pursuit of an optimal distance metric for precisely quan-
tifying the dissimilarities among classified samples, Chen and
Gou [16] introduced a series of weighted distance functions
tailored for categorical attributes, which have been applied to
advance nearest neighbor classifiers. The Global Gini K-
nearest neighbors (GGKNN) incorporate a weighting scheme
as depicted in Eq. (6).

𝜔𝑑
(𝐺𝐺)

= 𝑒−
𝑀

𝑀−1
∑ 𝑃(𝑆𝑑)×𝐺𝐺(𝑆𝑑)𝑠𝑑∈𝑠𝑑 (6)

In Eq. (6), 𝐺𝐺(𝑠𝑑) =

− ∑ 𝑃(𝑚|𝑠𝑑) log2 𝑝(𝑚|𝑠𝑑)
𝑀

𝑚=1
, 𝑝(𝑠𝑑) =

1

𝑁
∑ 𝐼(𝑥𝑑 =(𝑋,𝑦)∈𝑡𝑟

𝑠𝑑),and 𝑝(𝑚|𝑠𝑑) =
∑ 𝐼(𝑥𝑑=𝑠𝑑)(𝑋,𝑦)∈𝑐𝑚

∑ 𝐼(𝑥𝑑=𝑠𝑑)(𝑋,𝑦)∈𝑡𝑟
. Herein, 𝑡𝑟 represents the

training dataset, 𝑀 denotes the number of classes contained
within the training dataset, |𝑠𝑑|indicate the discrete values of

the 𝑑𝑡ℎ attribute. The weighting for Global Entropy K-nearest
neighbors (GEKNN) is shown in Eq. (7).

𝜔𝑑
(𝐺𝐸)

= 𝑒
−

1

𝑙𝑜𝑔2 𝑀
∑ 𝑃(𝑆𝑑)×𝐺𝐸(𝑆𝑑)𝑠𝑑∈𝑠𝑑 (7)

In Eq. (7), 𝐺𝐸(𝑠𝑑) = 1 − ∑ [𝑃(𝑚|𝑠𝑑)]2𝑀

𝑚=1
. These meth-

ods use global statistical approaches to weight attributes, con-
sidering the information from all data points to determine the
importance of each attribute. Conversely, the weighting for
Local Gini K-nearest neighbors (LGKNN) is shown in Eq. (8).

𝜔𝑚𝑑
(𝐿𝐺)

= 𝑒
−

|𝑠𝑑|

|𝑠𝑑|−1
×𝐿𝐺(𝑚,𝑑)

 (8)

In Eq. (8), 𝐿𝐺(𝑚, 𝑑) = 1 − ∑ [𝑃(𝑠𝑑|𝑚)]2
𝑠𝑑∈𝑠𝑑

,𝑝(𝑠𝑑|𝑚) =
1

|𝑐𝑚|
∑ 𝐼(𝑥𝑑 = 𝑠𝑑)(𝑋,𝑦)∈𝑐𝑚

,and 𝑐𝑚 represents the 𝑚𝑡ℎ class

within the training dataset tr. The weighting for Local Entropy
K-nearest neighbors (LEKNN) is shown in Eq. (9).

𝜔𝑚𝑑
(𝐿𝐸)

= 𝑒
−

1

𝑙𝑜𝑔2|𝑠𝑑|
×𝐺𝐸(𝑚,𝑑)

 (9)

In Eq. (9), 𝐿𝐸(𝑚, 𝑑) = − ∑ (𝑠𝑑|𝑚) log2 𝑝(𝑠𝑑|𝑚)𝑠𝑑∈𝑠𝑑
.

This employs a local method for computing weights, meaning
that it adjusts attribute weights based on the local information
surrounding each data point. This method achieves soft feature
selection for categorical data, thereby improving the quality of
classification.

Furthermore, researchers have introduced multiple varia-
tions of the KNN algorithm that utilize weighted distance
measures for optimization. Açıkkar and Tokgöz [21] have
enhanced the conventional KNN algorithm by introducing a
new weighted voting mechanism and adaptive 𝑘-value selec-
tion techniques. These modifications have improved the per-
formance of the KNN algorithm in scenarios with complex or
nonlinear decision boundaries, especially in the context of
processing datasets with noise or outliers.

III. COMPACTNESS-WEIGHTED K-NN CLASSIFICATION

ALGORITHM

This section delineates an improved K-Nearest Neighbors
algorithm (CKNN) predicated on compactness and local fea-
ture weighting, devised to augment the classification efficacy
of the KNN algorithm. The research methodology unfolds in
two pivotal steps: Initially, the compactness for each feature is
ascertained, forming the groundwork for the recalibration of
feature weights. After that, a CKNN algorithm, hinged on
compactness, is introduced.

In most pattern recognition tasks, the relevance of different
features differs, particularly in classification tasks. Even if all
features in the dataset are relevant, their degrees of relevance
may vary. To address this, we propose the concept of feature
compactness, as illustrated in Fig. 1.

Fig. 1. Feature Compactness, with Feature A having greater compactness

than Feature B.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

232 | P a g e

www.ijacsa.thesai.org

Fi. 1 shows that the sum of distances between the elements
in set A and their centroid is significantly less than that in set B,
leading to the conclusion that feature A possesses greater com-
pactness than B Various distance metrics are utilized to meas-
ure feature compactness, such as Euclidean distance, Manhat-
tan distance, and Minkowski distance. The Minkowski distance
[22], in particular, allows for adjusting the parameter 𝑝 accord-
ing to different scenarios and is widely employed. Inspired by
this, the article adopts the Minkowski distance to measure the
distances of features. Within a dataset 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}
comprising 𝑛 samples, each with m features, 𝑥𝑖 represents a
feature vector of dimension 𝑚. Assuming the centroid vector c
represents the arithmetic mean of all sample point feature vec-

tors, the compactness 𝑐𝑗 for the 𝑗𝑡ℎfeature, based on the Min-

kowski distance, is defined as the Minkowski distance between
the values of all sample points for that feature and the value of
the centroid for that feature. The calculation is as shown in Eq.
(11).

𝐶𝑗 = ∑ |𝑥𝑖𝑗 − 𝑐𝑗|
𝑝𝑛

𝑗=1 (11)

In Eq. (11), n represents the total number of samples in the
cluster, Cj denotes the compactness of the 𝑗th feature, 𝑥𝑖𝑗 is the

value of the 𝑗th feature for the 𝑖th sample, 𝐶𝑗 is the value of the

𝑗th feature of the cluster centroid, and p is the exponent parame-
ter of the Minkowski distance. From Eq. (11), it is inferred that,
under the conditions of a given number of samples and a de-
fined centroid, a smaller value of 𝐶𝑗 indicates greater compact-

ness, and vice versa.

Specifically, for a given dataset and its corresponding cen-
troid, the initial step involves calculating the difference be-
tween each data point and the centroid across all dimensions.

Subsequently, these differences are raised to the 𝑝𝑡ℎ power
using the Minkowski formula, where 𝑝 is a predefined parame-
ter. The steps for solving compactness will be detailed in Algo-
rithm 2.

Algorithm 2: Calculate Compactness (CL, P)

Input: CL: feature vector
P: Minkowski index

Output: A one-dimensional array containing the disper- sion

of each feature 𝑆 = {𝑠
1

, 𝑠
2

, … , 𝑠
𝑘
}

Process:
1. Set 𝐶←The arithmetic mean of the eigen vectors of all

points in the cluster

2. For each feature in the feature space do

3. Add 𝑆←Discrete degree calculated by Eq. (11)

4. End for

To address the discrepancy that arises from the assumption
in the canonical KNN algorithm, where each feature is as-
signed an equal weight reflecting an assumption of equal con-
tribution to the decision-making process—a scenario often
divergent from real-world applications where the importance of
features can vary significantly. This study introduces a meth-
odology grounded in compactness to determine the weights of
different features. Inspired by the findings in study [23] and

assuming a given dataset is presumed to contain 𝐾 categories,
with each category corresponding to a distinct cluster, this
paper proposes a novel objective function. This function repre-
sents the sum of weighted averages across different classifica-
tion sets, as calculated in Eq. (12).

J = ∑ ∑ 𝑤𝑐𝑣
𝛽

𝐶𝑐𝑣
𝑉
𝑣=1

𝐾
𝑐=1 (12)

where, 𝐾 represents the total number of categories, 𝑉 repre-
sents the total number of features, 𝑤𝑐𝑣 is the weight of the 𝑣th
feature in the 𝑐th category, and β is a weight adjustment param-
eter. The adjustment parameter β is used to control the extent
of the weight influence. When β>1, it indicates a higher em-
phasis on features with high weights, when β=1, the model
degenerates to a traditional equal-weight model. 𝐶𝑐𝑣 is an indi-
cator measuring the compactness of the 𝑣 th feature in the 𝑐 th
category, calculated by ∑ ||𝑥𝑐𝑣 − 𝑐𝑣||𝑝𝑛

𝑣=1 ,, where 𝑥𝑐𝑣 is the
𝑣 th feature value of the 𝑐 th sample, and n represents the total
number of samples in the cluster.

By assigning different weights to various classes, the goal
is to minimize the weighted average compactness within each
class, thereby improving the compactness of classification. To
this end, Eq. (12) can be converted into Eq. (13). Within this
framework, the degree of classification compactness can be
obtained, and the weights of each feature, 𝑤𝑐𝑣 , can be solved.

∑ ∑ 𝑤𝑐𝑣
𝛽

𝐶𝑐𝑣
𝑉
𝑣=1

𝐾
𝑐=1 = ∑ ∑ {𝑤𝑐𝑣

𝛽 ∑ ||𝑥𝑐𝑣 − 𝑐𝑣||𝑝𝑛
𝑣=1 }𝑉

𝑣=1
𝐾
𝑐=1 (13)

Considering the weights of different features satisfy the
constraints: ∑ 𝑤𝑐𝑣 = 1𝑉

𝑣=1 and 𝑤𝑐𝑣≥0, it is evident that Eq. (13)
represents a nonlinear programming equation while also satis-
fying convex function constraints. To enhance the compactness
within classes by optimizing feature weights, the Lagrangian
function 𝐿 is employed to minimize Eq. (14):

𝐿 = ∑ 𝑤𝑐𝑣
𝛽

𝐶𝑐𝑣
𝑉
𝑣=1 + 𝜆(1 − ∑ 𝑤𝑐𝑣

𝛽𝑉
𝑣=1) (14)

Taking the partial derivative of 𝑤𝑐𝑣
𝛽

 in Eq. (14), and then
setting it to zero to find the extremum, as shown in Eq. (15):

𝜕𝐿

𝜕𝑤𝑐𝑣
= 𝛽𝑤𝑐𝑣

𝛽−1
𝐶𝑐𝑣 − 𝜆 = 0 (15)

Solving Eq. (15) yields the weight 𝑤𝑐𝑣 , as shown in Eq.
(16):

𝑤𝑐𝑣 = (
λ

β𝐶𝑐𝑣
)

1

β−1
 (16)

Given the weight constraints ∑ 𝑤𝑐𝑣 = 1𝑉
𝑣=1 and 𝑤𝑐𝑣≥0, Eq.

(16) can be further derived to obtain Eq. (17).

∑ (
𝜆

𝛽𝐶𝑐𝑣
)

1

𝛽−1
= 1 ⇔𝑉

𝑣=1 (
𝜆

𝛽
)

1

𝛽−1
=

1

∑ (
1

𝐶𝑐𝑣
)

1
𝛽−1𝑉

𝑣=1

 (17)

Simplifying Eq. (17) gives the formula for solving weight
𝑤𝑐𝑣 , as shown in Eq. (18). From Eq. (18), it can be seen that
under compact classification, the weight of feature 𝑣 in catego-
ry 𝐶 can be obtained by solving the Minkowski distance.

𝑤𝑐𝑣 =
1

∑ (
𝐶𝑐𝑣
𝐶𝑐𝑢

)

1
𝛽−1𝑉

𝑢=1

 (18)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

233 | P a g e

www.ijacsa.thesai.org

Building on Eq. (18), it can be determined that the weights
of various features can be calculated given a classification.
However, in the KNN classification process, both the classifi-
cation and the weights are the objectives to be determined.
Inspired by the varying importance of different features and the
concept of compactness as discussed in references, a weighted
Minkowski distance based on compactness weights is proposed,
as shown in Eq. (19).

𝑑𝑤(𝑥𝑖 , 𝑥𝑗) = √∑ 𝑤𝑐𝑣(𝑥𝑖𝑣 − 𝑥𝑗𝑣)
𝑝𝑉

𝑣=1

𝑝

 (19)

In Eq. (19), for given data samples𝑥𝑖 ,𝑥𝑗∈C, where β is a

user-defined parameter, 𝑤𝑐𝑣is the weight of feature weight 𝑣.
In this case, the weight of each feature no longer depends on a
specific cluster but is based on the feature distribution across
the entire dataset. Feature weights should be non-negative and
satisfy ∑ 𝑤𝑐𝑣

𝑉
𝑣=1 = 1, and 𝑤𝑐𝑣 ≥ 0.

Leveraging the concept of compactness-weighted distances
within the framework of the KNN algorithm, this section intro-
duces the Compactness-weighted KNN (CKNN) algorithm.
The CKNN algorithm begins by calculating the compactness of
each feature in the dataset according to Eq. (11). This calcula-
tion necessitates using the Minkowski distance measure to
ascertain the compactness of each feature relative to its cen-
troid. Drawing on the principle of compactness, the weights for
each feature can be determined using Eq. (18). Subsequently, a
compactness-weighted Minkowski distance, as delineated in
Eq. (19), is constructed to facilitate the computation of distanc-
es between samples. Ultimately, the CKNN algorithm replaces
the Euclidean distance traditionally employed in KNN with the

weighted Minkowski distance, selects the K-nearest neighbors
based on this distance, and utilizes a voting mechanism predi-
cated on the category labels of these neighbors to ascertain the
category of the target sample. The steps to implement the
CKNN algorithm are outlined in Algorithm 3.

Algorithm 3: Compactness-weighted KNN algorithm

Input: 𝐷𝑇: Training data set,

𝐾: The number of nearest neighbors

𝑇: Test Dataset

𝛽: Minkowski index

Output: 𝑌: classification result

Process:

1: Set 𝑌 ← ∅, 𝐶←calculateCompactness(CL,P), 𝑤 ←
1

𝑉

2: For The weight of each feature 𝑤 do

3: Update the weight 𝑤
𝑐𝑣

 of each feature through Eq. (18)

4: End For

5: For Each sample in the test dataset 𝑇 do

6: Set list ← ∅

7: For Training data set 𝐷
𝑇
 do

8: Compute weighted Minkowski distance by Eq. (19).
9: Add distance to list
10: Assign test sample category by majority vote from K nearest

neighbors.
11: Add Classification Results to Y

12： End For
13: Return 𝑌 as the classification results for all samples in 𝑇

IV. ALGORITHM IMPLEMENTATION

This section elucidates the datasets employed by the CKNN
algorithm, the performance evaluation metrics utilized, and an
analysis of the experimental outcomes. The experiments were
conducted on a computer with a 12th Gen Intel(R) Core (TM)
i7-12700H CPU, clocked at 2.70GHz, and 16.0GB RAM,
running the Windows 11 operating system. The Python3.10
programming language executed the implementation.

A. Dataset and Evaluation Metrics

The implementation adopted five datasets from the UCI
Machine Learning Repository (Wine, Breast Cancer, Promot-
ers, Mc2, Car) as benchmark datasets
(http://archive.ics.uci.edu/). Table I shows the essential charac-
teristics of the five datasets, including the total number of sam-
ples, the number of features, and the number of classes. For
datasets with some features as strings, traditional label encod-
ing methods will be used. The Car dataset comprises 1728
samples, representing a multi-sample dataset. The Wine, Mc2,
Promoters, and Breast Cancer datasets consist of 13, 39, 57,
and 30 feature attributes, thus categorizing them as high-
dimensional datasets. Wine and Car datasets have three and
four categories, respectively.

To evaluate the classification results, this paper uses four
evaluation metrics: Accuracy, Recall , Precision, and F1 (F1-
measure) to measure the performance of algorithms. Among
them, Recall refers to the ratio of correctly predicted positive
instances to positive instances; precision refers to the ratio of
correctly predicted positive instances to optimistic predictions.
Based on the F1 measure, the experiments used macro-F1
(Macro-F1, the average F1 values within classes) for evalua-
tion [22]. All these indicators range from [0, 1], with values
closer to 1 indicating better model performance. Accuracy,
precision, recall, and F1 are shown in Eq. (20), (21), (22), and
(23) respectively. TP, TN, FP, and FN represent the propor-
tions of true positives, true negatives, false positives, and false
negatives in the result data.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (20)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (21)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (22)

𝐹1 =
2 × 𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (23)

TABLE I. BASIC CHARACTERISTICS OF THE DATASETS USED IN THE

EXPERIMENT

Item Dataset Instances Features Classes

1 Wine Dataset 178 13 3

2 Mc2 Dataset 161 39 2

3 Car Dataset 1728 6 4

4 Promoters Dataset 106 57 2

5 Breast Cancer Dataset 699 30 2

http://archive.ics.uci.edu/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

234 | P a g e

www.ijacsa.thesai.org

B. Analysis of Results

The article selects eight existing improved KNN classifica-
tion algorithms (KNN [4], FWKNN [15], LEKNN [16],
LGKNN [16], GEKNN [16], GGKNN [16], IKNN_PSLFW
[13], and Opt_OOB [14]) for comparison with CKNN. Among
them, KNN represents the classic K-Nearest Neighbor algo-
rithm. FWKNN is a K-Nearest Neighbor prediction model
based on a feature weighting matrix. LEKNN calculates feature
weights through local entropy, while LGKNN calculates fea-
ture weights through local Gini. GEKNN uses global entropy
to calculate feature weights, and GGKNN uses global Gini for
the same purpose. IKNN_PSLFW is an ensemble learning
method based on prototype selection combined with local
feature weighting, and Opt_OOB is a K-Nearest Neighbor
ensemble learning method based on feature weighting and
model selection. The implementation results are shown in
Table Ⅱ (the highest values for each dataset are indicated in
bold).

Table Ⅱ shows that CKNN exhibits superior performance,
especially on the Promoters dataset, where its accuracy reached
0.8439, significantly higher than other algorithms. After com-
paring the performances of different algorithms across multiple
datasets, it was observed that the proposed method demon-
strates superiority in all evaluation metrics. Specifically, on the
Wine dataset, compared to the Opt_OOB algorithm, CKNN
showed improvements of 3.71% in Accuracy, 3.69% in the
Recall, 3.42% in Precision, and 3.64% in F1 score, the im-
provement on the MC2 dataset was even more significant, with
CKNN surpassing the LEKNN algorithm by 2.04% in Accura-
cy. Although the improvements in Recall, Precision, and F1
score were closer, they still reflected our algorithm's advantage.
On the Car dataset, compared to the FWKNN algorithm, the
improvement was particularly notable, with increases of 1.54%
in Accuracy, 2.81% in Recall, 11.17% in Precision, and 7.06%
in F1 score. On the Promoters dataset, compared to the second-
ranked KNN, there were increases of 6.26% in Accuracy, 6.27%
in Recall, 6.25% in Precision, and 6.26% in F1 score. Regard-
ing the Breast Cancer dataset, the method also demonstrated its
superior performance. Compared to the IKNN_PSLFW algo-
rithm, CKNN improved by 0.58% in Accuracy, 0.47% in Re-
call, 0.81% in Precision, and 0.62% in F1 score.

To further comprehensively evaluate the performance of
the CKNN algorithm, based on the implementation results in
Table Ⅱ, the following will analyze the Sum of Ranking Dif-
ferences (SRDs) [24], Friedman test [26], Nemenyi test [27],
and Bonferroni correction [28].

First, a comparative analysis of the Sum of Ranking Differ-
ences (SRDs) was conducted, a multi-criteria decision-making
method that achieves evaluation objectives by calculating the
sum of absolute differences between each algorithm's actual
rankings and reference rankings. Table Ⅱ presents the values of
four evaluation metrics for various algorithms across five da-
tasets; according to the SRDs method, the reference vector
contains 20 elements, each of which is the best score among
the algorithms. After scaling the SRD values to the [0, 100]
interval, their theoretical distribution approximates a normal
distribution. Thus, the normal quantiles of each algorithm can
serve as the actual SRD values compared to the reference vec-

tor, with the implementation results shown in Fig. 2. The
scaled Sum of Ranking Differences (SRD) values are plotted
on the x-axis and the left y-axis, while the right y-axis displays
the relative frequency (black curve). The Gaussian fitting pa-
rameters are 𝑚=66.72, 𝑠 =9.87. The SRD values at the 5%
probability level (XX1), the median (Med), and 95% (XX19)
are also provided.

TABLE II. COMPARISON OF NINE ALGORITHMS ON DIFFERENT DATASETS

Dataset Methods Accuracy Recall Precision F1 RANK

Wine

Proposed 0.963 0.963 0.961 0.963 1

KNN 0.740 0.726 0.726 0.726 3

FWKNN 0.740 0.726 0.726 0.726 4

LEKNN 0.537 0.532 0.538 0.534 8

LGKNN 0.648 0.644 0.652 0.644 7

GEKNN 0.444 0.425 0.488 0.402 9

GGKNN 0.648 0.645 0.680 0.656 6

IKNN 0.740 0.730 0.723 0.722 5

Opt_OOB 0.925 0.926 0.926 0.926 2

Mc2

Proposed 0.714 0.613 0.613 0.613 1

KNN 0.612 0.546 0.537 0.534 6

FWKNN 0.612 0.546 0.537 0.534 7

LEKNN 0.693 0.600 0.595 0.597 2

LGKNN 0.653 0.516 0.517 0.517 8

GEKNN 0.673 0.558 0.558 0.558 4

GGKNN 0.673 0.558 0.558 0.558 4

IKNN 0.673 0.614 0.596 0.600 3

Opt_OOB 0.693 0.543 0.554 0.545 5

Car

Proposed 0.942 0.859 0.909 0.879 1

KNN 0.859 0.633 0.766 0.681 4

FWKNN 0.926 0.831 0.797 0.809 2

LEKNN 0.778 0.419 0.432 0.415 8

LGKNN 0.724 0.465 0.606 0.493 6

GEKNN 0.791 0.485 0.528 0.500 5

GGKNN 0.791 0.485 0.528 0.500 5

IKNN 0.774 0.390 0.543 0.414 7

Opt_OOB 0.890 0.667 0.849 0.715 3

Promoters

Proposed 0.843 0.845 0.843 0.843 1

KNN 0.781 0.782 0.781 0.781 2

FWKNN 0.750 0.752 0.752 0.750 3

LEKNN 0.718 0.727 0.741 0.716 5

LGKNN 0.718 0.723 0.726 0.718 6

GEKNN 0.656 0.660 0.662 0.655 8

GGKNN 0.656 0.660 0.662 0.655 8

IKNN 0.687 0.690 0.690 0.687 7

Opt_OOB 0.750 0.749 0.749 0.749 4

Breast
Cancer

Proposed 0.976 0.971 0.978 0.974 1

KNN 0.941 0.933 0.933 0.936 5

FWKNN 0.941 0.933 0.933 0.936 4

LEKNN 0.614 0.562 0.570 0.561 9

LGKNN 0.713 0.660 0.695 0.666 7

GEKNN 0.731 0.674 0.722 0.682 6

GGKNN 0.660 0.619 0.629 0.621 8

IKNN 0.970 0.966 0.970 0.968 2

Opt_OOB 0.953 0.946 0.952 0.949 3

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

235 | P a g e

www.ijacsa.thesai.org

Fig. 2. Evaluation of algorithms using the sum of rank differences.

As can be discerned from Fig. 2, the CKNN algorithm is
positioned on the left side of the curve, indicating that CKNN
is the algorithm closest to the ideal state. At the same time,
CKNN is at a certain distance compared to Opt_OOB and
IKNN_PSLFW, signifying a clear advantage of CKNN over
Opt_OOB and IKNN_PSLFW. Moreover, aside from GEKNN,
LGKNN, GGKNN, and LEKNN, the ranking of the remaining
five algorithms shows a significant difference from random
ranking (α=0.05).

To highlight the advantages of CKNN, this paper further
conducts a Friedman test [26]. Based on the Accuracy, Preci-
sion, Recall, and F1 metrics of CKNN, Table Ⅲ presents the
Friedman statistic FF and the corresponding p-values for KNN,
FWKNN, LEKNN, LGKNN, GEKNN, GGKNN,
IKNN_PSLFW, and Opt_OOB in terms of accuracy, precision,
recall, and F1 metrics. Table Ⅲ shows that the null hypothesis
(i.e., all compared algorithms will have equivalent performanc-
es) is significantly rejected at the significance level of α=0.05
for each evaluation metric, meaning there is a significant dif-
ference between CKNN and the other algorithms. However, it
does not specify which algorithms are superior or inferior.

To further observe the differences among algorithms, this
paper uses the Nemenyi test to assess the competitiveness of

algorithms. In this test, if the difference in average ranks be-
tween two classifiers reaches at least the critical difference

CD=q
α
√

k(k+1)

6N
, it is considered that there is a significant differ-

ence in performance between these two classifiers. At a signifi-
cance level of α=0.05, q

α
 is 3.102, and the CD value is 5.369

(where 𝑘=9，𝑁=5). Fig. 3 presents the CD diagram of the nine

algorithms under Accuracy, Precision, Recall, and F1 metrics.
In Fig. 2, any algorithm whose average rank is within a CD
interval of CKNN is highlighted with a red line to show its
association; otherwise, it indicates a significant performance
difference from CKNN. For example, in recall, CKNN's aver-
age rank is 1.20, and with the addition of the CD value, the
critical value becomes 6.57. At this point, LGKNN and
GEKNN, with average ranks of 7.20 and 6.70 respectively,
perform poorly. However, for algorithms within the CD inter-
val, it is currently not impossible to determine the performance
gap between them and CKNN.

Based on the Nemenyi test, this paper uses the Bonferroni
correction [27] to control the type I error (i.e., falsely rejecting

a true null hypothesis). Let ∆ξ=ξ̅algorithm-ξ̅CKNN , when ∆ξ is

more excellent than CDα, it is marked with "Y", indicating that
CKNN outperforms the corresponding algorithm on the respec-
tive metric; otherwise, it is not marked. At a significance level
of α=0.05, the critical value q

α
 becomes 2.724.

As shown in Table Ⅳ, the Bonferroni assessment results
indicate that CKNN's performance exceeds that of LEKNN,
LGKNN, GGKNN, and GEKNN algorithms.

TABLE III. SUMMARY OF THE FRIEDMAN STATISTIC FF (K = 9, N = 5)

Evaluation Criteria FF Critical Value (α=0.05)

Accuracy 22.86

15.51
Recall 19.96

Precision 23.16

F1 score 21.30

Note: k represents the number of algorithms being compared; N represents the number of datasets

（a）Accuracy （b）Recall

（c）Precision （d）F1 score

Fig. 3. Nemenyi test of CKNN (control algorithm) with other variant KNN algorithms.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

236 | P a g e

www.ijacsa.thesai.org

TABLE IV. COMPARISON OF CKNN WITH OTHER VARIANT KNN

ALGORITHMS

 Accuracy Recall Precision F1

KNN -- -- -- --

Opt_OOB -- -- -- --

FWKNN -- -- -- --

IKNN_PSLFW -- -- -- --

LEKNN Y Y Y Y

LGKNN Y Y Y Y

GEKNN Y Y Y Y

GGKNN Y Y Y Y

Confidence intervals [25] are employed to assess the degree
of performance improvement among different algorithms. This
paper utilizes confidence intervals to evaluate the performance
of CKNN against eight compared variant KNN algorithms.
Confidence intervals for comparisons among the eight algo-
rithms were constructed to quantify these differences, assum-
ing normality for the ranking differences as depicted in Eq.
(24).

∆𝜉

√𝑘(𝑘+1)

6𝑁

~𝑁(0,1) (24)

At a 95% confidence level, Fig. 4 shows the confidence in-
tervals for Accuracy, Recall, Precision, and F1 metrics for the
nine algorithms. From Fig. 4, it is observed that except for
KNN, IKNN_PSLFW, and FWKNN, all intervals for
Opt_OOB, LEKNN, LGKNN, GGKNN, and GEKNN appear
to be less than 0, indicating significant differences between
these algorithms and CKNN. For KNN, IKNN_PSLFW, and
FWKNN, although the upper bounds of some evaluation met-

rics' confidence intervals are more significant than or close to 0,
the estimated parameter values within the confidence intervals
remain below 0, suggesting that CKNN, on the whole, outper-
forms KNN, IKNN_PSLFW, and FWKNN, with
IKNN_PSLFW showing the closest performance to CKNN.

From the analyses based on the Sum of Ranking Differ-
ences (SRDs), Friedman test, Nemenyi test, and Bonferroni
correction, it is evident that the CKNN algorithm outperforms
the compared algorithms, including KNN, FWKNN, LEKNN,
LGKNN, GEKNN, GGKNN, IKNN_PSLFW, and Opt_OOB
in terms of performance.

Fig. 4. Confidence intervals for rank differences.

C. Sensitivity Analysis

This section, using the Promoters dataset as an example,
will analyze the impact of the Minkowski exponent (𝑝-value)
and the tuning parameter β on the performance of the proposed
CKNN algorithm. The importance of 𝑝 and β values in affect-
ing the classifier's performance will be demonstrated through
specific experimental results, which are displayed in Fig. 5.

(a) The effect of different 𝑝 and β on Accuracy. (b) The effect of different 𝑝 and β on Recall.

(c) The effect of different 𝑝 and β on Precision. (d) The effect of different 𝑝 and β on F1 score.

Fig. 5. The effect of different Minkowski indices and tuning parameter β on classifier performance.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

237 | P a g e

www.ijacsa.thesai.org

From Fig. 5, it can be observed that (1) For a specific value
of β, the trend of accuracy increasing with an increase in 𝑝 is
quite apparent. The highest accuracy combination occurs at
β=6 and p=4, 5, 6, with accuracies all reaching 0.8438. This
indicates that a higher combination of β and 𝑝 values is more
likely to produce higher accuracies in this data group. Despite
some fluctuations, a general trend can still be seen accuracy
tends to increase with an increase in the value of 𝑝. The effect
of the tuning parameter β seems less direct. However, it can be
observed that when the value of the tuning parameter β reaches
6, the accuracy reaches a higher level, especially at higher 𝑝
values. (2) Recall rates show a certain upward trend with the 𝑝
increase. Especially at 𝑝=3 and subsequent values, recall rates
are relatively high, notably at β=2 and β=5, 6, indicating that
an increase in 𝑝 has a positive effect on enhancing recall rates.
At β=2, 5, 6 and 𝑝=3,4, the recall rates all reached the highest
value of 0.8824. Overall, as 𝑝 increases, there is a trend for an
increase in recall rates, although this trend exhibits some fluc-
tuations under different β values. (3) At β =2, precision in-
creases significantly with 𝑝 , reaching a peak (0.875), then
decreasing. For other β values, precision does not vary much
across different 𝑝 values, but overall, when β increases to 6,
precision reaches its highest at p=4, 5, 6. This suggests that
larger values of β and 𝑝 might be more beneficial for increas-
ing precision in this specific model. Generally, precision tends
to improve with an increase in β, especially at higher 𝑝 values.
(4)F1 score varies under different combinations of β and 𝑝 .
Especially at β=2, the F1 score corresponding to 𝑝 significantly
surpasses other 𝑝 values, showing the highest score at 0.8485.
At β=6 and 𝑝=4, 5, 6, the highest F1 scores were observed,
each being 0.8571. This finding aligns with previous analyses
of precision, suggesting that the model's overall performance
may be better with larger values of β and 𝑝.

Therefore, CKNN performance metrics (Accuracy, Recall,
Precision, and F1 score) generally improve with the increase of
the parameter p and perform optimally at larger β values. Rea-
sonable adjustment of the Minkowski index and the tuning
parameter β can further optimize the classification performance
of the CKNN algorithm.

V. CONCLUSION

This study proposes an improved K-nearest neighbor (KNN)
classification algorithm based on compactness weights, which
initially updates feature weights by calculating the compact-
ness of each feature and then employs a compactness-weighted
Minkowski distance to calculate the distances between samples,
serving as the basis for classification decisions. Experimental
results indicate that the CKNN algorithm surpasses traditional
KNN and variant KNN algorithms in Accuracy, Recall, Preci-
sion, and F1 scores across the selected five datasets, notably
showing significant performance improvements on the Pro-
moters dataset.

The analysis of experimental results suggests that when the
Minkowski exponent is two and the tuning parameter β is 2,
the CKNN algorithm achieves relatively better classification
effects. The CKNN algorithm can better balance the local and
global information between samples, enhancing classification
accuracy. Additionally, the overall results from the SRDs rank-
ing, Friedman test, Nemenyi test, and Bonferroni correction

analysis of the CKNN algorithm are superior to those of the
compared variant KNN algorithms, confirming the better per-
formance of the CKNN algorithm. Sensitivity analysis results
indicate that the performance of the CKNN algorithm is jointly
influenced by the Minkowski exponent and the tuning parame-
ter β , and an appropriate selection of these parameters can
further enhance the algorithm's performance.

Although the CKNN algorithm proposed in this study en-
hances the performance of the KNN algorithm, the perfor-
mance of the KNN algorithm performance remains a key area
of research. Therefore, future research will focus on further
enhancing the scalability of the K-Nearest Neighbors (KNN)
algorithm in large-scale datasets and real-time applications,
with an emphasis on exploring parallel processing and distrib-
uted computing technologies to improve the efficiency of KNN
in big data scenarios. At the same time, by combining the abil-
ity of deep learning models to automatically extract features
and optimize weights, the KNN algorithm is expected to per-
form more effectively in handling high-dimensional and un-
structured data.

ACKNOWLEDGMENT

This paper is upheld by the Ministry of Education Humani-
ties and Social Sciences Planning Fund Project under Grant
22YJA880051, and in by National Science Foundation of Chi-

na under Grants 72261016，in part by the Department of Edu-

cation of Jiangxi Province of China under Grant GJJ2200535,
22YB052.

DATA AVAILABILITY

Data will be made available on request.

CONFLICTS OF INTEREST

These authors state that there have been no competing in-
terests among them.

REFERENCES

[1] K. Taunk, S. De, S. Verma and A. Swetapadma, "A Brief Review of
Nearest Neighbor Algorithm for Learning and Classification," 2019 In-
ternational Conference on Intelligent Computing and Control Systems
(ICCS), Madurai, India, 2019, pp. 1255-1260.

[2] Z. Li, H. Wang, S. Zhang, W. Zhang, and R. Lu, “SECKNN: FSS-Based
Secure Multi-Party KNN Classification under General Distance Func-
tions,” IEEE Transactions on Information Forensics and Security, vol.
19, pp. 1326–1341, Jan. 2024.

[3] M. M. Abualhaj, A. A. Abu-Shareha, Q. Y. Shambour, A. Alsaaidah, S.
N. Al-Khatib, and M. Anbar, “Customized K-nearest neighbors’ algo-
rithm for malware detection,” International Journal of Data and Network
Science, vol. 8, no. 1, pp. 431–438, Jan. 2024.

[4] E. Fix and J. L. Hodges, “Discriminatory analysis: Nonparametric
discrimination: Consistency properties,” PsycEXTRA Dataset. Jan. 01,
1951.

[5] S. Uddin, I. Haque, H. Lu, M. A. Moni, and E. Gide, “Comparative
performance analysis of K-nearest neighbour (KNN) algorithm and its
different variants for disease prediction,” Scientific Reports, vol. 12, no.
1, Apr. 2022.

[6] B. Han, L.-N. Qiao, J.-L. Chen, X.-D. Zhang, Y. Zhang, and Y. Zhao,
“GeneticKNN: a weighted KNN approach supported by genetic algo-
rithm for photometric redshift estimation of quasars,” Research in As-
tronomy and Astrophysics/Research in Astronomy and Astrophysics,
vol. 21, no. 1, p. 017, Jan. 2021.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

238 | P a g e

www.ijacsa.thesai.org

[7] S. Zhang, “Challenges in KNN classification,” IEEE Transactions on
Knowledge and Data Engineering, vol. 34, no. 10, pp. 4663–4675, Oct.
2022.

[8] S. Zhang and J. Li, “KNN Classification with One-step Computation,”
IEEE Transactions on Knowledge and Data Engineering, p. 1, Jan. 2021.

[9] J. Hu, H. Peng, J. Wang, and W. Yu, “kNN-P: A kNN classifier opti-
mized by P systems,” Theoretical Computer Science, vol. 817, pp. 55–
65, May 2020.

[10] B. Wang and S. Zhang, “A new locally adaptive K-nearest centroid
neighbor classification based on the average distance,” Connection Sci-
ence, vol. 34, no. 1, pp. 2084–2107, Jul. 2022.

[11] N. Rastin, M. Z. Jahromi, and M. Taheri, “A generalized weighted
distance k-Nearest Neighbor for multi-label problems,” Pattern Recogni-
tion, vol. 114, p. 107526, Jun. 2021.

[12] A.-J. Gallego, J. Calvo-Zaragoza, J. J. Valero-Mas, and J. R. Rico-Juan,
“Clustering-based k-nearest neighbor classification for large-scale data
with neural codes representation,” Pattern Recognition, vol. 74, pp. 531–
543, Feb. 2018.

[13] X. Zhang, H. Xiao, R. Gao, H. Zhang, and Y. Wang, “K-nearest neigh-
bors rule combining prototype selection and local feature weighting for
classification,” Knowledge-based Systems, vol. 243, p. 108451, May
2022.

[14] N. Gul, W. K. Mashwani, M. Aamir, S. Aldahmani, and Z. Khan, “Op-
timal model selection for k-nearest neighbours ensemble via sub-
bagging and sub-sampling with feature weighting,” Alexandria Engi-
neering Journal /Alexandria Engineering Journal, vol. 72, pp. 157–168,
Jun. 2023.

[15] Y. Chen and Y. Hao, “A feature weighted support vector machine and
K-nearest neighbor algorithm for stock market indices prediction,” Ex-
pert Systems With Applications, vol. 80, pp. 340–355, Sep. 2017.

[16] L. Chen and G. Guo, “Nearest neighbor classification of categorical data
by attributes weighting,” Expert Systems With Applications, vol. 42, no.
6, pp. 3142–3149, Apr. 2015.

[17] C. Gong, Z.-G. Su, X. Zhang, and Y. You, “Adaptive evidential K-NN
classification: Integrating neighborhood search and feature weighting,”
Information Sciences, vol. 648, p. 119620, Nov. 2023.

[18] Z. Bian, C. M. Vong, P. K. Wong, and S. Wang, “Fuzzy KNN method
with adaptive nearest neighbors,” IEEE Transactions on Cybernetics,
vol. 52, no. 6, pp. 5380–5393, Jun. 2022.

[19] J. M. Keller, M. R. Gray, and J. A. Givens, “A fuzzy K-nearest neighbor
algorithm,” IEEE Transactions on Systems, Man, and Cybernetics, vol.
SMC-15, no. 4, pp. 580–585, Jul. 1985.

[20] J. Gou et al., “A representation coefficient-based k-nearest centroid
neighbor classifier,” Expert Systems With Applications, vol. 194, p.
116529, May 2022.

[21] M. Açıkkar and S. Tokgöz, “An improved KNN classifier based on a
novel weighted voting function and adaptive k-value selection,” Neural
Computing & Applications, vol. 36, no. 8, pp. 4027–4045, Dec. 2023.

[22] H. Xu, W. Zeng, X. Zeng, and G. G. Yen, “An evolutionary algorithm
based on Minkowski Distance for Many-Objective optimization,” IEEE
Transactions on Cybernetics, vol. 49, no. 11, pp. 3968–3979, Nov. 2019.

[23] S. Chowdhury, N. Helian, and R. C. De Amorim, “Feature weighting in
DBSCAN using reverse nearest neighbours,” Pattern Recognition, vol.
137, p. 109314, May 2023.

[24] Á. Ipkovich, K. Héberger, and J. Abonyi, “Comprehensible visualization
of multidimensional data: sum of Ranking Differences-Based parallel
coordinates,” Mathematics, vol. 9, no. 24, p. 3203, Dec. 2021.

[25] D. P. Turner, H. Deng, and T. T. Houle, “Understanding and applying
confidence intervals,” Headache the Journal of Head and Face Pain, vol.
60, no. 10, pp. 2118–2124, Nov. 2020.

[26] H. Lüpsen, “Generalizations of the Tests by Kruskal-Wallis, Friedman
and van der Waerden for Split-plot Designs,” Austrian Journal of Statis-
tics, vol. 52, no. 5, pp. 101–130, Sep. 2023.

[27] L. Štěpánek, F. Habarta, I. Mala, and L. Marek, “A short note on post-
hoc testing using random forests algorithm: Principles, asymptotic time
complexity analysis, and beyond,” Annals of Computer Science and In-
formation Systems, Sep. 2022.

[28] T. J. VanderWeele and M. B. Mathur, “Some desirable properties of the
Bonferroni correction: is the Bonferroni correction really so bad?,”
American Journal of Epidemiology, vol. 188, no. 3, pp. 617–618, Nov.
2018.

