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Abstract—The correlation and redundancy of features will 

directly affect the quality of randomly selected features, 

weakening the convergence of random forests (RF) and reducing 

the performance of random forest models. This paper introduces 

an improved random forest algorithm—A Random Forest 

Algorithm Based on DBSCAN (DBRF). The algorithm utilizes the 

DBSCAN (Density-Based Spatial Clustering of Applications with 

Noise) algorithm to improve the feature extraction process, to 

extract a more efficient feature set. The algorithm first uses 

DBSCAN to group all features based on their relevance and then 

selects features from each group in proportion to construct a 

feature subset for each decision tree, repeating this process until 

the random forest is built. The algorithm ensures the diversity of 

features in the random forest while eliminating the correlation and 

redundancy among features to some extent, thereby improving the 

quality of random feature selection. In the experimental 

verification, the classification prediction results of CART, RF, and 

DBRF, three different classifiers, were compared through ten-fold 

cross-validation on six different-sized datasets using accuracy, 

precision, recall, F1, and running time as validation indicators. 

Through experimental verification, it was found that DBRF 

algorithm outperformed RF, and the prediction performance was 

improved, especially in terms of time complexity. This algorithm 

is suitable for various fields and can effectively improve the 

classification prediction performance at a lower complexity level. 

Keywords—Random forest; DBSCAN; feature selection; feature 

redundancy; classification algorithm 

I. INTRODUCTION 

The correlation and redundancy of features will directly 
affect the performance of the random forest model. Especially 
in high-dimensional features, contain a lot of information, but 
may also contain a lot of useless, correlated or redundant 
features, making it difficult to distinguish between important 
and unimportant features, leading to an increase in the 
computational complexity of the machine learning model, an 
increase in the time overhead, a decrease in generalization 
ability, and a tendency to overfit the model [1-3]. 

Random forest (RF) is a hybrid classification algorithm that 
uses random sampling and random selection of features to 
construct multiple decision trees, making the model highly 
stable. Compared with other classification algorithms, RF has 
higher classification accuracy, lower generalization error, and 
faster training speed, so it has been widely applied in the field of 
data mining in many aspects. Random forest is a general-
purpose algorithm with broad application potential in different 
fields. It has a large number of application cases in disease gene 
prediction, soil moisture estimation, industrial robot fault 

diagnosis, and text classification [1, 4-6]. The RF algorithm has 
many advantages such as high accuracy and strong 
generalization, but also has limitations. When dealing with high-
dimensional data, its feature random selection mechanism 
causes poor correlation between the selected features and the 
category variables. In addition, the randomly selected feature 
variables may have high redundancy, which directly affects the 
quality of the feature subset in the random forest and weakens 
the convergence of the random forest, reducing the accuracy, 
generalization ability, and performance of the random forest 
model. Most of the current studies solve this problem by 
preprocessing and feature selection, but this may lead to new 
problems such as information loss and a dramatic increase in 
model complexity. These studies often only focus on the 
algorithm itself and do not consider its practical value. This 
study aims to improve the performance and efficiency of random 
forest model prediction by improving the method of random 
feature selection. This study designs and implements an 
improved random forest algorithm based on density clustering 
algorithm and hierarchical feature extraction mechanism. The 
significance of this study lies in significantly improving the 
accuracy and complexity of the random forest model prediction, 
providing practical and theoretical solutions and foundations for 
the sustainable development of this technology. 

The main contribution of this study is to propose an 
improved random forest algorithm based on DBSCAN and 
stratified random sampling. This improved method enhances the 
quality of randomly selected feature subsets, and also confirms 
that the algorithm improves the accuracy of random forest 
models in different scale datasets, showing excellent 
performance in both cases. This study provides a new solution 
approach and empirical data for improving the random forest 
model. 

The structure of this paper is as follows: Section II reviews 
related work, discusses the existing research on improving 
random forest algorithms and the progress in feature 
dimensionality reduction, and points out the shortcomings of 
existing studies. Section III provides a detailed description of the 
improved random forest algorithm design. Section IV validates 
the performance of the improved algorithm through 
experiments, including the evaluation of key performance 
indicators such as Accuracy, Precision, Recall, F1, and running 
time. Section V discusses the experimental results. Section VI 
summarizes the theoretical and practical significance of the 
research findings and provides a look ahead to future research 
directions. 

*Corresponding Author. 
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II. RELATED WORK 

Many scholars have conducted relevant research on high-
dimensional feature problems. Tang, Zhang et al. [7]  used 
Relief F to calculate feature weights and used the Sequential 
Backward Selection algorithm to remove redundant features and 
weakly correlated features. The experiment proved that this 
method can effectively reduce redundant features. Compared 
with the methods of support vector machines, AdaBoost, and 
random forests, it has higher classification accuracy and 
efficiency. Ahmed, Deo et al. [4] proposed a soil moisture 
estimation model that uses the Boruta algorithm for feature 
selection. The model determines which features are significant 
by comparing the importance of the original features with the 
importance of the randomly generated shadow features. The 
experiment proved that the model has feature selection ability. 

Rani and Baulkani [8]  proposed the Lasso with Graph 
Kernel Feature Selection (LGKFS) algorithm, which combines 
the sparsity of Lasso regression and the structural information of 
GK-FS to reduce the feature dimension. When dealing with 
complex medical imaging data, the feature dimension is often 
very high, which may lead to the risk of overfitting in 
classification models and increase computational complexity. 
Therefore, effective feature selection becomes a key to 
improving classification performance. LGKFS algorithm 
combines Lasso regression and GK-FS algorithm to select the 
most valuable feature subset from high-dimensional features, 
thereby reducing the feature dimension and improving 
classification accuracy. Lasso regression is applied to the 
extracted features for sparse selection, removing most of the 
non-important features. GK-FS algorithm is used to further 
select the features after Lasso screening, based on graph kernel 
functions to calculate the similarity between features and select 
the most representative feature subset. 

Jalal, Mehmood et al. [6] used boosted sampling and random 
subspace methods to remove unimportant features, dynamically 
increasing the number of trees to improve text classification 
performance. Each feature was assigned a weight, which 
reflected its importance in the classification task. Features were 
divided into important and unimportant features based on a set 
threshold. The choice of threshold depends on the distribution 
of feature weights and the performance requirements of the 
model. In each iteration, the random forest was updated based 
on the classified features. Important features were retained and 
used to construct new decision trees, while unimportant features 
were excluded. Meanwhile, the optimal number of trees was 
sought. This was achieved by gradually increasing the number 
of trees and evaluating the model performance until the optimal 
classification effect was reached. 

Theerthagiri and Ruby [9] proposed a random forest feature 
selection algorithm based on recursive feature elimination and 
voting technology. The importance of each feature is evaluated 
by recursively building a random forest to assess the importance 
of each feature. The importance of a feature is evaluated by how 
it affects the prediction result during the decision tree building 
process. 

Wang, Xue et al. [10] proposed a feature selection method 
based on variable-sized cooperative evolution particle swarm 
optimization. It includes a spatial division strategy based on 

feature importance, an adaptive mechanism for adjusting 
subgroup size, and a feature deletion and generation strategy 
based on fitness guidance, using the maximum information 
coefficient (MIC) to evaluate feature importance. Features with 
larger MIC values are moved to the set U, and the features in U 
are sorted and clustered based on their MIC values. Redundant 
features are deleted through the clustering results. 

In high-dimensional data scenarios, to improve the accuracy 
of biomass estimation using a random forest algorithm, Zhang, 
Shen et al. [11]  used an improved Random Forest algorithm by 
adding two regularization terms to further control the 
complexity of the model and improve performance. The L1 
regularization selects the sum of the absolute values of the model 
parameters as the penalty term, thus selecting the most important 
feature at each node. This method helps to select the features that 
contribute the most to the model's prediction, reducing the 
influence of irrelevant or redundant features on the model. The 
average depth regularization term controls the depth of the tree 
and the number of nodes, thus limiting the complexity of the 
model. This limitation reduces the risk of overfitting the training 
data and improves the model's generalization ability. By limiting 
the depth and number of nodes, the model is more cautious in 
the feature selection process and avoids introducing noisy 
features due to the model being too complex. 

To improve the performance of speech emotion 
classification, Xie, Zhu et al. [2] proposed a two-stage feature 
selection method based on random forest and grey wolf 
optimization. In the random forest algorithm, the importance of 
a feature is calculated based on its ability to increase the purity 
of leaf nodes. Then, the feature subset with the highest 
classification accuracy and the least number of features is 
selected through the iterative process of grey wolf optimization, 
which is used as the final optimal feature subset. 

In summary, the quality of features affects the results of 
classification prediction, and many experts have conducted a 
series of optimization studies on feature dimensionality 
reduction. Currently, most studies mainly use feature selection 
algorithms to reduce the number of features, but ranking-based 
feature selection and subset-based feature selection both have 
certain limitations. Ranking-based feature selection algorithms 
mainly focus on the importance of individual features and ignore 
the interaction between features and the overall structure, while 
subset-based feature selection algorithms consider the 
combination of features, but may face the problem of large 
computational complexity and overfitting. Based on these 
problems, this study combines density clustering algorithm and 
hierarchical extraction to optimize the random forest algorithm. 
On the basis of establishing the diversity of random feature 
selection in the RF algorithm, it eliminates the interference of 
correlated and redundant features and builds a more predictive 
random forest, thereby improving the comprehensive 
performance of the model prediction. 

III. METHODOLOGY 

The RF algorithm has many advantages such as high 
accuracy and strong generalization, and has wide applications. 
However, when dealing with high-dimensional data sets, its 
random feature extraction mechanism reduces the correlation 
between features and category variables. Moreover, the 
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randomly extracted features may have high redundancy, which 
lowers the quality of the random feature subset, and weakens the 
convergence of the random forest, thereby reducing the overall 
performance of the random forest. Therefore, this paper 
optimizes the traditional RF algorithm by using the DBSCAN 
algorithm and hierarchical sampling to change the feature 
extraction mechanism. By constructing similar feature groups, it 
reduces the impact of these factors and improves the efficiency 
of the algorithm. 

A. Random Forest 

Random Forest is a machine learning algorithm that 
combines multiple decision trees. RF selects multiple subsets of 
the original sample set by random sampling with replacements 
from the set to build decision trees. At each node in the decision 
tree, a random subset of k attributes is selected from the set of 
attributes at the node, and then the best attribute is chosen from 
this subset for splitting. It is generally recommended that 
k=𝑙𝑜𝑔2 𝑑  , where d is the number of features in the data set [12]. 
The predictions of each tree are voted on to elect the best result. 
RF can handle both continuous and categorical variables [13, 
14]. It can also rank the importance of features [15]. 

The architecture of the random forest algorithm is depicted 
in Fig. 1, and its underlying principles are delineated as follows 
[16]: 

1) Randomly draw n training datasets from the original 

dataset with replacement. 

2) Randomly select K features from each training dataset 

(where K is less than the total number of features in the original 

dataset). 

3) Employ a specific strategy (e.g., Gini coefficient) to 

choose 1 feature from the k features as the splitting feature for 

the node, thereby constructing a decision tree. 

4) Iterate through steps 1-3 to construct n decision trees. 

5) Utilize each decision tree for result prediction. 

6) Aggregate predictions and determine the final prediction 

result based on majority voting. 

Traning Set

Predicted Result

Vote 1

Testing Set

Bootstrap Set 1 Bootstrap Set 2 Bootstrap Set n...

Data Set

...Vote 2 Vote n

...

 

Fig. 1. The architecture of the random forest algorithm. 

Random forest uses CART as a single classifier. CART uses 
the Gini coefficient as a selection criterion for splitting features. 

The key to building decision trees in random forest is to choose 
the optimal splitting feature, seeking higher and higher node 
"purity" in the splitting process [17]. The lower the Gini 
coefficient of a feature, the lower its impurity, and the feature 
with the lowest impurity is selected for node splitting. The 
impurity calculation is repeated for each node. After each split, 
the overall impurity of the tree decreases, until no features are 
available or the impurity has reached an optimal level, at which 
point the decision tree stops growing. The formula for 
calculating the Gini index is [18]: 

𝐺𝐼𝑚 = 1 − ∑ 𝑝𝑚𝑘
2|𝐾|

𝑘=1 

Where: denotes the number of categories, and Pmk 
represents the proportion of class column k in node m. 

B. DBSCAN Algorithm 

DBSCAN is a density-based clustering algorithm based on 
high-density connected regions. It defines clusters as the largest 
set of points that are densely connected and can group together 
regions with sufficiently high density and discover arbitrary-
shaped clusters in noisy spatial databases. It uses parameters 
(Eps, MinPts) to describe the tightness of the sample distribution 
in the neighborhood. Parameter Eps is the maximum radius of 
the neighborhood. Parameter MinPts specifies the density 
threshold for dense regions. The working principle of DBSCAN 
is: randomly select a data point p from the dataset and check 
whether p's Eps neighborhood contains the minimum number of 
data points MinPts. If this condition is met, a new cluster is 
created and all identified data are added to the new clustering. 
Then, all data within the cluster will also be checked in the same 
way based on these two parameters, in order to add as many 
other data as possible that have not been checked before. This 
process is repeated until all data in the dataset are accessed [19, 
20]. 

C. Stratified Sampling 

Divide the entire sample into distinct strata or categories, and 
subsequently conduct random sampling from each stratum by 
selecting a specific number of individuals. Finally, combine the 
sampled individuals from all strata to form a representative 
sample. This approach is known as stratified sampling. Through 
categorization and stratification, it enhances the similarity 
among individuals within each category, facilitating the 
selection of a representative survey sample. This method is 
particularly suitable for complex situations with substantial 
individual variations and a large population size. The key 
characteristics of stratified sampling include [21, 22]: 

1) Stratification involves the classification of similar 

individuals into distinct layers, with each layer representing a 

unique category. This method adheres to the principle of non-

overlapping and exhaustive coverage, ensuring that every 

individual is assigned to one and only one layer. 

2) To guarantee an equal opportunity for every individual 

to be included in the sample, stratified sampling necessitates 

simple random sampling within each layer. The sample size in 

each layer is determined proportionally based on the total 

number of individuals in that layer relative to the overall 

population size. 
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D. Design of the DBRF Algorithm 

The establishment of a random forest involves two key 
random processes, one of which is the random selection of 
features. In high-dimensional datasets, it is highly probable to 
extract a large portion of irrelevant or redundant features, 
leading to a decrease in the generalization and accuracy of the 
RF algorithm. To address this issue, this study proposes an 
improvement to the traditional random forest algorithm using 
density clustering. Without removing redundant features and 
while retaining the original feature information, features are 
grouped (clustered) based on density to form similar feature 
groups TG = “TG1 ,TG2,…,TGn”. Within these similar feature 
groups, a certain proportion of features can represent all 
information for that entire group of features as well as express 
classification labels C. Features are randomly selected from each 
similar feature group TGi in proportion to establish a subset for 
building individual decision trees. The architecture of the DBRF 
algorithm is illustrated in Fig. 2. 

Traning 
Set

Predicted Result

Vote 1

Testing
Set

Bootstrap Set 1 Bootstrap Set 2 Bootstrap Set n...

Data 
Set

Vote 2 Vote n

...

Feature Set

Feature cluster 1 Feature cluster 2 Feature cluster n...

...

 
Fig. 2. The architecture of the DBRF algorithm. 

The flowchart of the DBRF algorithm is illustrated in Fig. 3. 
Initially, a training set and a test set are established. Algorithm 
parameters such as the number of decision trees (n_estimators), 
maximum number of features for splitting (max_features), 
minimum samples in a cluster (min_samples), and neighborhood 
radius (eps) are configured. The Gini coefficient (GIm) for each 
feature is computed, followed by DBSCAN clustering to form F 
similar groups. Features are then extracted from each group 
based on the proportion NF, and a subset of features is selected 
from other similar feature groups using the same approach to 
construct individual decision trees. This process is iterated 
multiple times until reaching the desired scale for constructing 
the random forest, at which point it terminates. 

   Calculate Gini coefficient

n_trees<100

Extracting training samples,testing samples

Set parameters n_trees, m_try, min_samples, eps

DBSCAN Clustering 

Build decision tree

Predictive,voting 

         Extracting features,

yes

no

 
Fig. 3. The flowchart of DBRF. 

The flowchart of feature extraction is shown in Fig. 4. After 
features are clustered, features with similar classification 
capabilities are grouped into a cluster. Then, features are 
sampled proportionally from each cluster. This ensures that the 
extracted features are more representative and do not favor any 
particular situation. These features are used to build a decision 
tree. The feature extraction process is repeated until all decision 
trees have been built. 

The formula for proportional sampling is: 

𝑁𝐹 = ∑
𝐶𝑖

𝑀

𝐹
𝑖=1 ∗ 𝑚                                    

Where: F is the total number of clusters, 𝐶𝑖 is the number of 
features in the i-th cluster, M is the total number of features, and 
m is the number of features to be extracted. 

The pseudocode for feature proportional stratified sampling 
is as follows: 

Algorithm 1: stratified sampling algorithm 

Input: a set of similar feature clusters 

Output: several groups of extracted features. 

Method: 

(1) According to the total number of features N and the number of 

features per layer: ni ，Calculate the sampling ratio for each layer 

𝑊 =
𝑛𝑖

𝑁
. 

(2) Calculate the number of features to be extracted from each 

layer: NUM = W*n. And make sure that the total number of 
features extracted from each layer is n. 

(3) Determine the number of features for each layer, then 

randomly select features from each layer to form a total of n 
samples. 
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Dividing features into non-intersecting 

stratum 

Calculate the sampling ratio per 

stratum: W=ni/N

Calculate the number of features 

extracted on each stratUm: NUM=W*n

Randomly selected the features in each 

stratum to get the total number of n

END
 

Fig. 4.  The flow of feature extraction. 

Therefore, the pseudocode for the complete DBRF algorithm 
is as follows: 

Algorithm 2: DBRF algorithm 

Input: Dataset: Data, number of decision trees: n_estimators, 

maximum number of features for splitting: max_features, 

minimum number of samples in a cluster: min_samples, 
neighborhood radius: eps 

Output: An RF classifier 

Methods： 

The dataset is divided into a training set and a testing set; 

for i=1 to Num_Features 

       Compute the Gini coefficient (GIm) for each feature. 

endfor 

while( j<= min_samples  and  k<=eps) 

        F = DBSCAN(GIm)       // Feature clustering 

endwhile 

for t=1 to n_estimators 

        for f=1 to F 

              Extract NF features and construct a decision tree; 

        endfor 

endfor 

The time complexity of RF is O(tfnlog(n)), where t is the 
number of decision trees built, f is the number of features 
selected at each node, and n is the number of samples in the 
training set [23]. The DBRF algorithm proposed in this paper is 
divided into two parts: clustering to build similar feature groups 
and building a random forest model. For the first part, the time 
is mainly spent on feature Gini coefficient clustering, with a time 
complexity of O(mlogm) [24], where m is the number of 
features. The second part is the random forest construction. 
Therefore, the time complexity of the DBRF algorithm proposed 
in this paper is the sum of the two parts, i.e., 
O(tfnlog(n)+m(logm)). 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Experimental Data 

In order to objectively and comprehensively evaluate the 
effectiveness and advantages of the DBRF algorithm, the 
adaptability of the algorithm on different feature dimension 
datasets was analyzed. Six datasets with different feature 
dimensions from the UCI were selected, namely SPECT Heart 
(SPECT), Chess, SCADI, DARWIN, Period Changer (Period), 
and MicroMass. Table I describes the detailed information of the 
six datasets. The six datasets were divided into low-dimensional, 
medium-dimensional, and high-dimensional datasets based on 
the size of the samples and features [25]. SPECT and Chess 
belong to low-dimensional feature datasets. SCADI and 
DARWIN belong to medium-dimensional datasets. Period and 
Micromass are high-dimensional datasets. At the same time, 
these datasets include balanced and unbalanced datasets. 

B. Experimental Results and Analysis 

The experimental environment was set to Windows 11 
operating system (64-bit), Intel(R) Core(TM) i7-10510U CPU, 
16GB RAM, and Visual Studio Code. To verify the 
comprehensive performance of the proposed improved random 
forest, the experimental results of DBRF, RF, and CART 
classifiers were compared. The experiment used tenfold cross-
validation to evaluate the accuracy, precision, recall, F1 score, 
and running time of the DBRF, RF, and CART models. Their 
overall performance was compared, highlighting the advantages 
of the improved algorithm. The experiment parameters were set 
to n_estimators=100, max_depth=30, max_features= 
sqrt(n_features). The DBSCAN parameters were set to 
min_samples=3, eps=0.02 or eps=0.03. 

TABLE I.  THE DESCRIPTIONS OF ALL DATASETS 

ID DataSet Feature Size Sample Size Feature Scale Sample Scale Balance DOI 

1 SPECT 22 267 Small Small unbalance 10.24432/C5P304 

2 Chess 36 3196 Small Large balance 10.24432/C5DK5C 

3 SCADI 205 70 Middle Small unbalance 10.24432/C5C89G 

4 DARWIN 451 174 Middle Small balance 10.24432/C55D0K 

5 Period 1177 90 Large Small unbalance 10.24432/C5B31D 

6 Micromass 1300 571 Large Middle balance 10.24432/C5T61S 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 9, 2024 

359 | P a g e  

www.ijacsa.thesai.org 

  
          (a)              (b) 

  
          (c)              (d) 

  
      (e)               (f) 

Fig. 5. Clustering results of DBRF on all Datasets (a) SPECT, (b)Chess, (c) SCADI, (d) DARWIN, (e) Period and (f) Micromass. 

Fig. 5 illustrates the clustering results of DBRF on all 
datasets. Features clustered together are represented by points of 
the same color. Table II presents the number of feature clusters 
for each dataset, along with the maximum and minimum values 
of elements within each cluster. SCADI exhibits the highest 
number of similar feature clusters, with 12 clusters containing a 
maximum of 77 features and a minimum of three features. 
SPECT, Darwin, and period are all clustered into four similar 
feature clusters, with the maximum number of features in a 
cluster being 958 and the minimum being 3. MicroMass has the 
fewest feature clusters at only 2, with a maximum of 1297 
features in a cluster and a minimum of three features. Chess 
consists of 36 features clustered into five groups, with each 
group containing between 1 to 13 features. 

Fig. 6 shows the performance comparison of CART, RF, and 
DBRF models on all datasets. Fig. 6(a) shows the classification 
accuracy of CART, RF, and DBRF prediction models on all 
datasets. On the chess dataset, the accuracy of DBRF is 0.85% 
lower than that of CART and 0.19% higher than that of RF. For 
the other five datasets, the accuracy of DBRF is the highest. 
DBRF is 6.97% to 14.73% higher than CART and 0.17% to 
2.94% higher than RF. This data confirms that DBRF as a 
composite classifier of CART is superior to CART. 
Furthermore, the higher accuracy of DBRF than RF indicates 
that the features extracted by DBRF are more representative and 
have higher accuracy. Importantly, DBRF performs well on both 
balanced and unbalanced datasets, demonstrating its versatility. 
Furthermore, DBRF improves performance on low-dimensional 
and high-dimensional datasets. 
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TABLE II.  THE CLUSTERING RESULTS OF DBRF 

ID DataSet Number of clusters Maximum number of features in a cluster Minimum number of features in a cluster 

1 SPECT 4 8 3 

2 chess 5 13 1 

3 SCADI 12 77 3 

4 darwin 4 434 4 

5 period 4 958 7 

6 micromass 2 1297 3 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Fig. 6. Performance comparison of CART, RF, and DBRF models on all datasets. 

Fig. 6(b) shows that the accuracy of DBRF on SCADI is 
93.69, while the accuracy of RF is 81.38, which has been 
significantly improved by 12.31%. In Table II, the number of 
clusters in the dataset is the maximum value of 12, proving the 
complexity of the feature distribution. The clustering process 
can extract comprehensive and representative features, thus 
significantly improving the accuracy. At the same time, the 
accuracy of DBRF is the highest in all five datasets, with an 
improvement of 15.33%, 12.31%, 11.05%, 16.46%, and 10.05% 
compared to the lowest accuracy. 

Fig. 6(c) compares the Recall values of the three models. 
Similarly, DBRF is at the highest level of Recall value. In the 
five datasets, DBRF's recall value is absolutely dominant, far 
higher than the RF and CART models. Compared with the 
lowest value, the increase in DBRF's Recall value is 6.97%, 
7.15%, 9.9%, 11.53%, and 14.73%. 

Fig. 6(d) shows the combined measure F1. In the low-
dimensional datasets SPECT and Chess, DBRF performed 1.0% 
and 0.19% better in F1 than RF, respectively. However, the 
improvement was not significant due to fewer features in the 
low-dimensional datasets. In the medium-dimensional datasets 
SCADI and Darwin, DBRF's F1 score was 1.89% and 2.99% 
higher than RF, respectively. In the five datasets, the 
improvement in DBRF's F1 value compared to the lowest value 
was 5.17%, 7.04%, 9.77%, 4.07%, and 13.79%, respectively. In 
the high-dimensional datasets Period and MicroMass, DBRF 
improved the F1 score by 1.83% and 0.24% compared to RF, 
respectively. In the medium- and high-dimensional datasets, 
CART always performed the worst, thereby highlighting the 
advantages of ensemble learning models. 

Table III shows the running times of the three prediction 
models on all datasets. For the four datasets including the high-
dimensional dataset MicroMass, the DBRF model requires less 
time than the RF model, further emphasizing its efficiency and 
universality. Although DBRF adds the feature clustering 
process, it reduces the running time, indicating that balancing 
the extraction of typical features is more beneficial for the time 
efficiency of prediction classification. Since both DBRF and RF 
require the construction of 100 decision trees, their running 
times are longer than CART, but they achieve higher accuracy. 
Therefore, from the comprehensive performance indicators, the 

prediction classification effect of the DBRF model is better than 
that of the other two models. 

TABLE III.  RUNNING TIME OF THE THREE MODELS IN SECOND (S) 

Dataset CART RF DBRF 

SPECT 2.39 8.32 5.46 

chess 7.07 84.83 145.25 

SCADI 2.91 6.36 5.82 

darwin 101.21 356.80 276.60 

period 123.59 76.93 153.39 

micromass 464.87 572.17 526.49 

* Bold font is the best results. 

V. DISCUSSION 

This study used different-sized datasets and conducted 
comprehensive experimental evaluations to verify the 
effectiveness of the proposed optimization techniques. The 
performance of the DBRF algorithm was compared with that of 
traditional RF and CART algorithms. The experiment 
demonstrated the technical improvements brought about by 
density-based feature extraction, and the empirical evidence 
proved the classification efficiency, scalability, and time 
complexity. Previous research techniques were only applicable 
to a single application domain [2, 6, 8, 11], while this study 
tested the proposed method on datasets with multiple different 
neighborhoods. In low, medium, and high-dimensional datasets, 
the DBRF achieved significant improvements in all 
performance indicators compared with the other two models. 
The maximum improvement in accuracy indicators was 14.73% 
in the high-dimensional MicroMass dataset. The highest 
accuracy value was 98.81% in the low-dimensional Chess 
dataset. The maximum improvement in precision indicators was 
16.46% in the high-dimensional period dataset. In the running 
time indicator, the DBRF model required less time than the RF 
model in four datasets, including the high-dimensional 
MicroMass dataset, further highlighting its superiority and 
generality. Although the DBRF increased the feature clustering 
process, it reduced the running time, indicating that balancing 
the extraction of representative features is more beneficial for 
the time efficiency of predictive classification. In the five 
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datasets, the DBRF achieved the highest values for all four 
evaluation indicators, including accuracy rate. Therefore, by 
randomly selecting similar feature groups and extracting 
features from them, it is possible to effectively avoid the 
formation of redundant feature subsets in traditional RF and 
improve the accuracy and overall performance of predictive 
classification. 

In summary, the DBRF algorithm proposed in this paper has 
better experimental effects than the other two algorithms, 
showing obvious advantages in high-dimensional data sets, low-
dimensional data sets, and data sets with highly redundant 
features. Future research can further study the improvement of 
other types of clustering algorithms on random forest feature 
extraction to achieve higher efficiency and performance 
improvement. At the same time, it can be made more scalable to 
enable it to have a wider range of applications. 

VI. CONCLUSION 

Due to the correlation among features, redundancy, and a 
large amount of useless information, the overall performance of 
the machine learning model is affected. This study optimizes the 
traditional RF algorithm and proposes a DBRF algorithm based 
on DBSCAN. The experimental results show that the DBRF 
algorithm has a higher accuracy index improvement of 6.97%-
14.73% and an F1 index improvement of 4.07%-13.79% 
compared with the other two models. In the 5 datasets, the 
accuracy rate and other four evaluation indicators of DBRF are 
the highest. For the four datasets including the high-dimensional 
dataset MicroMass, the DBRF model takes less time than the RF 
model, which demonstrates its significant advantage in time 
complexity. Therefore, the DBRF algorithm achieves the 
research goal of reducing the influence of feature correlation and 
redundancy on model performance. In future research, further 
exploration of other types of clustering algorithms for random 
forest feature extraction will be conducted to achieve higher 
efficiency and performance improvement, as well as stronger 
scalability. 
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