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Abstract—Traditional bridge monitoring techniques, which 

predominantly rely on centralized data processing, often exhibit 

slow and inflexible responses when managing large-scale sensor 

network data. This study proposes an integrated edge and cloud 

computing approach to enhance the response time and data 

processing efficiency of dynamic bridge structure monitoring 

systems, thereby improving bridge safety and reliability. The 

proposed monitoring system leverages both edge and cloud 

computing, incorporating modules such as sensor data 

management, structural assessment and warning, data processing, 

monitoring, and data acquisition and transmission. High-

performance and cost-effective sensors are utilized to monitor the 

real-time dynamic responses of the bridge, including 

displacement, acceleration, tilt, and stress, as well as external loads 

and environmental effects. The data processing module employs 

the modal superposition method, frequency response function, 

and modal analysis for dynamic analysis, while the cloud 

computing platform facilitates deep learning analysis and long-

term data storage. A real case study demonstrates the system's 

performance across various settings and operational conditions, 

highlighting the effectiveness of integrating edge and cloud 

computing. The results indicate that the integration scheme 

significantly enhances monitoring accuracy, system stability, real-

time response capacity, and data processing efficiency. 
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I. INTRODUCTION 

As the world's infrastructure ages faster and bridge loads 
continue to climb, maintaining the durability and safety of 
bridge structures has become increasingly important for 
transportation infrastructure managers. Bridges are essential 
transportation hubs, and public safety and economic prosperity 
are directly impacted by the state of these structures. 
Consequently, the importance of monitoring and evaluating 
bridge health has increased. Recent developments in data 
collection, processing, and sensing technologies have made 
dynamic monitoring of bridge structures a hot topic for study. 
However, a number of challenges face traditional bridge 
monitoring techniques, including real-time data processing, 
system adaptability, and data security. 

In order to anticipate future failures and safety risks, the goal 
of health monitoring bridge structures is to gather and evaluate 
the structural response of bridges in real time. Conventional 
monitoring techniques typically depend on centralized data 
processing systems, which frequently experience issues with 
massive amounts of data, including processing delays, 
bandwidth bottlenecks, and data loss [1]. Bridge monitoring 

systems can now collect vast amounts of high-frequency data 
due to advancements in sensor technology, which place more 
demands on data processing. Complex sensor data must be 
processed in real time in modern bridge monitoring in order to 
assess the structural response of the bridge, identify possible 
issues, and promptly take corrective action [2]. Thus, it is now a 
top research priority to investigate new monitoring schemes to 
guarantee data confidentiality, boost system adaptability, and 
increase data processing skills. 

Many existing structural health monitoring (SHM) systems 
use traditional wired sensor networks, which are prone to 
scalability problems. As the number of sensors increases, the 
complexity of wiring and maintenance grows, leading to higher 
costs and greater difficulty in system management. Wireless 
sensor networks (WSNs) have been introduced to address some 
of these issues, but even WSNs face challenges in terms of signal 
interference, data loss, and power consumption, especially in 
large-scale infrastructure like long-span bridges. 

While numerous systems claim to offer real-time 
monitoring, their data processing speeds and transmission 
methods often lag behind the real-time requirements of critical 
infrastructures. Most systems are not equipped to handle the 
massive influx of data generated by high-frequency sampling 
from multiple sensors, leading to delays in data processing and 
reporting. Furthermore, interruptions in data transmission due to 
connectivity issues often result in incomplete or delayed data 
analysis, making it difficult to monitor structural health 
accurately in real time. 

One major limitation of existing SHM systems is the lack of 
robust fault tolerance mechanisms. Many systems do not have 
adequate backup solutions in place to prevent data loss during 
network outages or hardware failures. The absence of local 
storage for sensor data during communication interruptions can 
lead to significant gaps in monitoring, especially during critical 
events such as natural disasters or severe weather conditions. 
This undermines the reliability of the data collected and the 
system's ability to provide timely alerts. 

Most traditional SHM systems rely on basic statistical 
methods for evaluating structural health. While these methods 
are useful for analyzing deformation, vibration, and load 
responses, they often fail to provide accurate predictions or 
insights into long-term structural behavior. The integration of 
intelligent algorithms such as machine learning, which could 
predict potential failure points or structural degradation based on 
historical data, remains underexplored in many existing 
solutions. 
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Large volumes of data are produced by bridge monitoring 
systems, particularly when high frequency sampling is used. 
Conventional centralized data processing techniques are 
frequently unable to keep up with the needs of real-time 
processing [3]. Due to this, data is delayed and any structural 
anomalies or early warning signals may go unnoticed. Although 
edge computing, which processes data in real time close to the 
site of collection, can significantly cut down on transmission 
delays, it has drawbacks in terms of deep analysis and storage 
capacity [4, 5]. It is necessary to prevent and address potential 
security breaches, system malfunctions, and data loss during 
data transmission and storage with appropriate methods. 
Temperature, wind speed, traffic volume, and other climatic and 
operational variables can all have an impact on a bridge's 
structural response. In order to guarantee the precision and 
dependability of the monitoring data under diverse 
circumstances, the monitoring system must be flexible and 
durable [6, 7]. 

The three primary data processing methods used in bridge 
monitoring systems nowadays are distributed data processing, 
centralized data processing, and edge computing with cloud 
computing. Among them, centralized data processing 
techniques mostly depend on a central server for data analysis; 
however, this approach is less effective at handling large data 
volumes and is prone to system bottlenecks and data 
transmission delays [8, 9]. By dividing up the processing work 
among several sites, distributed data processing techniques 
boost processing efficiency. However, they also come with high 
management and maintenance costs and a complex system. 

The goal of the new edge-cloud computing solution is to get 
beyond the drawbacks of the more conventional methods. Cloud 
computing offers robust storage and deep analytical capabilities, 
whereas edge computing permits preliminary data processing 
close to the site of data gathering, reducing the latency of data 
transmission. This plan can somewhat increase the system’s 
scalability and real-time data processing [10]. However, there 
are still difficulties in the process of integrating edge computing 
with cloud computing, including problems with data security, 
synchronization, and system complexity. 

The contribution of this article is as follows: 

 The cloud computing system integrates real-time or near 
real-time monitoring, which enhances the ability to track 
bridge deformation and response to external factors like 
wind loads and traffic. 

 The system uses preprocessing to clean sensor data and 
align it with GPS time, followed by post-processing that 
produces statistical analyses every 10 minutes. This 
enables detailed tracking of environmental factors and 
bridge behavior, ensuring timely identification of 
structural issues. 

  The early warning module, which updates baselines and 
thresholds iteratively, allows for the proactive 
identification of abnormal structural behavior, thus 
enhancing safety management. 

The remaining sections of this article are structured as 
follows: 

Related work is given in Section II. Section III presents the 
bridge diagnostic modeling. Section IV discusses the data 
processing and monitoring module. It explains the bridge 
structure evaluation and early warning system. It also describes 
the software development and sensor system. Section V 
provides the preliminary analysis of bridge deformation, 
including statistical evaluations from 2021 and 2022. It covers 
the initial examination of InSAR image data to monitor ground 
subsidence. Section VI concludes with the overall findings and 
implications for future work. 

II. RELATED WORK 

Several researchers have explored SHM systems for bridges, 
focusing on real-time data collection, processing, and predictive 
analysis. 

Early SHM systems have primarily relied on wired sensor 
networks and manual data collection, often requiring substantial 
human intervention for data processing and analysis. These 
systems also faced limitations in scalability, real-time 
monitoring, and the ability to handle large volumes of data. 
More recent studies have introduced cloud computing platforms 
for SHM systems, enhancing data storage, processing 
capabilities, and remote access to monitoring data [3, 9]. For 
instance, Xie et al. [11] mentions the use of GNSS and 
acceleration data for bridge vibration analysis, similar to the 
proposed approach. However, these systems often lack 
advanced real-time fault tolerance mechanisms and high 
computational efficiency when dealing with large sensor 
networks. Bayik has also applied InSAR image processing to 
detect settlement movements around large-scale infrastructure 
[12]. However, most studies have treated InSAR data as separate 
from the real-time SHM system, lacking integration into a 
unified monitoring platform. This limits their utility for ongoing 
structural assessment and real-time decision-making. 

Existing systems often fail to maintain data integrity during 
network interruptions or connectivity failures, which can cause 
significant gaps in data during critical periods. While many 
studies use basic statistical methods for monitoring, there is 
limited use of intelligent algorithms that integrate GNSS, 
acceleration, and environmental data for real-time predictive 
analysis [13]. 

The research presented in this paper builds on the work of 
[14] and others by proposing a **comprehensive cloud-based 
SHM system** that integrates real-time data processing, 
intelligent predictive analysis, and fault tolerance mechanisms. 
Through a backup server capable of storing raw sensor data for 
up to one month, a feature that existing systems lack. 

III. BRIDGE DIAGNOSTIC MODELING 

The design of the model and the development of formulas 
are important components in the dynamic monitoring of bridge 
structures. A realistic and scientific model should be developed 
for assessing and forecasting the dynamic response of the bridge 
in order to achieve an accurate diagnosis of the bridge structure. 
Based on the integrated edge-cloud computing architecture, a 
bridge diagnostic model design was developed in this study [15, 
16]. 
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A finite element model (FEM), which considers the bridge's 
geometry, material properties, and boundary conditions, can be 
used to represent the dynamic response of a bridge structure. The 
dynamic response of the bridge was simulated using a linear 
elastic FEM. 

The following equation of motion can be used to characterize 
a bridge's dynamic response: 

( ) ( ) ( ) ( )Mu t Cu t Ku t F t              (1) 

where, M is the quality matrix, representing the quality 
distribution of the bridge; C is the damping matrix, representing 
the damping characteristics of the bridge; K is the stiffness 
matrix, representing the stiffness characteristics of the bridge; 
u(t) is a displacement vector, representing the dynamic response 
of the bridge; and F(t) is an external load vector, representing 
wind load, traffic load, etc. 

Modal analysis was applied to the bridge in order to examine 
its inherent frequencies and vibration modes. The characteristic 
equation of the modal analysis is as follows: 

 2 0K M  
                        (2) 

where, ω is the modal frequency, and ϕ is the modal shape. 
The bridge's inherent frequency and vibration mode can be 
determined by resolving the characteristic equation. 

A. Evaluation of Structural Health 

The structural health of bridges was assessed using the 
features extracted. The bridge's health index HI can be 
determined using the following formula: 

b

d
HI




                  (3) 

The presence of structural irregularities in the bridge can be 
established by comparing the health index of HI with a certain 
threshold. A warning will be sent out if HI surpasses the cutoff. 

B. Wind Speed and Deformation Relationship 

The following nonlinear regression model can be used to 
investigate how wind load affects bridge deformation: 

2

lateral wind wind V V       
           (4) 

where, 𝛿lateral is the amount of lateral deformation; 𝑉wind is 
the wind speed; 𝛼 , 𝛽 , and 𝛾  are the regression coefficients 
yielded by the regression analysis. 

IV. SYSTEM ARCHITECTURE FOR CLOUD COMPUTING 

Fig. 1 depicts the general architecture of the Federal Reserve 
System (FRB) cloud computing system, which is broken down 
into five subsystems: the data management module, the data 
processing and monitoring module, the data collection and 
transmission module, the bridge structure evaluation and early 
warning module, and the sensor module. The components and 
interactions between the subsystems are depicted in Fig. 2. 

 

Fig. 1. The overall architecture of the cloud computing system. 

 

Fig. 2. Data flow and the relationships between the cloud computing 

subsystems. 

C. Sensor Module 

The cloud computing's sensor module is made up of various 
sensor types that can monitor the bridge's displacement, 
acceleration, inclination, stress, and other structural responses. 
It can also identify external loads applied to the bridge, such as 
wind loads and traffic weight, and short- and long-term 
environmental effects, such as temperature, weather, and ground 
motion [17, 18]. Fig. 3 illustrates the precise locations of the 
sensors on the FRB, and Table I lists the different kinds of 
sensors used in this cloud demonstration project, along with their 
sampling rates. 

Global Navigation Satellite System (GNSS) technology, 
which makes use of both expensive and low-cost GNSS 
receivers, forms the basis of the sensor module. A fundamental 
prerequisite for the creation of an economical sensor module 
system is the provision of both static profiles and dynamic 
behavior for both low-cost and high-performance receivers. 
Three pairs of GNSS receivers were placed across the center and 
two navigation points in the major region of B, in addition to 
three inexpensive three-axis Sherborne accelerometers. This 
combination facilitates the integration of acceleration data and 
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GNSS data for extremely precise measurements of bridge 
deformation. An accelerometer was also positioned at 1/8 and 
3/8 of the major spans, offering more information that could be 
used to determine the modulation frequency and vibration mode 
geometries of the FRBs. A triaxial accelerometer was installed 
atop each of the two major towers since deformation monitoring 
is critical to their operation. Inclineometers were also erected to 
show the average deformation at the summits of the towers. In-
depth correlation studies of the wind loads on the FRB were 
made possible by the installation of three anemometers on the 
structure: two at the top of the two main towers and one at the 
mid-span. Advanced photovoltaic technology was also used in 
the cloud computer demonstration project to deliver data on 
sensors that can negatively impact the main tower foundations 
and the bridge's overall integrity. 

TABLE I. SPECIFICATIONS OF THE SENSORS SET UP FOR THE 

GEOHAZARD MONITORING REMOTE INITIATIVE 

Sensors Details Sampling Rates (hz) 

GNSS Leica gro 12 

GNSS Panda DB38 2 

Anemometer Gill windmaster 22 

Weather station Gill Metpak 2 

Accelerometer  Sherborne A545-0003-2G 100 

Inclinometer  Sherborne LSOP-1 12 

InSAR image  EO 1  Image/14 days 

 

Fig. 3. Installation positions of sensors. 

D. Data Collection and Transmission Module 

The architecture of the data collection and transmission 
module installed at the FRB is shown in Fig. 4. The module's 
primary function is to convey data to a server safely housed in 
the field control centre using a fiber-optic link for 
communication with the sensors. Bridge operators can use this 
server to download data for additional analysis, generate reports 
on a regular basis, and access monitoring data for real-time 
monitoring. More crucially, in the event that communication 
between the bridge site and the main cloud server is lost, this 
server serves as a backup server, temporarily storing raw sensor 
data. The backup server is built to hold roughly one month's 
worth of raw sensor data, which is adequate in the case of a 
potential connectivity failure given the high sampling rate and 
numerous sensors. 

 

Fig. 4. Schematic diagram of the data collection and transmission module 

for cloud computing. 

E. Data Processing and Monitoring Module 

Preprocessing and post-processing units make up the two 
components of the data processing and monitoring module, 
which is primarily installed on the primary cloud computing 
server (Fig. 5). The primary duties of the preprocessing unit are 
to detect and eliminate anomalies and synchronize all sensor 
data with GPS time. The preprocessing unit also transforms the 
bridge deformation data in the bridge coordinate system from 
the purified GNSS data. The post-processing unit receives the 
output from the preprocessing unit [19]. 

The post-processing unit statistically assesses features 
pertaining to environmental impacts, external loads, and bridge 
deformation to produce statistical averages that are updated 
every 10 minutes. These characteristics include the average air 
temperature, the peak wind coefficient, the average inclination 
of the main tower, and the mean and standard deviation of the 
bridge deformation in the span. The cloud computing data 
strategy provides a precise definition for these low-level aspects. 

The cloud computing system has an automatic and advanced 
system identification algorithm that uses GNSS and acceleration 
data to predict the modal frequencies and shapes of vibration 
patterns in order to perform intelligent data analysis. 
Furthermore, the device possesses real-time or almost real-time 
monitoring capabilities that leverage the previously mentioned 
attributes to track bridge deformation in response to wind loads 
and additional operational and environmental variables [20, 21]. 
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Fig. 5. Main features of the data processing and monitoring module for cloud computing. 

It is noteworthy that, because of its low cost and high 
computational needs, Interferometric Synthetic Aperture Radar 
(InSAR) image processing is carried out on a monthly basis. 
This makes sense because, in contrast, settlement takes place 
over a longer time frame. 

F. Bridge Structure Evaluation and Early Warning Module 

The design and execution of an alert system based on the 
requirements of the cloud computing data policy are shown in 
Fig. 6. This module's performance depends on baselines and 
thresholds that were initially established using previous 
monitoring data and bridge operator expertise. These baselines 
and thresholds were then continuously refined using an iterative 
update mechanism to accurately reflect the bridge's current 
condition. When the measured bridge reaction goes over these 
limits and baselines, an alarm will sound, signaling that the 
bridge's structural behavior is aberrant. 

A more sophisticated structural evaluation process can be 
utilized to investigate an alarm further after it has been set off. 
This helps identify whether the alarm is caused by alterations in 
the operating and environmental circumstances, modifications 
to the structural system, or the failure of a member. Additionally, 
the method uses modal parameters taken out of the deformation 
data to update the structural model in a rolling fashion. By 
facilitating simulation, the updated model helps bridge operators 
make better management decisions [22]. 

When the findings of InSAR image processing are obtained, 
they are applied to a structural model in order to evaluate how 
long-term ground motion affects structural stiffness. Bridge 
stability and long-term safety can be improved with the use of 
this procedure. 

 

Fig. 6. Module flowchart for cloud computing. 

V. EXPERIMENTATION 

A. Software Development and Sensor System Status 

A cloud computing web application was developed in terms 
of software, as seen in Fig. 7. User engagement with the cloud 
computing system is facilitated by the platform. Some of this 
web application's functions are available to users, such as real-
time monitoring, immediate alarms, and historical data queries. 
The following section goes into additional detail about a few of 
the outcomes this web application produces. 

 

Fig. 7. Web applications for cloud computing. 
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B. Preliminary Analysis of Bridge Deformation 

The cloud computing web application gives customers 
access to 10-minute average feature statistics from the cloud 
computing database in addition to real-time monitoring. With 
the help of this capability, the user may comprehend the bridge's 
response patterns and history as well as further examine how the 
bridge reacts to system changes or structural part failures. 
Furthermore, the 10-minute average statistics for temperature, 
wind speed, intrinsic frequency, and bridge response evaluation 
are crucial for establishing baselines, thresholds, and short- and 
long-term trends. These data are important for developing bridge 
structure evaluation and warning algorithms, as well as for 
evaluating the typical structural behavior of FRBs under various 
operational and environmental situations. This section presents 
and discusses a few of the evaluations' findings. 

The cloud computing web application has the ability to 
automatically create several kinds of statistical graphs on 
demand. MATLAB was utilized for their high-resolution 
presentations. The main focus is on the 10-minute mean and 
standard deviation responses of the FRBs, along with their 
relationship to wind speed, air temperature, and traffic. The 
bridge's response involves deformation in four directions: 
vertical (along the z-axis), torsional (around the x-axis), 
transverse (along the y-axis), and longitudinal (along the x-axis). 
The bridge's steady state is represented by the 10-minute mean 
of its long-term deformation, and its dynamic reaction is shown 
by the 10-minute standard deviation. 

 

Fig. 8. The 10-minute mean changes in the longitudinal response in (a) 2021 

and (b) 2022 throughout the FRB. 

 

Fig. 9. The 10-minute standard deviation changes in longitudinal response 

across the FRB in (a) 2021 and (b) 2022. 

 

Fig. 10. The 10-minute mean changes in the lateral response across the FRB 

in (a) 2021 and (b) 2022. 

 

Fig. 11. Variation of lateral response in FRB in span (10-minute standard 

deviation) for years 2021 and 2022. 

 

Fig. 12. The average 10-minute heave response changed in 2021 and 2022 

throughout the FRB. 
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Fig. 13. Variations in the 10-minute standard deviation of the FRB oscillating 

respiration in (a) 2021 and (b) 2022. 

 

Fig. 14. Torsional response changes throughout a 10-minute period in the 

FRB in (a) 2021 and (b) 2022. 

 

Fig. 15. Torsional response over the FRB in (a) 2021 and (b) 2022: 10-minute 

standard deviation change. 

 

Fig. 16. Intrinsic frequency variations during a 10-minute period for the 

initial transverse model in (a) 2021 and (b) 2022. 

Periodic characteristics of the bridge response and intrinsic 
frequency were identified through the analysis of the monitoring 
data for the years 2021 and 2022. These characteristics can be 
categorized into daily and weekly cycles. Certain data collected 
by the SHM system on the 560-meter Chinese bridge in Hong 
Kong, Zhuhai, and Macao bears a striking resemblance to some 
of these observations [23]. As further discussed in this section, 
the bridge response and the intrinsic frequency, however, 
frequently do not follow these patterns. Fig. 8 to Fig. 9 display 
the 10-minute averaged features for the years 2021 and 2022. 
Fig. 10 to Fig. 11 offer a thorough examination of a few chosen 
features for a brief period of time (August 1 to August 14, 2022). 

A pattern of diurnal cycles is evident when examining the 
10-minute standard deviations of the longitudinal response (Fig. 
12), undulation response (Fig. 13), and torsion response (Fig. 
14). These 10-minute average figures for the period August 1-
14, 2022, demonstrate notable variations between day and night. 
The variance in traffic flow is closely related to the fact that the 
standard deviation values are substantially higher during the day 
than at night. The dynamic reaction is most intense when traffic 
peaks between 03:00 and 04:00, and it tapers off after 15:00 
when traffic starts to decline. 

Weekday traffic volume is higher than weekend traffic 
volume, which also results in a larger standard deviation 
fluctuation. Furthermore, the analysis of the 10-minute averages 
of the undulation deformation (Fig. 14), which represents the 
amount of sag in the mid-span of the FRB, can provide 
additional insight into the diurnal periodicity. Fig. 18 
demonstrates a distinct sag volume difference between day and 
night; however, this cyclical pattern is less evident because of 
natural temperature swings. The lower weekend traffic results in 
a drop in the sag volume at the midspan. The 10-minute natural 
frequencies of the initial transverse and undulation patterns (Fig. 
15, 16, and 17) also depict these diurnal cycles. These 
frequencies decreased by 7% and 2%, respectively, as a result of 
warmer daytime temperatures and more mass brought on by 
traffic; on weekends, this pattern was less noticeable. 
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There are multiple instances in 2021 and 2022 with bridge 
response and intrinsic frequency deviating from the average 
trend: (i) early January 2021; (ii) December 2021 through 
February 2022; and (iii) late December 2022. During these 
periods, the intrinsic frequency rises dramatically, particularly 
during (ii), but the change in standard deviation within a day is 
negligible. It was discovered that the primary cause of the 
temperature and traffic fluctuations during these occurrences 
was the decreased volume of traffic on the bridges. To be more 
precise, (i) and (iii) are both public holidays (such as Christmas 
and New Year's), whereas (ii) is connected to the break in the 
northeast end-connection, which led to traffic restrictions and 
bridge closures. The 10-min averages of torsional and 
longitudinal responses were significantly altered by these 
events, but the 10-min averages of sag deformation were only 
slightly affected (Fig. 8 and Fig. 14). 

Furthermore, an obvious annual cycle can be seen in the 10-
minute average heave deformation (Fig. 14). The temperature 
increase caused the sag in the middle of the FRB span to 
progressively climb from January through August, eventually 
reaching a mean value of about 0.4 m. After August, as the 
outside temperature dropped, the FRB progressively moved 
back to its former location. There was no discernible annual 
cycle in the other bridge response or intrinsic frequency 
components. The data showed more random behavior with no 
discernible short- or long-term trends, as evidenced by the 10-
minute averages and standard deviations of lateral deformations 
that were mostly impacted by wind speed (Fig. 12 and Fig. 13). 
On the other hand, as shown in Fig. 12, the analysis of the wind 
load response demonstrates a quadratic relationship between the 
mean lateral deformation and the positive component of the 
mean wind speed. The lower and upper thresholds, denoted as 
Un, are shown in Fig. 17, where circle is the standard deviation 
of the data samples for the positive component of mean wind 
speed within a window of three seconds. Though some data 
points considerably depart from the specified quadratic curve or 
exceed the upper threshold, most data points fall between these 
two criteria. 

Upon examining the monitoring data from 2021 and 2022, 
certain distinctive characteristics of the FRB's structural 
response under external excitation were discovered. Certain 
recurrent patterns of bridge response and modal frequencies 
were affected by temperature. Based on their cause and duration, 
these patterns were divided into daily, weekly, and annual 
cycles. Certain departures from these cyclic patterns were found 
to be triggered by changes in operational conditions brought on 
by public holidays or FRB closures. Furthermore, in order to 
guarantee a normal structural reaction of the FRB in the event of 
severe wind, lower and upper bounds on the wind-induced 
response were established. It is critical to establish these 
characteristic behaviors of the FRB for subsequent years of 
monitoring data analysis, thereby helping identify systematic 
changes in the structure and their causes, which is an important 
part of the development of the cloud data strategy. 

C. Initial Examination of InSAR Pictures 

In this part, some initial findings from the InSAR image 
processing encompassing the Sanqi Bridge (Shanghai, China) 
and the surrounding area of the FRB are presented. As depicted 
in Fig. 18, the movement of subsidence in the vicinity of the 

FRB is minimal, mostly within a radius of approximately 2 km 
from the FRB, where its influence is minimal. In certain regions, 
the movement is at a rate of around 5 mm/year. On the other 
hand, Fig. 19 for the Sanqi Bridge (Shanghai, China) 
demonstrates that there are notable settlement movements 
occurring in the vicinity of the bridge, up to a maximum of 20 
mm annually, in the area 1 km away. These settlement patterns 
move in the direction of the bridge, endangering its structural 
stability. 

 

Fig. 17. Comparison of the produced quadratic curves and thresholds in (a) 

2021 and (b) 2022, with blue circles representing extreme events. 

 

Fig. 18. InSAR image processing of the Sanqi Bridge (October 2017). 
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Fig. 19. InSAR image processing of the surrounding area of the Sanqi Bridge 

(December 2023). 

VI. CONCLUSION 

This paper presents a cloud-based SHM system for long-
span bridges, integrating GNSS, accelerometers, and InSAR 
technologies for real-time data collection and analysis. The 
system ensures continuous monitoring through a fiber-optic 
communication link and a backup server, while the cloud 
processing module refines data accuracy and evaluates structural 
responses to environmental factors. We observed cyclical 
patterns in bridge behavior influenced by traffic and 
temperature, and detected anomalies linked to specific events. 
While the system shows promise in providing real-time insights, 
limitations include the infrequent processing of InSAR data and 
challenges in scaling to larger infrastructures. Future work will 
address these challenges and further optimize the system for 
broader applications in infrastructure monitoring. 

Building on our paper, future work could focus on several 
key areas to enhance and expand the capabilities of the proposed 
SHM system: Address the infrequent processing of InSAR 
images by developing more efficient algorithms or increasing 
processing frequency. This will provide more timely insights 
into long-term ground movement and its impact on structural 
health. Explore the incorporation of other sensor types, such as 
acoustic emission sensors or fiber optic sensors, to capture a 
broader range of structural responses and potential failure 
mechanisms.  Improve the data processing and analysis 
algorithms to better handle large volumes of data and detect 
subtle anomalies. This could involve advanced machine learning 
techniques or AI-based predictive models. 

REFERENCES 

[1] Al-Ali AR, Beheiry S, Alnabulsi A, Obaid S, Mansoor N, Odeh N, Mostafa 
A. An IoT-based road bridge health monitoring and warning system. 
Sensors, 2024;24(2):469. 

[2] Wang T, Liang Y, Shen X, Zheng X, Mahmood A, Sheng QZ. Edge 
computing and sensor-cloud: Overview, solutions, and directions. ACM 
Computing Surveys, 2023, 55(13s):1-37. 

[3] Peng Z, Li J, Hao H. Development and experimental verification of an IoT 
sensing system for drive-by bridge health monitoring. Engineering 
Structures, 2023;293:116705. 

[4] Yuan J, Xiao H, Shen Z, Zhang T, Jin J. ELECT: Energy-efficient 
intelligent edge–cloud collaboration for remote IoT services. Future 
Generation Computer Systems, 2023;147:179-194. 

[5] Kyriou A, Mpelogianni V, Nikolakopoulos K, Groumpos PP. Review of 
Remote Sensing Approaches and Soft Computing for Infrastructure 

Monitoring. Geomatics, 2023;3(3):367-392. 

[6] Tan Y, Yi W, Chen P, Zou Y. An adaptive crack inspection method for 
building surface based on BIM, UAV and edge computing. Automation in 
Construction, 2024;157:105161. 

[7] Su W, Xu G, He Z, Machica IK., Quimno V, Du Y, Kong Y. Cloud-edge 
computing-based ICICOS framework for industrial automation and 
artificial intelligence: a survey. Journal of Circuits, Systems and 
Computers, 2023:32(10):2350168. 

[8] Chen Q, Cao J, Zhu S. Data-driven monitoring and predictive maintenance 
for engineering structures: Technologies, implementation challenges, and 
future directions. IEEE Internet of Things Journal, 2023;10(16):14527-
14551. 

[9] Liang W, Xiao J, Chen Y, Yang C, Xie K, Li KC, Di Martino B. TMHD: 
Twin-bridge scheduling of multi-heterogeneous dependent tasks for edge 
computing. Future Generation Computer Systems, 2024;158:60-72. 

[10] Costin A, Adibfar A, Bridge J. Digital twin framework for bridge structural 
health monitoring utilizing existing technologies: New paradigm for 
enhanced management, operation, and maintenance. Transportation 
Research Record, 2024;2678(6):1095-1106. 

[11] Xie Y, Zhang S, Meng X, Nguyen DT, Ye G, Li H. An innovative sensor 
integrated with GNSS and accelerometer for bridge health monitoring. 
Remote Sens. 2024;16:607. https://doi.org/10.3390/rs16040607 

[12] Bayik C, Abdikan S, Ozdemir A, Arıkan M, Sanli FB, Dogan U. 
Investigation of the landslides in Beylikdüzü-Esenyurt Districts of Istanbul 
from InSAR and GNSS observations. Nat Hazards. 2021;109:1201–1220. 
https://doi.org/10.1007/s11069-021-04875-7 

[13] Zhuang C, Zhao H, Hu S, Sun C, Feng W. Integrity Monitoring Algorithm 
for GNSS-based Cooperative Positioning Applications. Proceedings of the 
32nd International Technical Meeting of the Satellite Division of The 
Institute of Navigation (ION GNSS+ 2019). Miami, Florida, September 
2019; pp. 2008-2022. https://doi.org/10.33012/2019.16881 

[14] Mishra M, Lourenço PB, Ramana GV. Structural health monitoring of civil 
engineering structures by using the internet of things: A review. J Build 
Eng. 2022;48:103954. https://doi.org/10.1016/j.jobe.2021.103954 

[15] Zhang C, Zhou G, Li J, Chang F, Ding K, Ma D. A multi-access edge 
computing enabled framework for the construction of a knowledge-sharing 
intelligent machine tool swarm in Industry 4.0. Journal of Manufacturing 
Systems, 2023;66:56-70. 

[16] Raeisi-Varzaneh M, Dakkak O, Habbal A, Kim BS. Resource scheduling 
in edge computing: Architecture, taxonomy, open issues and future 
research directions. IEEE Access, 2023, 11: 25329-25350. 

[17] Negi P, Singh R, Gehlot A, Kathuria S, Thakur AK, Gupta LR, Abbas M. 
Specific soft computing strategies for the digitalization of infrastructure 
and its sustainability: A comprehensive analysis. Archives of 
Computational Methods in Engineering, 2024;31(3):1341-1362. 

[18] Sadhu A, Peplinski JE, Mohammadkhorasani A, Moreu F. A review of data 
management and visualization techniques for structural health monitoring 
using BIM and virtual or augmented reality. Journal of Structural 
Engineering, 2023;149(1):03122006. 

[19] Kumar R, Sangwan KS, Herrmann C, Thakur S. A cyber physical 
production system framework for online monitoring, visualization and 
control by using cloud, fog, and edge computing technologies. 
International Journal of Computer Integrated Manufacturing, 
2023;36(10):1507-1525. 

[20] Guo Z, Yu K, Kumar N, Wei W, Mumtaz S, Guizani M. Deep-distributed-
learning-based POI recommendation under mobile-edge networks. IEEE 
Internet of Things Journal, 2022;10(1):303-317. 

[21] Zhang C, Roh BH, Shan G. (2023). Poster: Dynamic clustered federated 
framework for multi-domain network anomaly detection. In Companion of 
the 19th International Conference on emerging Networking EXperiments 
and Technologies NY, USA, 2023;pp.71-72. 

[22] Gong T, Zhu L, Yu FR, Tang T. Edge intelligence in intelligent 
transportation systems: A survey. IEEE Transactions on Intelligent 
Transportation Systems, 2023;24(9):8919-8944. 

[23] Dai Z, Zhang Q, Zhao L, Zhu X, Zhou D. Cloud-Edge computing 
technology-based internet of things system for smart classroom 
environment. International Journal of Emerging Technologies in Learning, 
2023;18(8):79-96. 

 

https://doi.org/10.1016/j.jobe.2021.103954

