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Abstract—Finding an Initial Basic Feasible Solution (IBFS) is 

the first and essential step in obtaining the optimal solution for 

any Transportation Problem. Numerous approaches are 

available in the literature to determine the IBFS; however, many 

of these methods are modifications of Vogel's Approximate 

Method (VAM) and/or the Least Cost Method (LCM). None of 

the existing methods directly consider the capacity of 

distributions among the nodes when selecting the allocation steps. 

While researchers have proposed various approaches and 

demonstrated improved solutions with numerical instances, they 

have not thoroughly investigated the underlying causes of these 

results. In this article, we explore the impact of capacity 

distributions among the nodes on the VAM and LCM in an 

experimental domain. The study introduces a novel and unique 

Capacity-Influenced Distribution Indicator (CI-DI) designed to 

control the flow of allocation. Ultimately, we propose a novel 

Capacity-Influenced approach that embeds both LCM and VAM 

to determine the IBFS for Transportation Problems (TPs). The 

novelty of the proposed approach lies in its direct consideration 

of capacity distribution among the nodes in the flow of 

allocations, this feature is lacking in LCM, VAM, and other 

established approaches. The proposed method develops a novel 

distribution indicator and a novel cost entry embedded capacity-

based matrix to control the flow of allocations and thereby finds 

the IBFS for the Transportation Problem. We have conducted 

extensive numerical experiments to assess the effectiveness of the 

proposed approach. Experimental analysis demonstrates that the 

proposed method is more efficient in finding the IBFS than 

existing approaches. Moreover, as it uses a one-time generated 

Distribution Indicator (DI) for all steps of allocation, it is 

computationally cheaper than VAM, which generates a DI for 

each step of allocation. 

Keywords—Transportation problem; least cost method; Vogel’s 

approximate method; cost matrix; transportation tableau; node; 

capacity; route; capacity-influenced; weighted opportunity cost 

I. INTRODUCTION 

In Transportation Problem (TP), commodities are 
transported from a set of sources (called source nodes) to 
destinations (called destination nodes) subject to capacity 
(supply and demand) constraints in such a way that the total 
cost of transportation is minimized. TP is a multi-disciplinary 
field of study [1-3]. It is directly involved with real-life 
problems [1- 4]. The application of the TP extends beyond its 
traditional domain and finds relevance in various other fields 
[4], [8]. These fields include personnel assignment, inventory 
control, employee scheduling, and more [1-8]. It is known that 

the general Linear Programming (LP) methods are so tedious 
and time-consuming [6-8]. Researchers have developed 
several alternative methods for finding the IBFS by leveraging 
the special (unique) characteristics of TPs [2-6]. The two well-
known classical methods, the LCM and VAM are very simple 
and can yield better IBFS for TPs [2], [5], [6], [14], etc. 

In LCM, the flow of allocation is directly controlled by the 
cost matrix, with a preference for the least cost. Vogel 
introduced VAM in 1958 as a modification of LCM. In VAM, 
the flow of allocation is controlled differently, but it still 
considers the cost matrix. It begins by developing a control 
vector called the DI, formed through the manipulation of the 
cost matrix. Subsequently, the flow of allocation is guided by 
both the DI and the cost matrix.  Based on the LCM and 
VAM, many researchers proposed several approaches for 
finding IBFS of TPs [2], [5], [6-13], [14], [21], [22], [23], [29-
30], [38-39], [41], [42] etc. For the importance of TPs in real 
life, researchers are continuously devoted to finding better 
approaches for solving TPs. It is observed in the literature that 
most of the approaches are variations of VAM [6-10], [24], 
etc. A few of the research works related to TPs are pointed out 
below. 

In the article [24], the author introduced the Total 
Opportunity Matrix (TOM) by manipulating cost entries rather 
than DI used in VAM to determine the flow of allocations. 
Authors in the article [1] developed Total Opportunity Cost 
(TOC) matrix and after that they formed DI tableau for 
allocation by considering TOC. In the article [43], authors 
proposed an enhanced version of [10] modified VAM for the 
unbalanced transportation problem. Both approaches utilize 
the VAM method, with the modification focused on 
transforming an unbalanced TP into a balanced one. In [44] 
author considered balanced transportation problems, with the 
modification applied solely to the manipulation of the cost 
matrix. In [45] authors proposed another embedded modified 
VAM method called Logical Development of Vogel’s 
Approximation Method (LD-VAM) for finding the IBFS in 
TP. In [39] author introduced a modified VAM in which the 
modification is directed toward finding the DI, considering the 
cost matrix as well. Some other modified approaches based on 
VAM approach are found in the recent publications of [25], 
[29] [33], [36]. 

Besides modification of VAM, some other approaches are 
available in the literature. Recently, in [46] authors, at first, 
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developed TOC then they formed DI tableau for allocation by 
considering the average of TOC of cells along each row 
identified as Row Average Total Opportunity Cost (RATOC) 
and the average of TOC of cells along each column identified 
as Column Average Total Opportunity Cost (CATOC). 
Allocations of costs are started in the cell along the row or 
column which has the highest RATOCs or CATOCs. This 
approach is also developed by considering only cost matrix. 

In the article [35], author proposed a modified method to 
north-west corner method for finding IBFS. Very recently, 
some modified approaches based on LCM are found in the 
publications of [7], [26], etc. Some statistical methods are 
found in [36], [40]. In [35] authors have presented an 
alternative method of NWC method by using Statistical tool 
called Coefficient of Range (CoR) by statistically analyzing 
the cost matrix. Author, in [47], introduced a new algorithm 
for solving TPs. They proposed the Gauss Jordan pivoting 
method to solve the TPs. They consider only cost matrix and 
iteratively it finds out the solution.  This algorithm is faster 
than Simplex method. 

Some heuristic methods of TPs to find out IBFS are found 
in the articles [3], [9], [11], [12], [20], [21], [37], [48-56]. In 
fuzzy environment, many research publications are found in 
the literature of which some recent publications are included 
in the articles [13], [23], [27], [32]. Researchers also dedicated 
to find better IBFS for unbalanced TPs [10], [17], [32], [34]. 
A good survey of TP for finding IBFS is observed in [31], 
[57-58]. On the other hand, [15], [16] and [17] proposed a new 
technique for controlling the flow of allocation named 
Weighted Opportunity Cost (WOC) matrix. The WOC matrix 
is formed by demand and/or supply as a weight factor 
corresponding to each transportation cost. Authors in [15], 
[16] and [17] also considered some numerical instances to test 
the efficiency of the proposed algorithms. In [59] authors 
considered a fractional objective function rather than a linear 
objective to solve TPs. In [60], presented a modified VAM 
specifically designed for maximizing profit, with the flow of 
allocation controlled by cost entries as well. Moreover, in 
recently published articles [61-64], authors have proposed 
various methods to find the IBFS of TPs in which the flow of 
allocations is controlled by manipulating only cost entries. 

It is observed that many approaches are available in the 
literature, and researchers are continuously working to 
develop more efficient methods to solve the TPs. But as far as 
it is known, none of the approaches is the best for solving all 
TPs. In our earlier work [15] Jamali also noticed this pitfall 
and proposed a newer approach to LCM. Though it [15] 
performed better compared to LCM but it frequently obtains 
worse IBFS compared to VAM. 

It is known that classical methods like the LCM and VAM 
are relatively less computationally expensive compared to 
other approaches for finding the Initial Basic Feasible Solution 
[28] (IBFS) of Transportation Problems (TPs) [18]. Although 
VAM generally performs better than LCM, there are cases 
where LCM outperforms VAM. This raises the question: Is 
the performance variation due to the distribution of node 
capacities? 

Additionally, it is observed that in the transportation 
sector, increasing the amount of goods often reduces 
transportation costs. Based on this observation, we investigate 
how node capacities influence transportation costs. Notably, 
no researchers have yet developed methods that leverage the 
effect of node capacity on the allocation and flow of 
commodities. 

In this paper, we extensively examined the impact of 
capacity distribution among the nodes on classical well-known 
approaches, namely LCM and VAM, considering the problem 
mentioned in the existing literature. Next, we developed a 
capacity-blended flow-controlling matrix based on the cost 
matrix. Finally, we proposed a novel capacity-influenced 
approach to find the IBFS of TPs. 

The novelties of the proposed approach are explained in 
the following: 

 We propose a novel approach to find better IBFS for 
the TPs by developing a new, unique distribution 
indicator (DI) that combines the capacity vectors and 
DI vector to control the flow of allocation. 

 Our approach proposes a more effective solution for 
the TPs that can overcome the limitations of existing 
methods, namely VAM and LCM, by addressing the 
impact of capacity distribution among the nodes.  

 Proposed approach introduces a capacity-influenced 
weighted factor and a capacity-influenced Weighted 
Opportunity Cost (WOC) Matrix to find a more 
suitable IBFS in a computationally efficient way for 
VAM and LCM. 

 We extensively verified the impact of capacity 
distribution and proposed methods have been 
experimentally verified to evaluate its performance 
over other approaches using real examples. 

The remainder of the paper is organized as follows. 
Section II explains the mathematical model of TPs. Section III 
extensively examines the impact of capacity distribution 
among nodes for both LCM and VAM for TPs. Section IV 
explains the proposed method of this paper. This section 
develops and explains proposed mathematical model named as 
“Capacity influenced weighted factor” to control the flow of 
allocations. It also develops the formulation of control matrix 
of the proposed approach. Detailed results of numerical 
experiments to validate the efficiency of the proposed method 
is explained in Section V and conclusion of this study is 
presented in the last section. 

II. MATHEMATICAL MODEL OF TRANSPORTATION 

PROBLEM 

By considering the equality characteristics of TPs, it can 
be represented using a specialized tableau known as the 
Transportation Tableau (TT). The typical view of TT is shown 
in Table I. In the TT, Oi indicates the ith source with the 
amount of availability is ai which is shown in the far-right 
column. On the other hand, Dj denotes the jth destination with 
demand bj, which is shown in the bottom row of TT.  In this 
table, there is an m×n matrix containing cost entries. The cell 
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in the ith row and jth column is called the Cij cell and the 
transportation cost is denoted as cij, which represents the unit 
shipping cost from the ith source to the jth destination. So, a 
TT can be viewed as a (m+1) × (n+1) matrix shown in Table I. 

TABLE I. A TT OF A TP WITH M SOURCES AND N DESTINATIONS 

 Sinks/Destinations 

O
ri

g
in

s/
S

o
u

r
c
e
s 

 D1 D2  
Dn-1 Dn Supply 

O1       

O2 
      

O3 
      

       

Om 
      

Demand 
     

 

III. IMPACT OF THE CAPACITY DISTRIBUTIONS AMONG 

NODES ON LEAST COST AND VOGEL’S APPROXIMATION 

METHODS 

First three typical balanced TPs are considered which are 
presented in the Examples 1(a) – 1(c) and their corresponding 
comparative analyses are presented in Table II to Table X. It 
should be noted that in all three TPs, the cost matrices are 
identical, and the total capacity remains the same. The only 
difference lies in the distribution of capacity among the nodes. 
Numerical experiments have been conducted to investigate the 
effect of capacity on both the LCM and VAM in terms of 
finding the IBFS and total cost [19]. 

Example 1(a): 

TABLE II. TRANSPORTATION TABLEAU OF TRANSPORTATION PROBLEM 1 

 D1 D2 D3 Supply 

O1 2 5 8 20 

O2 6 4 14 20 

O3 15 12 13 20 

Demand 20 20 20  

Example 1(b): 

TABLE III. TRANSPORTATION TABLEAU OF TRANSPORTATION PROBLEM 2 

 D1 D2 D3 Supply 

O1 2 5 8 30 

O2 6 4 14 20 

O3 15 12 13 10 

Demand 10 20 30  

Example 1(c): 

TABLE IV. TRANSPORTATION TABLEAU OF TRANSPORTATION PROBLEM 3 

 D1 D2 D3 Supply 

O1 2 5 8 30 

O2 6 4 14 20 

O3 15 12 13 10 

Demand 20 35 5  

TABLE V. (EX. 1(A) LCM) STEP-BY-STEP FLOW OF ALLOCATIONS OF 

LCM AND VAM FOR EX. 1(A) –1(C) 

LCM:  IBFS of Ex. 1 (a) 

 D1 D2 D3 S 

O1 2 

20 

5 

0 

8 

0 

20 

O2 6 

0 

4 

20 

14 

0 

20 

O3 15 

0 

12 

0 

13 

20 

20  

D 20 20 20  

TABLE VI. (EX 1(A) VAM) STEP-BY-STEP FLOW OF ALLOCATIONS OF 

LCM AND VAM FOR EX. 1(A) –1(C) 

VAM:  IBFS of Ex. 1 (a) 

 D1 D2 D3 S 

O1 2 

0 

5 

0 

8 

20 

20 

O2 6 

20 

4 

0 

14 

0 

20 

O3 15 

0 

12 

20 

13 

0 

20  

D 20 20 20  

TABLE VII. (EX. 1(B) LCM) STEP-BY-STEP FLOW OF ALLOCATIONS OF 

LCM AND VAM FOR EX. 1(A) –1(C) 

LCM:  IBFS of Ex. 1 (b) 

 D1 D2 D3 S 

O1 2 

10 

5 

0 

8 

20 

30 

O2 6 

0 

4 

20 

14 

0 

20 

O3 15 

0 

12 

0 

13 

10 

10  

D 10 20 30  
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TABLE VIII. (EX. 1(B) VAM) STEP-BY-STEP FLOW OF ALLOCATIONS OF 

LCM AND VAM FOR EX. 1(A) –1(C) 

VAM:  IBFS of Ex. 1 (b) 

 D1 D2 D3 S 

O1 2 

0 

5 

0 

 8 

30 

30 

O2     6 

10 

4 

10 

14 

0 

20 

O3 15 

0 

12 

10 

13 

0 

10  

D 10 20 30  

TABLE IX. (EX. 1(C) LCM) STEP-BY-STEP FLOW OF ALLOCATIONS OF 

LCM AND VAM FOR EX. 1(A) –1(C) 

LCM:  IBFS of Ex. 1 (c) 

 D1 D2 D3 S 

O1 2 

20 

5 

10 

8 

0 

30 

O2 6 

0 

4 

20 

14 

0 

20 

O3 15 

0 

12 

5 

13 

5 

10  

D 20 35 5  

TABLE X. (EX. 1(C) VAM) STEP-BY-STEP FLOW OF ALLOCATIONS OF 

LCM AND VAM FOR EX. 1(A) –1(C) 

VAM:  IBFS of Ex. 1 (c) 

 D1 D2 D3 S 

O1 2 

20 

5 

5 

8 

5 

30 

O2 6 

0 

4 

20 

14 

0 

20 

O3 15 

0 

12 

10 

13 

0 

10  

D 20 35 5  

To examine the effect of capacity on LCM and VAM, we 
have first compared the step-by-step flow of allocations. The 
intensive comparison of the step-by-step flow of the 
allocations procedure of the two approaches is concisely 
shown in Table XI. It is observed in Table XI that due to the 
change of capacity distribution among the nodes, the pattern 
of flow of allocation is changed significantly for both 
approaches. Furthermore, it is observed that the IBFS obtained 
using both methods undergo significant changes for each 
instance. 

Now we have compared IBFSs and Total Transportation 
Costs (TTC) for each instance. The effect of the capacity 

distribution of nodes for each instance is shown in Table XI. It 
is observed that only by a change of capacity distribution 
among the nodes, the total transportation cost for each 
instance produced by LCM is changed significantly.  
Similarly, only by a change of capacity distribution among the 
nodes, the total transportation cost for each instance produced 
by VAM is changed significantly. It is also observed that the 
IBFSs produced by LCM of the three instances are changed 
significantly. Similarly, it is also observed that the IBFSs 
produced by VAM of the three instances are changed 
significantly. It has been observed that in Example 1(a), the 
LCM produced a superior IBFS compared to VAM, with a 
notable and significant difference between the two solutions. 
But only the change of capacity distribution, in Example 1(b), 
VAM produced a better solution compared to LCM. 
Moreover, in Example 1(c), though LCM produced a better 
solution, but the difference between the two solutions is not 
large. 

TABLE XI. COMPARISON BETWEEN THREE EXAMPLES REGARDING THE 

EFFECT OF CAPACITY 

 Ex. 1(a) Equal 
capacity 

Demand: 20, 20, 
20 

Supply:   20, 20, 
20 

Ex. 1(b) Unequal 
Capacity 

Demand: 30, 20,120 

Supply:    10, 20, 30 

Ex1 (c) Unequal Capacity 

Demand: 30, 20, 10 

Supply:   20,  35,  5 

 T. 
Cas

t 

IBFS T. 
Cos

t 

IBFS T. 
Cos

t 

IBFS 

LC
M 

380 x11→x22 
→x33 

20→ 20 → 
20 

520 x11→ x22→ x13→ 
x33 

10 → 20 → 20→ 
10 

295 x11→x22→x12→ 
x32→x33  

20 → 20→10 →  5 → 
5 

VA
M 

520 x13→x21→x3

2 

20 →20 
→20 

470 x13→x21→x22→x3

2 

30 →10→ 10 
→10 

305 x13→x11→x22→x12→x3

2 

5 →  20 → 20 → 5 → 
10  

We have performed further experiments to examine the 
effect of capacity distribution on the flow of allocations of 
both LCM and VAM. For this numerical experiment, we have 
considered some more examples shown in Table XII. 

We have performed both approaches, namely LCM and 
VAM to find out IBFS. The experimental result is shown in 
Table XII. It is observed in Table XII that instances 2(a) –2(c) 
has the same cost matrix but the capacity distributions are 
different. Though instances 2(a) – 2(c) have different 
distributions of capacity, the total supply/demand is equal for 
each instance. Similarly, instances 3(a) to 3(c) have identical 
cost matrices, but the capacity distributions vary. Though 
Examples 2(a) – 2(c) have different capacity distributions but 
total supply/demand is equal for each instance. It is observed 
for Example 2(a), that VAM produced a better solution which 
is also an optimal solution, but only a change of capacity 
distribution, for Example 2(b) and 2(c), LCM obtained a better 
solution compared to VAM. Similarly, it is observed that for 
Example 3(a) LCM produced a better solution which is also an 
optimal solution, but only a change of capacity distribution, 
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for Example 3(c), LCM obtained a better solution compared to 
VAM, but for Example 3(b) VAM obtained a better solution 
compared to LCM. The experimental results are examined 
intensively. We have found out significant effects of the 
distribution of capacities on the IBFS of each approach. 

TABLE XII. SOME MORE EXAMPLES REGARDING LCM AND VAM 

Instance
s 

Cost matrix Capacity Total 
Capacit

y 

LC
M 

VA
M 

Optim
al 

2 (a) {7,8,7}; 
{18,8,12}; 
{8,12,12} 

S:12, 12, 
12 
D:12, 
12, 12 

36 324 276 276 

2 (b) {7,8,7}; 
{18,8,12}; 
{8,12,12} 

S; 
14,14,8 
D: 
15,8,13 

36 326 334 298 

2 (c) {7,8,7}; 
{18,8,12}; 
{8,12,12} 

S:25,30,
5 
D:35,20,
5 

60 525 555 525 

3 (a) {2,5,8};{6,4,14
}; {15,12,18} 

S:20, 20, 
20 
D:20, 
20, 20 

60 480 520 480 

3 (b) {2,5,8};{6,4,14
}; {15,12,18} 

S: 
43,15,2 
D:2,53,5 

60 314 308 308 

3 (c) {2,5,8};{6,4,14
}; {15,12,18} 

S:10, 10, 
10 
D:10, 
10, 10 

30 240 260 240 

IV. OUR PROPOSED METHOD: A NOVEL DISTRIBUTION 

INDICATOR AND CAPACITY-INFLUENCED APPROACH TO IBFS 

FOR TRANSPORTATION PROBLEMS 

In classical approaches, like North-West Corner Rule [35], 
LCM, the flow of allocation is controlled directly by the cost 
entries only. Once again, in some other classical transportation 
approaches, such as Vogel’s VAM method and all its variants, 
the flow of allocations is controlled solely by the manipulation 
of cost entries. Moreover, based on our literature review, it is 
observed that almost all approaches have been developed by 
manipulating cost entries exclusively. None of these 
approaches considers the node's capacity when formulating 
the control matrix for the flow of allocation. However, as 
observed in the previous section of this article, the distribution 
of commodities plays a crucial role in controlling the flow of 
allocations. In the previous investigation section, it is observed 
that the distribution of commodities significantly alters the 
performance of the approaches. In this article, we first 
developed a novel capacity-influenced weighted factor and 
then proposed a capacity-influenced WOC Matrix-based 
algorithm to find the IBFS of TPs. These are explained in the 
following sections. 

A. The Proposed Capacity-Influenced Weighted Factor to 

Control the Flow of Allocation 

Vogel's method formulates the DI by calculating the 
difference between the smallest and the next-to-smallest cost 
entries for each node (supply/destination). In this formulation, 
DI serves as a weight factor corresponding to the cost entries, 
controlling the flow of allocations. While existing literature 
emphasizes DI as a controlling tool, it is observed in the 

previous section that node capacity also significantly 
influences allocation flow, alongside cost entries. Therefore, a 
novel approach is needed to control the flow of allocations in 
TPs by combining the weight factor DI with the weight factor 
of the corresponding node's capacity. The primary challenge 
involves developing a suitable weight factor for the capacity 
of each node. Subsequently, a new flow of allocation matrix 
needs to be formulated, incorporating both the capacity of 
nodes and DI as a combined weight factor for the 
corresponding cost entries. The first challenge is to find out 
the weight factor to the cost matrix from the capacity of nodes. 

The WOC matrix is a new concept to control the flow of 
allocations of TP to find out IBFS. In WOC, amount of 
supply/demand of each route is a weighted factor 
corresponding to the cost entry. The procedures to find out 
capacity influenced approach is discussed step by step below: 

Step 1: Finding cell weight: At first, we have found out the 
maximum possible allocation of the cell  Cij, which is (Si, Dj) , 

where  Si denotes total supply at node i and Dj
  indicates total 

demand at node j.  Therefore, sum over of all possible 
allocations is as follow: 


 

p

i

q

j1 1

ji )D,(Smin  

Therefore, for each cell  𝐶𝑖𝑗   its weight will be as follows 

   
 

p

i

q

j

jj DD
1 1

ii  ,Smin,Smin  

So that total weight becomes one. i.e., 

    1 ,Smin,Smin 
1 1 1 1

ii 








 
   

p

i

q

j

p

i

q

j

jj DD  

But since every cell of cost matrix will contain the factor


 

p

i

q

j1 1

ji )D,(Smin 1 , so we have ignored this factor to 

reduce computational cost. Therefore, for each cell  𝐶𝑖𝑗   its 

weight will be just  𝑚𝑖𝑛 (𝑆𝑖  , 𝐷𝑗). 

Step 2: The second challenge is to find out the combined 
weight factor formulated by the weight factor DI and the 
weight factor WOC to the cost matrix for each route (cell). 
The proposed modified weight factor, Wij

m,  for the cell Cij is 

formulated as follows in equation (1): 

𝑊𝑖𝑗
𝑚 = min {𝑎𝑖 , 𝑏𝑗} ∙ max{ {𝐷𝑖

𝐼𝑟 , 𝐷𝑗
𝐼𝑐}, }      (1) 

Where ai is the amount capacity of source node Oi, bj is the 

amount of the capacity of destination node Dj. Moreover, 𝐷𝑖
𝐼𝑟  

is the DI corresponding to the source node i and  𝐷𝑗
𝐼𝑐  is the DI 

corresponding to the sink node j. Then total weight 
corresponding to all cells will be as in Eq. (2). 

𝑇𝑊 = ∑ ∑ min{𝑎𝑖 , 𝑏𝑗} ∙ max{ {𝐷𝑖
𝐼𝑟 , 𝐷𝑗

𝐼𝑐}𝑛
𝑗

𝑚
𝑖 ∀ 𝑖 =

1,2, … , 𝑚 ; 𝑗 = 1,2, … , 𝑛}   (2) 

Then, the actual weight factor corresponding to each route 
(cell) Cij is 
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𝐴𝑊𝑖𝑗
𝑚 =

min {𝑎𝑖,𝑏𝑗}∙max{ {𝐷𝑖
𝐼𝑟,𝐷𝑗

𝐼𝑐}

∑ ∑ min {𝑎𝑖,𝑏𝑗}∙max{ {𝐷𝑖
𝐼𝑟,𝐷𝑗

𝐼𝑐}𝑛
𝑗

𝑚
𝑖

, ∀ 𝑖 = 1,2, … , 𝑚 ; 𝑗 =

1,2, … , 𝑛    (3) 

Here in Eq. (3), max{ {𝐷𝑘
𝐼𝑟 , 𝐷𝑙

𝐼𝑐} ∀ 𝑖, 𝑗, is fixed and constant 
and also  ∑ ∑ 𝐴𝑊𝑖𝑗

𝑚𝑛
𝑗 = 1𝑚

𝑖 . 

But since the term  
1

∑ ∑ min {𝑎𝑖,𝑏𝑗}∙max{ {𝐷𝑖
𝐼𝑟,𝐷𝑗

𝐼𝑐}𝑛
𝑗

𝑚
𝑖

 is common 

to all 𝐴𝑊𝑖𝑗
𝑚  ∀𝑖, 𝑗 and as 𝐴𝑊𝑖𝑗

𝑚 act as a controller of the flow 

of allocation and it has no any real effect to measure the total 
transportation cost, so without loss of generality we can ignore 
this factor in flow of allocation matrix. 

Therefore, the weight factor corresponding to the cell Cij   

can be expressed as follows in Eq. (4): 

𝑊𝑖𝑗
𝑚 = min {𝑎𝑖 , 𝑏𝑗} × max{ {𝐷𝑖

𝐼𝑟 , 𝐷𝑗
𝐼𝑐}         (4) 

It is noted that this reduces a significant amount of 
computational cost. The significance of this weight is that 
larger weight poses larger possibility to flow of allocation. 

Step 3: After the successful formulation of the weight 
factor corresponding to each cell (route), our next task is to 
formulate the capacity-influenced WOC Matrix. But now we 
have to face a problem regarding the accumulation of this 
weight factor to any cost entries. Since the cell with a lower 
cost has a preference for allocation first, on the other hand, the 
cell with a larger weight factor has a preference for allocation 
first. So, it is not directly possible to formulate a WOC matrix 
just by simply multiplying the weight factor by the cost entry 
to find out meaningful elements of the WOC matrix. To 
overcome this difficulty and for the formulation of a 
meaningful WOC matrix, we should transform one of the two 
so that the multiplication of the two will be meaningful. This 
can be done by inversing the cost elements. Therefore, the 
weighted opportunity cost corresponding to the cell cost Cij as 
stated in Eq. (5) below: 

 𝑊𝑐𝑖𝑗
𝑚 =

1

𝑐𝑖𝑗
min {𝑎𝑖 , 𝑏𝑗} × max{ 𝐷𝑖

𝐼𝑟 , 𝐷𝑗
𝐼𝑐} , 𝑐𝑖𝑗 ≠ 0  (5) 

Here 𝑊𝑐𝑖𝑗
𝑚  and cij denote the modified weighted cost factor 

and actual cost entry corresponding to the cell Cij respectively. 

But another problem arises if the cost at any cell is zero. 

Since when 𝑐𝑖𝑗= 0 then 
1

𝑐𝑖𝑗
  becomes undefined. So, to 

overcome this difficulty it is needed some more special 
attention. We can overcome this shortcoming by replacing 
zero with a significantly large value.  So, if there exists any 
cell whose cost entry is zero, then we can formulate the virtual 
weighted cost to the cell Cpq as follows: 

 If 𝑐𝑝𝑞 = 0 and   {𝑐𝑖𝑗 : 0 < 𝑐𝑖𝑗 < 1, ∀𝑖, 𝑗} = 𝜑, (i.e. null 

set) then set 𝑊𝑐𝑖𝑗

𝑚 =

max{𝑎𝑖 , 𝑏𝑗 ; ∀𝑖, 𝑗} × min {𝑎𝑖 , 𝑏𝑗} × max{ {𝐷𝑖
𝐼𝑟, 𝐷𝑗

𝐼𝑐} 

 Else if 𝑐𝑝𝑞 = 0 and {𝑐𝑖𝑗 : 0 < 𝑐𝑖𝑗 < 1, ∀𝑖, 𝑗} ≠ 𝜑 (i.e. 

not null set), then set 𝑊𝑐𝑖𝑗

𝑚 =
max{𝑎𝑖,𝑏𝑗;∀𝑖,𝑗}

[min{𝑐𝑖𝑗:0<𝑐𝑖𝑗<1,∀𝑖,𝑗}]
× min {𝑎𝑖 , 𝑏𝑗} × max{ {𝐷𝑖

𝐼𝑟 , 𝐷𝑗
𝐼𝑐} 

B. Proposed Formulation of the Capacity-Influenced Control 

Matrix 

After development of modified weighted cost factor, we 
can easily formulate the Modified Weighted Cost (MWOC) 

Matrix[𝑊𝑐𝑖𝑗
𝑚] which is as follows: 

 If 𝑐𝑖𝑗 ≠ 0; 𝑊𝑐𝑖𝑗
𝑚 =

1

𝑐𝑖𝑗
min {𝑎𝑖 , 𝑏𝑗} × max{ 𝐷𝑖

𝐼𝑟 , 𝐷𝑗
𝐼𝑐} 

 If 𝑐𝑖𝑗 = 0 and   {𝑐𝑝𝑞: 0 < 𝑐𝑖𝑗 < 1, ∀𝑝, 𝑞} = 𝜑, (i.e. null 

set) then set 𝑊𝑐𝑖𝑗

𝑚 =

max{𝑎𝑖 , 𝑏𝑗 ; ∀𝑖, 𝑗} × min {𝑎𝑖 , 𝑏𝑗} × max{ {𝐷𝑖
𝐼𝑟, 𝐷𝑗

𝐼𝑐} 

 Else if 𝑐𝑝𝑞 = 0 and { 𝑐𝑝𝑞: 0 < 𝑐𝑖𝑗 < 1, ∀𝑝, 𝑞} ≠ 𝜑 (i.e. 

not null set), then set 𝑊𝑐𝑖𝑗

𝑚 =
max{𝑎𝑖,𝑏𝑗;∀𝑖,𝑗}

[min{𝑐𝑖𝑗:0<𝑐𝑖𝑗<1,∀𝑖,𝑗}]
× min {𝑎𝑖 , 𝑏𝑗} × max{ {𝐷𝑖

𝐼𝑟 , 𝐷𝑗
𝐼𝑐} 

C. Algorithm of Proposed Capacity-Influenced Approach 

Step 1: Form the MWOC weight factor matrix. 

Step 2: Allocate (as much as possible), i.e., min {Si, Di}, 
to the cell (route) which has the largest weight factor. 

Step 3: Update the cost matrix by crossing out exhausted 
cells and corresponding weight factors. 

Step 4: Terminate if all demand requirements are satisfied; 
otherwise, go back to step 2. 

Once all cells are allocated, calculate the total 
transportation cost by multiplying the allocated units with 
their respective costs and summing up all these products. 

V. NUMERICAL EXPERIMENTATION 

Now we will implement the proposed method and will 
compare its performance with existing approaches namely 
LCM and VAM. For the experimental study we have 
considered another TP 4 (see Example 4) whose TT is given 
in the Table XIII. 

Example 4: 

TABLE XIII. TRANSPORTATION TABLEAU OF TRANSPORTATION PROBLEM 4 

 D1 D2 D3 Supply 

O1 4 3 5 90 

O2 6 5 4 80 

O3 8 10 7 100 

Demand 70 120 80  

TABLE XIV. MODIFIED WEIGHTED OPPORTUNITY COST MATRIX OF THE 

PROBLEM 4 

 D1 D2 D3 Supply DI 

O1 
140

4
 

180

3
 

80

5
 90 1 

O2 
140

6
 

160

5
 

80

4
 80 1 

O3 
140

8
 

200

10
 

80

7
 100 1 

Demand 70 120 80   

DI 2 2 1   
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To find the IBFS of the proposed method, we first need to 
find out the flow of the control matrix called the Modified 
Weighted Opportunity Cost (MWOC) matrix shown in 
Table XIV. To explain how to form the MWOC matrix, let us 
consider the cell C12. It is observed that the unit cost c12 = 4 
which is not zero. Therefore, the algorithm executes case (a) 
of the proposed method, formally: 

𝑊𝑐12
𝑚 =

1

𝑐12

min {𝑎1, 𝑏2} × max{ 𝐷1
𝐼𝑟 , 𝐷2

𝐼𝑐} 

=
1

3
× min {90,120} × max{ 1, 2} 

=
1

3
× 90 × 2= 

180

3
 

TABLE XV. MODIFIED WEIGHTED OPPORTUNITY COST INCLUDED 

TRANSPORTATION TABLEAU PROBLEM 4 

 D1 D2 D3 supply DI 

O1 
140

4
     4 

180

3
      3 

80

5
      5 90 1 

O2 
140

6
     6 

160

5
      5 

80

4
      4 80 1 

O3 
140

8
     8 

200

10
     10 

80

7
      7 100 1 

Demand 70 120 80   

DI 2 2 1   

We can represent the cost matrix and the MWOC matrix in 
a single tableau as shown in Table XV. In Table XV, the entry 
in the top-left corner of each cell represents the weighted 
opportunity cost factor associated with that cell, while the 
entry in the top-right corner represents its transportation cost. 
The step by step of each allocation’s procedure of the 
proposed MWOC-based approach is shown in Tables XVI to 
XXI. The IBFS of the problem obtained by the proposed 
method is shown in Table XVI. It is observed that the TTC for 
finding the IBFS by the proposed method is 1440. 

TABLE XVI. THE FIRST ALLOCATION OF THE PROPOSED METHOD FOR THE 

TABLEAU PROBLEM 4 

 D1 D2 D3 supply DI 

O1 
140

4
      4 

× 

180

3
      3 

90 

80

5
      5 

× 
90 1 

O2 
140

6
      6 

160

5
      5 

80

4
      4 80 1 

O3 
140

8
      8 

200

10
     10 

80

7
      7 100 1 

Demand 70 120 , 30 80   

DI 2 2 1   

TABLE XVII. THE SECOND ALLOCATION OF THE PROPOSED METHOD FOR 

THE TABLEAU PROBLEM 4 

 D1 D2 D3 supply 

O1 
140

4
      4 

× 

180

3
        3 

90 

80

5
       5 

× 
90 

O2 
140

6
      6 

160

5
       5 

30 

80

4
      4 

 
80,50 

O3 
140

8
     8 

 

200

10
     10 

× 

80

7
     7 

 
100 

Demand 70 120 , 30 80  

TABLE XVIII. THE THIRD ALLOCATION OF THE PROPOSED METHOD FOR 

THE TABLEAU PROBLEM 4 

 D1 D2 D3 supply 

O1 
140

4
      4 

× 

180

3
      3 

90 

80

5
       5 

× 
90 

O2 
140

6
      6 

50 

160

5
      5 

30 

80

4
       4 

× 
80,50 

O3 
140

8
      8 

 

200

10
    10 

× 

80

7
       7 

 
100 

Demand 70, 20 120 , 30 80  

TABLE XIX. THE FOURTH ALLOCATION OF THE PROPOSED METHOD FOR 

THE TABLEAU PROBLEM 4 

 D1 D2 D3 supply 

O1 
140

4
       4 

× 

180

3
        3 

90 

80

5
        5 

× 
90 

O2 
140

6
       6 

50 

160

5
        5 

30 

80

4
        4 

× 
80,50 

O3 
140

8
       8 

20 

200

10
      10 

× 

80

7
        7 

 
100, 80 

Demand 70, 20 120 , 30 80  

TABLE XX. THE FIFTH ALLOCATION OF THE PROPOSED METHOD FOR THE 

TABLEAU PROBLEM 4 

 D1 D2 D3 supply 

O1 
140

4
        4 

× 

180

3
        3 

90 

80

5
        5 

× 
90 

O2 
140

6
        6 

50 

160

5
        5 

30 

80

4
        4 

× 
80,50 

O3 

140

8
        8 

20 

200

10
      10 

× 

80

7
        7 

80 
100, 80 

Demand 70, 20 120 , 30 80  

TTC = 3×90+6×50+5×30+8×20+7×80 =1440 

TABLE XXI. THE IBFS OF THE PROPOSED METHOD FOR THE TABLEAU 

PROBLEM 4 

 D1 D2 D3 supply 

O1 
140

4
      4 

× 

180

3
      3 

90 

80

5
      5 

× 
90 

O2 
140

6
      6 

50 

160

5
      5 

30 

80

4
       4 

× 
80,50 

O3 
140

8
     8 

20 

200

10
    10 

× 

80

7
      7 

80 
100, 80 

Demand 70, 20 120 , 30 80  

Now have solved the problem with the existing LCM, 
VAM, and WOC-LCM and compared it with the proposed 
method named MWOC-VAM. The comparison is shown in 
Table XXII. It is observed in Table XXII that the proposed 
MWOC-VAM needs the least amount of transportation cost to 
obtain the IBFS compared to all other approaches namely 
LCM, VAM, and WOC-LCM. It is also observed that the 
starting allocation of LCM, WOC-LCM, and MWOC-VAM 
are the same but differ from VAM. It is also observed in the 
second column of Table XXII that the pattern of the flow of 
allocation for each approach is different. 
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TABLE XXII. COMPARISON REGARDING THE FLOW OF ALLOCATIONS AND 

TOTAL TRANSPORTATION COST TO FIND OUT THE IBFS OF THE PROBLEM  4 

Method Flow of allocations and IBFS Total Cost 

LCM 
x12→x23 →x31→ x32 

90→ 80 →70 → 30 
1450 

VAM 
x11→x33 →x12→ x22→ x32 

70→ 80 →20 → 80 → 20 
1500 

WOC-LCM 
x12→x23 → x32→ x31 

90 → 80 → 30→ 70 
1450 

MWOC-VAM 
(proposed) 

x12→x22 → x21→ x31→ x33 

90→ 30 → 50 → 20 → 80 
1440 

Now we have considered another problem 5 (Example 5), 
whose TT is given in the Table XXIII in which one route has 
zero transportation cost. 

Example 5: 

TABLE XXIII. TRANSPORTATION TABLEAU OF TRANSPORTATION 

PROBLEM 5 

 D1 D2 D3 Supply 

O1 1 16 17 10 

O2 0 6 8 2 

O3 3 3 7 3 

Demand 10 3 2  

We have again represented the cost matrix and the MWOC 
matrix in a single tableau in Table XXIV. It is observed in 
Table XXIV that c21 = 0 and its corresponding weight cost 
factor is 120. Once again, let's illustrate how to calculate the 
weight factor for that unit cost entry. According to the 
proposed method, since c21 = 0, the algorithm executes case 
(b). Formally: 

(b) As 𝑐21 = 0 and   {𝑐𝑝𝑞: 0 < 𝑐𝑖𝑗 < 1, ∀𝑝, 𝑞} = 𝜑, (i.e. 

null set), so 

𝑊𝑐21
𝑚 = max{𝑎𝑖 , 𝑏𝑗; ∀𝑖, 𝑗} × min {𝑎2, 𝑏1} × max{ 𝐷2

𝐼𝑟 , 𝐷1
𝐼𝑐} 

=max{10,2,3; 10,3,2} × min{2,10} × 𝑀𝑎𝑥{1,6} 

= 10 × 2 × 6 =120 

It is observed in the Table XXIV that the weight 
opportunity cost of the cell C21 is 120 corresponding to the 
minimal cost i.e., c21 = 0 obtained by the case (b) of the 
proposed approach. On the other hand, the weight opportunity 
cost of the cell C11 is 150 corresponding to the cost 1 i.e., c11 = 
1. It is worthwhile to mention here that the weight factor 
corresponding to the route (cell C11) is largest though it’s cost 
entry is not minimum. Now we have solved the problem with 
the proposed MWOC-VAM as well as LCM, VAM, and 
WOC-LCM. The experimental result is shown in Table XXV. 

It is observed in Table XVI that the proposed MWOC-
VAM and VAM need the least amount of transportation cost 
to obtain the IBFS compared to all other approaches, LCM 
and WOC-LCM. It is observed that the starting allocation of 
VAM and proposed MWOC-VAM are the same but different 
from both LCM and WOC-LCM. On the other hand, the 
starting allocation of LCM and proposed WOC-LCM are the 
same. Moreover, VAM and MWOC-VAM need fewer steps to 
get IBFS. It is also observed in the second column of 

Table XXVI that the pattern of the flow of allocation for each 
approach is different. Now we have considered another 
problem 6 (Example 6) in which one route has zero 
transportation cost and some route’s transportation cost is less 
than 1 but getter than zero. 

TABLE XXIV. MODIFIED WEIGHTED OPPORTUNITY COST INCLUDED 

TRANSPORTATION TABLEAU PROBLEM 5 

 D1 D2 D3 supply DI 

O1 
150

1
     1 

45

16
     16 

30

17
    17 10 15 

O2 120    0 
12

6
      6 

12

8
      8 2 6 

O3 
3

3
        3 

9

3
        3 

2

7
       7 3 0 

Demand 10 3 2   

DI 1 3 1   

TABLE XXV. COMPARISON REGARDING THE FLOW OF ALLOCATIONS AND 

TOTAL TRANSPORTATION COST TO FIND OUT THE IBFS OF THE PROBLEM 5 

Method Flow of allocations and IBFS Total Cost 

LCM 
x21 → x11 → x32 → x13 

2  →  8   →  3   → 2 
51 

VAM 
x11 → x32 → x23 

10  → 3   →  2 
35 

WOC-LCM 
x21 → x11 → x32 → x13 

2   →  8   →  3  →  2 
51 

MWOC-VAM 

(proposed) 

x11 → x23 → x32 

10  →  2  → 3 
35 

Example 6: 

TABLE XXVI. TRANSPORTATION TABLEAU OF TRANSPORTATION 

PROBLEM 6 

 D1 D2 D3 Supply 

O1 0 3 0.5 8 

O2 3 7 10 3 

O3 1 0.7 11 9 

Demand 6 6 8  

It is observed in the Table XXVI that c11 = 0, c13 = 0.5 and 
c32 = 0.7. So, to find out the weight cost factor corresponding 
to the cost entry 0, the algorithm executes the case (c) of the 
proposed method. Formally: 

(c) As 𝑐11 = 0 and { 𝑐𝑝𝑞: 0 < 𝑐𝑖𝑗 < 1, ∀𝑝, 𝑞} =
{0.5, 0.7} ≠ 𝜑, so 

𝑊𝑐11
𝑚

=
max{𝑎𝑖 , 𝑏𝑗; ∀𝑖, 𝑗}

[min{𝑐𝑖𝑗: 0 < 𝑐𝑖𝑗 < 1, ∀𝑖, 𝑗}]
× min {𝑎1, 𝑏1} × max{ 𝐷1

𝐼𝑟 , 𝐷1
𝐼𝑐} 

= 
max{8,3,9,    6,6,8}

[min{0.5,0.7}]
× min {8,6} × max{ 1, 0.5} 

=
9

0.5
× 6 × 1  =108 

We have again represented the cost matrix and the MWOC 
matrix in a single tableau as Table XXVII. It is observed in 
the Table XXVII that the weight opportunity cost of the cell 
C11 is 108 corresponding to the minimal cost i.e., c21 = 0 
obtained by the case (c) of the proposed algorithm. Moreover, 
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the weight opportunity cost of the cell C13 and C32 are 152 and 
19.71 respectively which are calculated according to the case 
(a) as well. Now we have solved the problem by the proposed 
MWOC-VAM as well as LCM, VAM and WOC-LCM. The 
experimental result is shown in the Table XXVIII. 

It is observed in Table XXVIII that the proposed MWOC-
VAM and VAM need the least transportation cost to obtain 
the IBFS compared to the other two approaches, LCM and 
WOC-LCM. It is observed that the starting allocation of VAM 
and proposed MWOC-VAM are the same but different from 
both LCM and WOC-LCM. On the other hand, the starting 
allocation of LCM and proposed WOC-LCM are the same. It 
is also observed in the second column of Table XXVIII that 
the pattern of the flow of allocation for each approach is 
different. 

To analyze the performance and effectiveness of the 
proposed method, we considered an additional 10 randomly 
generated numerical instances. The experimental results are 
displayed in Table XXIX. It is evident from Table XXIX that 
the proposed method consistently outperforms both the 
existing LCM and WOC-LCM approaches. Furthermore, in 
two instances, the proposed method surpasses VAM, while in 
other cases, it yields equivalent total costs compared to VAM. 
It is also observed that the IBFSs obtained by the proposed 
method are optimal or near optimal. 

We collected an additional 8 numerical instances from 
published international journals/conferences to evaluate the 
efficiency and effectiveness of the proposed method. In 
Table XXX, the first column indicates the reference number of 
the published article. The data presented in Table XXX show 
that, except for three instances where all approaches obtained 
optimal solutions, the proposed method consistently 
outperforms both LCM and WOC-LCM. It is noteworthy that, 
in four out of eight instances, the proposed method 

outperforms VAM, while in the remaining instances, both 
approaches yield similar solutions. 

The numerical experiments indicate that the proposed 
MWOC-VAM consistently performs as well as or better than 
both VAM and LCM. Furthermore, VAM requires the 
calculation of the DI at each iteration, which increases its 
computational cost. In contrast, the proposed MWOC-VAM 
only needs to compute the DI and WOC once initially, making 
it more computationally efficient. 

TABLE XXVII. MODIFIED WEIGHTED OPPORTUNITY COST INCLUDED 

TRANSPORTATION TABLEAU PROBLEM 6 

 D1 D2 D3 supply DI 

O1 
108   0 
× 

13.8

3
    3 

× 

76

.5
     .5 

8 
8 0.5 

O2 
12

3
       3 

3 

12

7
      7 

× 

28.5

10
  10 

× 
3 4 

O3 
6

1
        1 

3 

13.8

.7
   .7 

6 

76

11
    11 

× 
9 .3 

Demand 6, 3 6 8   

DI 1 2.3 9.5   

TABLE XXVIII. COMPARISON REGARDING THE FLOW OF ALLOCATIONS 

AND TOTAL TRANSPORTATION COST TO FIND OUT THE IBFS OF THE 

PROBLEM 6 

Method Flow of allocations and IBFS 
Total 
Cost 

LCM 
x11→ x13 → x32 → x23 → x33 

6   → 2   → 6   → 3   → 3 
68.2 

VAM 
x13 → x32 → x31 → x21 
8   →  6   → 3   →  3 

20.2 

WOC-LCM 
x11 → x13 → x32 → x33 → x23 

6   →  2  →  6   →  3  →  3 
68.2 

MWOC-VAM 
Proposed 

x13 → x32 → x21 → x31 
8   →  6   →  3  →  3 

20.2 

 

TABLE XXIX. COMPARISON AMONG LCM, VAM, WOC-LCM, AND PROPOSED MWOC-VAM REGARDING THE IBFS OF SOME RANDOMLY GENERATED 

NUMERICAL INSTANCES 

Ex. No. Problem LCM VAM WOC-LCM MWOC-VAM Proposed Opt. Sol. 

1 
Cij:{(9,8,5,7); (4,6,8,7);(5,8,9,5)} 

S: (12,14,16); D: (8,18,13,3) 
248 248 240 241 240 

2 
Cij:{(4,3,5);(6,5,4);(8,10,7)} 
S: (9,8,10); D: (7,12,8) 

145 150 145 144 139 

3 
Cij:{(2,5,4);(6,1,2);(4,5,2)} 

S: (4,6,6); D: (3,7,6) 
29 29 29 29 29 

4 
Cij:{(14,19,7,5);(16,6,12,9);(6,16,5,20)} 

S: (10,12,18); D: (9,14,7,10) 
243 243 243 243 243 

5 
Cij:{(4,2,1);(3,8,4);(6,5,2)} 
S: (50,70,45); D: (40,65,60) 

605 490 605 490 475 

6 
Cij:{(21,16,23,13);(17,18,14,23); (32,27,18,41)} 

S: (11,13,19);D: (6,10,12,15) 
922 796 919 796 796 

7 
Cij:{(1,16,17);(0,6,8);(3,3,7)} 

S: (10,2,3); D: (10,3,2) 
51 35 51 35 35 

8 
Cij:{( 1,16,17);(0,3,8);(3,3,7)} 
S: (10,2,3); D: (10,3,2) 

60 36 60 36 36 

9 
Cij:{( 1,16,17);(0,6,8);(3,3,7)} 

S: (30,6,9) ;D: (30,9,6) 
153 105 153 105 105 
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TABLE XXX. COMPARISON AMONG LCM, VAM, WOC-LCM, AND PROPOSED MWOC-VAM REGARDING THE IBFS OF THE PUBLISHED NUMERICAL 

INSTANCES 

Ref No. Problem LCM VAM WOC-LCM MWOC-VAM Proposed Opt. Sol. 

[3] 
Cij:{(10,2,20,11);(12,7,9,20);(4,14,16,18)} 
S: (15,25,10); D: (5,15,15,15) 

475 475 475 475 435 

[26] 
Cij:{(6,4,1); (3,8,7);(4,4,2)} 
S: (50,40,60); D: (20,95,35) 

555 555 555 555 555 

[60] 
Cij:{(7,5,9,11); (4,3,8,6);(3,8,10,5);(2,6,7,3)} 
S: (30,25,20,15); D: (30,30,20,10) 

435 470 435 430 410 

[61] 
Cij:{(4,3,5); (6,5,4);(8,10,7)} 
S: (90,80,100); D:(70,120,80) 

1450 1500 1450 1440 1390 

[26] 
Cij:{(4,1,2,4,4);(2,3,2,2,2);(3,5,2,4,4)} 
S: (60,35,40); 
D: (22,45,20,18,30) 

305 273 278 273 273 

[62] 
Cij:{(4,19,22,11); (1,9,14,14);(6,6,16,14)} 
S: (100,30,70); D: (40,20,60,80) 

2090 2170 2160 2090 2040 

[63] 
Cij:{(6,1,9,3); (11,5,2,8);(10,12,4,7)} 
S: (70,55,90); D: (85,35,50,45) 

1165 
1220 
 

1165 1165 1160 

[64] 
Cij:{(13,21,14); (8,12,21);(15,17,19)} 
S: (13,20,5); D: (12,15,11) 

473 473 473 473 465 

 

VI. CONCLUSION 

IBFS is crucial for obtaining an optimal solution in TP. 
While various approaches exist in the literature to determine 
IBFS, most are formulated by manipulating the cost matrix to 
control allocation flow. In this article, we stand out as perhaps 
the first to consider the impact of node capacity distribution on 
the flow of allocations in both LCM and VAM. Through 
numerical experiments, we observed significant changes in 
output due to the distribution of capacity among nodes, even 
when the cost matrix and total supply and demand remained 
constant. For example, if the cost matrix is identical, the flow 
of allocations for approaches like NWC, LCM, VAM, etc., 
remains almost unchanged regardless of the distribution of 
capacity among nodes. However, by addressing this issue in 
the formulation of the flow allocation matrix in the proposed 
method, the flow of allocations varies significantly. To 
leverage this effect, we introduced a novel tool to control 
allocation flow. To incorporate the influence of node capacity 
distribution, we developed a capacity-influenced allocation 
control matrix, termed Capacity-Influenced Distribution 
Indicator (CI-DI), along with the distribution indicator defined 
by VAM. Subsequently, we proposed a capacity-influenced 
algorithm for finding IBFS in balanced TP. It is observed from 
the numerical experiments that the proposed method is 
effective to find out better IBFS of TPs. The proposed 
approach significantly overcomes the limitations of both LCM 
and VAM concerning the impact of capacity distribution 
among nodes. Additionally, it demonstrates enhanced 
computational efficiency compared to VAM. While VAM 
requires the calculation of the DI for each allocation step, the 
proposed method only needs to compute the Capacity-
Influenced Distribution Indicator (CI-DI) matrix once. 
Experimental results lead to the conclusion that practitioners 
in the supply chain and transportation domain should not only 
consider cost distributions but also recognize the substantial 
role of capacity distributions among nodes in controlling 
allocation flow, leading to the identification of better IBFS. 
The concept of a capacity-influenced flow of allocation is 

innovative, providing a new perspective or "window" through 
which researchers can approach transportation problems and 
other linear programming challenges. In future work, we aim 
to develop a hybrid algorithm by integrating the proposed 
approach with fuzzy-based techniques. 
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