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Abstract—Precision farming is essential for optimizing 

resource use and improving crop yields to attain sustainable 

agriculture. However, challenges like data insecurity, fertilizer 

costs, and inadequate consideration of soil health pose a hindrance 

to achieving these goals. To overcome these issues, the proposed 

work presents a novel approach for optimizing fertilizer 

dispensing by developing a framework connecting IoT and 

blockchain with a community of greenhouses. The system consists 

of IoT sensors installed inside the greenhouses to measure soil pH 

and nutrient values. This collected sensor data is compressed and 

stored securely and in an off-chain manner by the IPFS (Inter-

Planetary File System) hash using the Keccak-256. MetaMask 

transfers the data for blockchain registration and authentication. 

The data is then preprocessed using Z-score normalization, Label 

Encoding, and One-Hot Encoding to obtain a precise analysis. A 

Deep Learning-based Convolutional Neural Network (DL-CNN) 

is used to classify soil conditions and determine the appropriate 

fertilizer requirements. The results of the DL-CNN model are 

viewed in a dashboard through a Decentralized Application (D-

App) that we developed to provide real-time information to 

consumers, field analysts, and agricultural organizations. Field 

analysts use the information to establish a control center for 

precisely applying fertilizers. The proposed method achieves a 

classification accuracy rate of 98.86%, thus increasing soil health 

and providing a solution for effectively managing fertilizers. 

Keywords—Fertilizer dispensing; IoT sensors; blockchain; deep 

learning; convolutional neural network; greenhouse management; 

and decentralized application 

I. INTRODUCTION 

Smart agriculture, also known as smart farming, focuses on 
using advanced technologies and data-driven operations to 
improve sustainability in agricultural production [1]. In this 
area, IoT-enabled sensors are used to monitor some parameters 
in real-time and provide cutting-edge management of farming 
data [2]. The use of blockchain technology in the field of smart 
agriculture guarantees security, transparency, and tamper-proof 
data storage, as well as the maintenance of trust and provenance 
along the agricultural chain [3]. Moreover, blockchain in smart 
agriculture securely transfers and stores data to decide soil 
health and fertilizer applications [4, 5]. This method optimizes 
resources, increases crop yields, minimizes environmental 

impact, and enhances food safety by offering verifiable data to 
consumers [6]. Blockchain and IoT agriculture improve 
decision-making and the ability to implement decentralized 
solutions that help farmers and provide better outcomes [7]. 

Previous research in smart agriculture has mostly addressed 
the application of IoT sensors that monitor environmental 
conditions to improve crop management [8, 9]. The techniques 
of machine learning (ML), deep learning (DL), and cloud 
computing have been applied for processing and analyzing the 
data collected from these sensors [10, 11]. Yet, several of these 
methods still depend on centralized systems for data storage 
and processing, which introduces problems regarding data 
security, flexibility, cost, and accessibility [12, 13]. Although 
some studies have explored the use of blockchain to secure data 
transfers, they mostly do not implement DL models for the real-
time decision-making process based on soil health parameters 
[14, 15]. This work addresses these gaps by integrating IoT, 
blockchain, and DL models into the timely fertilizer 
distribution and constructing a secure system for monitoring 
greenhouse conditions. 

The main contributions of this work are as follows: 

 A novel way of optimizing fertilizer dispensing in the 
greenhouse environment using IoT sensors, blockchain 
technology, and DL models to monitor soil health is 
proposed. It provides accurate soil monitoring and 
secure data collection and storage to improve fertilizer 
dispensing accuracy. 

 The proposed method uses the Lempel Ziv Welch 
(LZW) compression method for efficient data storage 
and transmission. In addition, the use of the SHA-3 
(Keccak) hashing algorithm with a chaotic key for data 
encryption contributes to the improvement of security 
and makes the system robust against cryptographic 
attacks. 

 This work introduces a DL model defined as a DL-CNN 
used to predict the soil pH values and NPK levels. 
Hence, the impact of the application of fertilizers can be 
determined. 
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 We have developed a Decentralized Application (D-
App) dashboard that provides real-time data regarding 
soil health and greenhouse parameters. The application 
allows farmers and other stakeholders to view the key 
information, make decisions about fertilizer application, 
and consequently care for the best growing conditions. 

The structure of this paper is organized as follows: Section 
II provides a literature review covering advancements in smart 
agriculture and the application of blockchain and DL. Section 
III details the proposed methodology for optimizing fertilizer 
dispensing using a blockchain method for secure smart 
greenhouse management. Section IV presents the results and 
analysis. Finally, Section V concludes the paper. 

II. LITERATURE REVIEW 

This section examines and explores different modern 
techniques, technologies, and weaknesses in smart agriculture 
to improve soil management, crop yield, and overall farm 
efficiency. 

A. Emerging Techniques in Sustainable Agriculture 

Wei et al. [16] demonstrated the utility of Capacitive 
Coupled Contactless Conductivity Detection (C4D) in soil 
nutrient detection. This method encompasses C4D data and 
cluster analysis to improve nutrient monitoring and 
management. Despite that, a very low level of nutrients can 
limit the method's performance, and the system's efficiency 
may vary due to different soils. 

Thorat et al. [17] proposed the Transition Probability 
Function (TPF) and Convolutional Neural Network (CNN) for 
precision farming. In this work, a system identifies pests, 
prescribes insecticides, and examines the soil nutrients to 
indicate the most suitable fertilizers. However, the model lacks 
the integration of sensors like pH, temperature, humidity, and 
soil moisture sensors to capture a range of environmental data. 

Senapaty et al. [18] suggested an IoT-enabled soil nutrient 
classification and crop recommendation (IoTSNA-CR) system. 
This model encompassed IoT sensors, cloud storage, and a 
multi-class support vector machine (MSVM) to classify soil 

nutrient levels. However, drawbacks include the need for 
significant investment in sensors and the need to clean data, 
which is a big challenge. 

Pechlivani et al. [19] have coined soil and environmental 
monitoring using an IoT-enabled device with sensors to collect 
data on key soil and environmental parameters. The summation 
of sensors paired with an ESP32 microcontroller, data 
visualization, an Android app, and 3D printing for control 
housing. However, the study has inaccuracies in the sensor 
measurements and more validation in the different agricultural 
fields. 

Indira et al. [20] proposed using Artificial Intelligence (AI), 
machine learning (ML), and Long-Range (LoRa) technology to 
transform farming operations. They analyzed these data using 
AI to provide actionable insights for improving agricultural 
practices. Nevertheless, challenges stem from issues such as 
data security and the difficulty of deploying AI in remote areas 
with limited internet connectivity. 

Vincent et al. [21] introduced IoT and Al in agriculture to 
evaluate land suitability for cultivation. This technique is used 
for sensor networks to collect data on soil and environmental 
variables. It also uses the Multi-Layer Perceptron (MLP) neural 
networks to classify data into four suitability classes. This study 
has limitations due to incomplete sensor data and overfitting in 
the MLP model due to its complexity. 

Singh et al. [22] focused on developing a portable device 
for soil nutrient analysis. This method detects soil nitrogen (N) 
and phosphorus (P) levels to optimize crop yield and minimize 
fertilizer use integrated with IoT and LED sensors. Yet, its 
limitations include potential inaccuracies at higher nutrient 
concentrations and the need for further refinement to improve 
sensitivity. 

Morchid et al. [23] introduced the applications of IoT and 
sensor technology in agriculture and food security. The paper 
also enumerates IoT's advantages in agriculture, including 
efficiency and resource reduction. Nevertheless, it still cannot 
offer any real-world examples and only speculations about 
solutions to the challenges. 

TABLE I. ANALYSIS AND APPLICATIONS OF BLOCKCHAIN IN GREENHOUSE AGRICULTURE 

References Technique Used Objectives Results Limitation 

[26] Blockchain and IoT 
Enhance transparency and traceability in 

the agricultural process 

Improved trust and reliability 

in food certification 

High initial setup cost and 

complexity 

[27] 
DL-based Image 

Processing 

Measurement and monitoring of 

greenhouse environmental parameters 

98% success rate in image 

processing 
Limited dataset size for training 

[28] ML (Random Forest) 
Classify greenhouse gas (GHG) emissions 

during groundnut harvesting 
Accuracy: 86.46% 

Limited by data variability and 

missing values 

[29] Blockchain and IoT Ensure anonymity and security in e-voting 
High voter privacy and 

verifiability 
Requires computational resources 

[30] RNN and · Blockchain Secure agricultural data in IoT network Accuracy: 97.7%, Design complexity 

[31] 
Blockchain- consensus 

algorithm 

Ensure a secure and transparent supply 

chain in smart agriculture 

Reduced fraud and 

counterfeiting 
High computational cost 

[32] Blockchain and DL 
Ensure food safety and transparency in the 

supply chain 
RMSE values of 872.56 Increased implementation costs 

[33] 
ML: Multi-regression 

analysis 

Identify the next hop for agricultural data 

transferring 

Improved energy usage 

efficiency by 13% and 16% 
High packet congestion 
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Nayagam et al. [24] addressed the issue of controlling 
disease in smart agriculture with IoT technology. It suggested 
using multiple GPUs in a Parallel and Distributed Simulation 
Framework (PDSF) with IoT to oversee crop surveillance and 
pest management. However, multiple GPUs could reduce 
system performance, and more efficient data processing 
algorithms are also needed. 

Rajak et al. [25] suggested the integration of IoT and smart 
sensors in agriculture for crop production and minimizing 
economic losses. Techniques like AI algorithms and ML are 
used for real-time data processing and precision farming. Yet, 
high implementation costs and data security concerns impact 
farmers by making the technology less accessible. 

B. Blockchain Integration in Sustainable Agriculture 

The literature shows advanced agricultural techniques for 
improving agricultural practices with several limitations (as 
shown in Table I). This work proposes an integrated IoT, 
blockchain, and DL approach to solve this issue to improve soil 
management and optimize greenhouse agriculture. 

III. PROPOSED METHODOLOGY FOR OPTIMAL AND 

APPROPRIATE FERTILIZER DISPENSING 

The proposed system optimizes fertilizer dispensing by 
accurately assessing soil conditions. This model employs IoT 
sensors at different greenhouses to collectively monitor soil 
nutrition and pH values. The collected data from these sensors 
is compressed and assigned to the IPFS hash code for secure 
transfer to the blockchain, specifically in an off-chain setup. 
This data is transferred to the blockchain using MetaMask for 
registration and login authentication. Once transferred to the 
blockchain, the data is input into a Convolutional Neural 
Network (DL-CNN) model to classify pH value and NPK 
(Nitrogen, Phosphorous, Potassium) amount in the soil to apply 
the required fertilizer. The DL model’s output can be accessed 
through a dashboard in a Decentralized Application, thereby 
providing insights to consumers, field analysts, and agricultural 
organizations. The Field analysts can use this data for activating 
the control center which further implements the necessary 
solutions within the greenhouse environment to provide 
necessary solutions for using appropriate fertilizer for optimal 
growing conditions. Fig. 1 explains the overall workflow of this 
system. It integrates IoT sensors, blockchain technology, and 
DL models to accurately assess soil conditions and optimize 
fertilizer application in greenhouse environments. 

 

Fig. 1. Workflow of the proposed system.

Green 

House 

Sensors 

Data compression 
Decentralized off chain storage 

Blockchain 

Data sharing 

Management Registration 

MetaMask 

Yes  

Yes  

No  

No  

IPFS Hash 

Data sharing 

Login 

CNN - Classifier 

Output 

D-App 

Controller 

Actuators 

End users 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 9, 2024 

279 | P a g e  

www.ijacsa.thesai.org 

A. Data Collection 

In this framework, IoT sensors, including pH, moisture, 
temperature, and soil nutrients, are placed across different 
greenhouses to continuously monitor and collect data on soil 
conditions. These sensors capture real-time data that reflects the 
dynamic conditions of the greenhouse environment to provide 
a dataset for assessing soil health and making informed 
decisions on resource management. 

B. Data Processing 

The collected sensor data is compressed using the Lempel-
Ziv-Welch (LZW) technique [34] to store large data volumes 
efficiently. LZW compresses data by replacing repeated 
sequences of characters with shorter codes. It takes a dictionary 
filled with all single-character strings. Meanwhile, it checks 
each sequence against this dictionary. If the sequence is found, 
it is expanded with the next character and continues. Otherwise, 
the sequence is added to the dictionary, and the code for the 
previous sequence is output. 

C. Blockchain Configuration 

1) Data Collection and IPFS Storage: After the 

compressed data is collected, it is securely assigned an IPFS 

(Inter-Planetary File System) hash code for securely storing off-

chain. IPFS enables distributed storage, in which data is divided 

up into small parts, and each is signed with a cryptographic hash 

using the Keccak-256 algorithm [35]. Such chunks are then 

shared among several IPFS networks. 

2) MetaMask with blockchain integration: Here, 

MetaMask provides secure data to be transferred to the 

blockchain through registration and log-in authentication. It 

makes use of Keccak hashing. If data chunks are stored in IPFS, 

their hash codes are recorded on the blockchain. Hence, it 

provides a secure reference to the off-chain data, whereas the 

blockchain storage requirements are minimized. To improve 

security, the SHA-3 (Keccak-256) hashing algorithm is used for 

the encryption process and is combined with the chaotic key for 

encryption and decryption. A chaotic key, generated with the 

help of logistic maps, is integrated with the SHA-3 hash to 

create a secure and unpredictable hash resistant to cryptanalysis 

attacks. Moreover, this algorithm is used to encrypt IoT devices 

with low computing resources, which are decrypted upon 

reaching the blockchain and fed into the DL-CNN model. 

Fig. 2 provides the data flow and security mechanisms in 
this setup. The encrypted data is stored off-chain using IPFS 
and securely transferred through MetaMask. The data 
undergoes blockchain validation to improve security for real-
time decision-making. 

D. Data Classification 

1) Data preprocessing: Before the classification step, the 

data goes through initial processing steps to ensure the optimal 

format for analysis. Eventually, the Z-score normalization 

method [36] eliminates the effect of outliers by standardizing 

the data to have a mean of zero and a standard deviation of one 

to reduce the influence of extreme values. After that, a Label 

Encoder [37] is applied to change the strings of the categorical 

values into integer numbers, thereby enabling numerical 

analysis. Following this, the One-Hot Encoder transforms these 

categorical integers into binary format to create a sparse matrix 

where each category is represented as a separate binary column. 

 

Fig. 2. Blockchain-based data transfer workflow. 

2) Classification: The binary numerical data processed 

through preprocessing is loaded into the DL-CNN [37] model, 

which predicts the pH (soil acidity or alkalinity) and NPK 

content (determining the nutrition value of the soil). The CNN 

architecture features several levels structured for capturing and 

classifying important data. It starts with a 55*55*3 input layer 

which are the dimensions of the feed data. This is followed by 

multiple convolutional layers with different sizes of filters as 

(4*4) or (3*3). It identifies various features caught in the data. 

The batch normalization layer is placed after each 

convolutional layer to improve the stability of learning, and the 

activation layer employs the P-ReLU function to inject non-

linearity. Pooling layers are inserted to reduce the spatial 

dimensions, decrease the computational cost, and improve the 

quality of feature extraction. As the network progresses through 

these layers and captures more intricate patterns in the data. A 

dropout layer is implemented to avoid overfitting wherein 

neurons are randomly disrupted with a fraction of them 

deactivated during training. Finally, the model contains a fully 

connected layer and a regression layer using Error Regression 

that classifies the final labeling (soil pH and nutrient content) 

to recommend the optimal fertilizers. 

3) Visualization: The outputs from the DL-CNN model are 

visualized through the dashboard within a Decentralized 

Application (D-App). This dashboard offers a user interface for 

the customers, the field researchers, and the agricultural 

organizations to access real-time information on soil health, 

such as pH values and NPK content. By displaying these results 

in an accessible format, stakeholders understand the soil’s 

condition and make informed decisions regarding fertilizer 

application and plan crop management. 
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4) Control center activation: Based on the dashboard's 

analysis results, field analysts can activate the control center to 

require modifications within the greenhouse environment. This 

can involve applying the appropriate amount of fertilizer to 

improve the quality of the soil and crop growth so that plants 

receive the nutrients they need for optimal development. 

IV. RESULTS AND DISCUSSION 

 The proposed system was implemented on a blockchain 
platform integrated with Python, utilizing smart contracts and 
secured data for accurate data handling. The results show the 
system can accurately classify soil pH and NPK levels, thus 
enabling precise fertilizer application while maintaining data 
integrity and security through blockchain technology. 

A. Dataset Description 

This dataset consists of one million soil samples that have 
been simulated from different places across the world. Each 
sample comes with information about soil texture, pH, organic 

matter content, moisture content, bulk density, nutrient levels 
(N, P, K), cation exchange capacity, electrical conductivity, 
color, porosity, and water holding capacity. This dataset, which 
has been developed for environmental scientists, agronomists, 
and data scientists, is excellent for research, ML, DL models, 
and educational purposes. 

Dataset link: Global Soil Characteristics Dataset (1 Million) 
(kaggle.com). 

B. Performance Analysis 

Table II shows that compression techniques are effective in 
storing and transferring large volumes of sensor data to the 
blockchain in a compressed format. LZW ranks a balanced 
performance, compared to Huffman and Arithmetic. In its case, 
the LZW may show the best harmony with the compression 
efficiency and the speed of processing. Thus, it is a perfect 
choice for real-time applications, where a quick response time 
and a small storage footprint are crucial. 

TABLE II. COMPARATIVE ANALYSIS OF DATA COMPRESSION TECHNIQUES 

Technique Compression Ratio Compression Time (s) Compressed Size (bytes) Memory Usage (bytes) 

LZW 2.108725 17.37507 1.31E+08 1.31E+08 

Huffman 2.398807 21.33783 1.16E+08 1.16E+08 

Arithmetic 2.279311 226.2766 1.22E+08 1.22E+08 
 

Fig. 3 demonstrates the Keccak-256 hash tool interface used 
in the system. It includes a text field with "Agriculture" which 
is the default text to be hashed. Below the input fields, "Hash" 
and "Auto Update" give the users the ability to generate and 
update the hash of the corresponding text. The resulting hash 
depicted as an alphanumeric string in the output field proves the 
capability of the Keccak-256 hashing function in securely 
changing and verifying data. 

Fig. 4 shows a transaction detail from a blockchain explorer. 
It shows the transaction hash, block number, block hash, 
contract address, sender and recipient addresses (partially 
blocked for privacy) the gas used, and input data details. This 
detailed view checks and observes the transactions carried on 
the blockchain to ensure security in the management of digital 
assets within the system. 

Fig. 5 illustrates a command line interface that exhibits a 
program execution output with data storage and verification. 
The screen displays, "Files are stored in local server" and "Data 
is already stored for this file name," then "wait -
compiling/applying successfully in 65ms (51 modules)" and 
"true," which means that the "Hash is Stored in a Smart 
Contract”. This output expresses the process of collecting and 
whether the data is correctly stored. Thus, by proving that the 
system records the data and verifies it in a blockchain setting. 

 

Fig. 3. Keccak-256 hash tool interface. 
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Fig. 4. Blockchain transaction details. 

 

Fig. 5. Execution output for data storage and verification. 

Fig. 6 shows the performance of a DL-CNN model 
employed for predicting soil states as well as determining the 
need for fertilizers. Specifically, the metrics of accuracy 
(98.86%), precision (98.3%), sensitivity (98.3%), specificity 
(99.15%), F-measure (98.3%), Matthews-correlation 
coefficient (97.45%), and the negative predictive value 
(99.15%) highlight the model performance in soil condition 

classification. This in-depth evaluation establishes the model's 
high dependability and precision, which are necessary for 
ensuring accurate fertilizer recommendations. 

 

Fig. 6. Performance metrics of the DL-CNN classification model. 
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Fig. 7. Confusion matrix for DL-CNN classification model. 

Fig. 7 presents a confusion matrix in evaluating the 
classification model's performance in predicting soil 
conditions. This matrix compares actual target values with the 
model's predictions across three classes: 'favor,' 'moderate,' and 
'un favor.' The diagonal cells represent correctly classified 
instances. It indicates the model’s accuracy for each class, 
while the off-diagonal cells reveal misclassifications, indicating 
areas where the model's predictions deviate from actual values. 
This evaluation gauges the applicability of DL- CNN in the 
classification of soil pH and NPK by facilitating improvement 
for accurate fertilizer recommendations. 

 
A suitable name for this figure could be: 

Fig. 8. Accuracy comparison for soil condition analysis. 

Fig. 8 presents a comparison of the performance of various 
state-of-the-art methods in terms of accuracy for soil condition 
analysis. Neural Network [38] with a result of 97%, while 
Multimodal Fusion Network (M2F-Net) [39] with a score of 
91%, and eventually, XGBoost [40] with 97%. At last, the 
proposed CNN tops the list with an accuracy of 98.86% among 
all the methods being compared. This outstanding performance 
of the model is traced back to its architecture, which, in 
developing CNN, allows it to better identify soil pH and 
nutrient content classifications. 

C. Discussion 

This part is intended to demonstrate the proposed system's 
excellent abilities and working. Fig. 3 uses the Keccak-256 
hash tool interface that models the secure hash function of data 
for trust in blockchain. Fig. 4 shows a detailed view of 
blockchain transaction information, thereby proving the secure 
administration and verification of transactions. Fig. 5 shows the 
output of data storage and verification, which firmly says that 
the storage of data on the blockchain and the fact that it was 
validated were successful. Fig. 6 shows the platform with the 
best performance, with the DL-CNN model reaching the 
highest accuracy of 98.86%. Thus, it is the most effective 
method when doing soil condition analysis and fertilizer 
recommendations. The confusion matrix of Fig. 7 is lastly used 
to provide the model's accuracy and identify the weak points in 
the model. Finally, various state-of-the-art methods can be 
compared with the proposed CNN, which has the highest 
accuracy and ability to classify soil pH and nutrient content. 
These results, in totality, assure the productivity and the 
benefits of relating IoT, blockchain, and DL technologies in 
smart agriculture to precision and security. 

V. CONCLUSION 

 This research presents a revolutionizing system for making 
fertilizer use efficient in sustainable agriculture through the 
integration of IoT sensors, blockchain technology, and a DL-
CNN. The suggested technique effectively addresses key 
challenges such as lack of data security and precise allocation 
of resources. The system uses IoT sensors to keep track of soil 
conditions and the IPFS and blockchain for secure data storage 
and transfer which guarantees the data conforms data integrity 
and confidentiality. The DL-CNN model delivers 98.86% 
classification accuracy, thus highlighting its capability for soil 
pH and nutrient levels evaluation. The real-time information 
given by a DE App to make the right decisions about the 
amount of fertilizer required for soil fertility improvement and, 
consequently, higher crop yields. Overall, this framework 
offers a solution for modernizing fertilizer management in 
agriculture, combining advanced technology with practical 
applications, guaranteeing increased agricultural output and 
sustainability. Nonetheless, unsuitable sensors can mislead 
outcomes, which can significantly impede the system's 
performance. Further research is likely to cover the remote 
sensing tools for pest detection and the possibility of the use of 
drone type of technology for precise water application. 
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