
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 9, 2024 

363 | P a g e  

www.ijacsa.thesai.org 

Enhancing Emergency Response: A Smart 

Ambulance System Using Game-Building Theory and 

Real-Time Optimization 

Guneet Singh Bhatia1, Azhar Hussain Mozumder2, Saied Pirasteh3, Satinder Singh4, Moin Hasan5 

Siemens Energy, Inc. QUAD 3, Orlando, Florida, USA1 

Dept. of Information Science Engineering, Jain Deemed-to-be University, Bengaluru, India2 

Institute of Artificial Intelligence, Shaoxing University, Shaoxing, China3 

Dept. of Computer Applications, Lovely Professional University, Phagwara, India4 

Dept. of Computer Science and Engineering, Jain Deemed-to-be University, Bengaluru, India5 

 

 
Abstract—Dispatching ambulances early and efficiently is 

paramount and difficult in the field of emergency medical 

services. In this regard, the paper designs a smart ambulance 

system based on game-building theory. The system employs an 

advanced Negamax algorithm for optimizing the dispatch of 

ambulances during emergencies. Besides traditional methods, 

real-time traffic data, patient condition severity, and dynamic 

resource allocation also improve the system further. With the 

integration of predictive analytics and real-time data, it allows 

dynamic adaptation to changing urban conditions, optimal 

resource allocation as well as minimizing response time. 

According to our simulations involving extensive scenarios, our 

Negamax-based system performs significantly better with respect 

to average response times when compared with traditional 

methods averagely reducing them by more than 50%, hence, 

showing double improvement. The study not only improves 

efficiency in the operation of emergency services but also 

presents an expandable framework that can be used for future 

developments in critical response systems thereby leading to their 

association with smart city infrastructure and AI-based 

predictive emergency management. 
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I. INTRODUCTION 

When it comes to saving lives and improving patient 
outcomes in urban areas, the speed of action taken by 
emergency medical services (EMS) is very important [1]. 
Often, traditional ambulance dispatches rely on static positions 
and heuristic approaches which are simple and fail to take into 
account the dynamic nature of urban emergencies and traffic 
conditions [2]. This research is motivated by the need for a 
more sophisticated adaptive ambulance allocation approach 
that can respond to real time conditions, predict patterns of 
emergency, and optimize resource utilization within complex 
urban settings. 

The subject of this study is to develop and implement an 
advanced system based on game theory for optimizing the 
dispatch of ambulances in large urban areas with a high 
population density, complex road networks, and changing 
traffic conditions. We go beyond mere distance optimization to 

consider factors such as real-time traffic information, historical 
emergency patterns, and dynamic health facility capacity 
changes. The primary objectives of this research work are as 
follows: 

 To customize the Negamax algorithm (from game 
theory) [3], [4] with multi-factorial decision-making for 
ambulance dispatch optimization. 

 To combine real-time data feeds like hospital capacities, 
emergency severity levels, and traffic conditions in the 
process of optimizing ambulance dispatches. 

 To design a scalable platform for handling emergency 
response coordination throughout the city. 

Efficient ambulance dispatch is undoubtedly a crucial 
aspect. In the cases of cardiac arrests, survival odds are lower 
by 7-10% per minute delay [5]. It shows how rapid response 
saves lives. There could be improved resource utilization 
through efficient dispatch systems which can reduce 
operational costs and improve coverage with existing resources 
[6]. In addition, the implementation of smart routing systems 
[7], [8] could reduce traffic congestions associated with 
emergency vehicle movements and facilitate urban mobility in 
general. Moreover, this data can help city planning and health 
care to optimize resource allocation based on facts instead of 
assumptions for a better public health outcome as well as 
improved emergency medical services. 

The existing approaches are somehow limited on several 
accounts which reduce their effectiveness in modern urban 
environments. To be considered here, traditional ambulance 
dispatches are often based on static decision-making and use 
rule-based methods that are easy to apply but do not consider 
the evolving nature of the emergencies and traffic in urban 
environments [9], [10]. Although 5G and IoT have emerged 
and recently integrated into ambulances, they are still unable to 
relieve the demanding nature of emergency services in the 
urban environment [11], [12]. Various knowledge-based 
systems have been developed [13], but they are not capable 
enough to provide proper time-based optimization and 
predictive analysis. A few recent research works have tried to 
include real-time data and predictability in the model [14], 
[15]. However, there are very few studies that have included a 
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holistic approach of adaptive methods. Moreover, though 
attempts have been made to solve problems like traffic 
congestion [16], still it is the dire necessity to design an 
efficient and enhanced adaptive ambulance allocation model 
considering the current situation, patterning emergency and the 
best utilization of resource in the context of urban environment. 
These drawbacks, which are discussed in more detail in 
Section II, all point to the need for more flexible, real-time, and 
big data-based solutions for ambulance dispatching. 

To this motivation, we hypothesize that applying a 
customized version of the Negamax algorithm from game-
building theory, combined with machine learning techniques 
for predictive analytics, can significantly improve the 
efficiency of ambulance services. We consider the Negamax 
algorithm because of its efficiency in exploring decision trees 
and adaptability to adversarial scenarios. In the context of 
emergency response, it represents the competition between 
different possible dispatch decisions. Moreover, the Negamax 
algorithm considers the thinking process of both participants 
while making a move, which consequently increases the win 
probability. Our customized version incorporates real-time data 
updates and considers multiple factors simultaneously, 
enhancing its suitability for the ambulance dispatch problem. 
Hence, this approach aims to create a dynamic, predictive, and 
highly responsive ambulance dispatch system. The system 
would be able to minimize response times, maximize resource 
utilization, and adapt to the complex and dynamic environment 
of urban emergencies. 

The paper is organized as follows: Section II covers the 
literature review. Section III explains the mathematical 
modeling followed by the proposed system in Section IV. 
Section V is about experimental evaluation, results, and 
discussion. The paper is finally concluded in Section VI along 
with the future research considerations. 

II. LITERATURE REVIEW 

This section covers the related research works in the 
domain of smart ambulance system. A smart ambulance 
system was suggested by Gupta et al. in 2016 using IoT and 
smartphone technologies [9]. The research was aimed at 
enhancing the emergency medical response. They proposed a 
system that has two main modules: (i) Module 1 is about 
locating nearby ambulances and hospitals using GPS and 
Google Maps; (ii) Module 2 transmits real-time patient health 
data from an ambulance to a hospital. They also claimed that 
there were reduced response times and improved patient care 
during emergencies. 

In 2017, Udawant et al. designed “Green Corridor” smart 
ambulance system using IoT framework to mitigate traffic 
congestion issues faced by emergency services [10]. The 
system reads patients vital signs in an ambulance while 
transmitting it to hospitals, as well as controls automatically 
signal lights for clear passage of vehicle when it reaches 
signals. Authors assessed different MAC protocols for data 
transmission in the proposed system concluding that CSMA is 
mostly efficient. 

A timely ambulance service was proposed by Marimuthu et 
al. (2018) that employs the use of an Android application [17]. 

The proposed service allows for user requests of ambulances 
and selection of hospitals. Tracking the movement of 
ambulances in real-time is made possible through GPS and 
GSM modules while providing an emergency button to assign 
automatically the nearest ambulance. This application intends 
to enhance ambulance response durations and provide more 
effective life-saving services. 

In 2021, Zhai et al. proposed a 5G-based smart ambulance 
structure and evaluated it through simulation experiments [11]. 
The experiment was conducted on the test platform which 
consisted of two scenarios namely, remote video consultation 
with medical data transmission from a moving ambulance and 
large medical image file transfers under both 4G and 5G 
networks. The resulting figures indicated impressive 
enhancements in capacity, speed, and latency for 5G as 
compared to 4G systems. 

Merza and Qudr (2022) presented an ambulance-based 
healthcare system using Raspberry Pi and Internet connectivity 
to monitor patients’ vital signs in real-time for data transfer to 
hospitals [18]. The system incorporates various sensors for 
ECG, heart rate, respiration, temperature as well as audio/video 
monitoring thereby improving hospital readiness status and 
communication between paramedics on board with specialists 
on call. 

In 2022, Sultana et al. defined an IoT-enabled intelligent 
ambulance routing system using LOADng-IoT routing protocol 
to reduce emergency response time and enhance patient care 
[12]. To speed up ambulances to hospitals yet keep transferring 
the most recent patients’ medical records, this is done by 
integrating traffic light control, health monitoring sensors and 
efficient path-finding algorithms. Additionally, authors discuss 
how the technology can facilitate achieving some of the UN 
SDGs concerning health, infrastructure and sustainable cities. 

In 2023, Chanchai Thaijiam developed a smart ambulance 
system with knowledge base and decision-making support for 
improved rescue operations [13]. The design includes wearable 
biometric sensors, GPS tracking technology. Video 
conferencing platform was installed in order to have smooth 
communication between medical personnel in hospital and the 
emergency team inside ambulances. These systems enhance 
selection of destination hospitals for patients which is guided 
by an algorithm that uses decision trees procedure based on 
certain parameters such as distance or type of injuries. 

Siddiqi et al. (2023) developed a smart signalization system 
for emergency vehicles [14]. The system uses Arduino, GSM 
modules, and a mobile application and it facilitates the drivers 
to control traffic signals from afar through SMS. Consequently, 
it minimizes any delays that may be caused. The system was 
evaluated by conducting field tests which proved the system's 
effectiveness for avoiding probable intersections for 
emergency vehicles. In addition, it maintains minimal waiting 
time for other traffic on the route. 

In 2023, Sutherland and Chakrabortty proposed an optimal 
ambulance routing model [15].  The model considers multiple 
ambulances, patient medical severities, dispatching locations, 
and hospitals. The goal of this model is to enhance response 
times as well as patient transport efficiency. Simulation results 
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prove the model’s resilience under critical situations, therefore, 
laying a foundation for further studies on ambulance routing 
optimization. 

In 2024, Sakthidevi et al. discussed IoT-enabled smart 
ambulances and how they can transform emergency response 
and management of patients [19]. The focus was on real-time 
monitoring sensors, advanced communication systems, and 
data processing platforms. The authors contributed to enhance 
resource allocation, improve response times, and elevate 
patient outcomes. This paper also focuses on future directions, 
challenges as well as potential impacts to emergency medical 
services in the world today. 

In 2024, Jeyaseelan et al. put forward an IoT-based smart 
ambulance system for reducing the time taken in responding to 
emergencies in cities prone to traffic congestion [16]. The 
system employs the use of sensors, GPS and wireless 
communication technology to track ambulances, control traffic 
signals or even lower speed breakers automatically enabling 
ambulances to reach hospitals faster as well as safely. 
Experimental results show high accuracy and availability of the 
proposed system. 

In the present research work, we address several key gaps 
in the above-reviewed literature. While previous studies have 
majorly focused on IoT integration, GPS tracking, and basic 
route optimization; in contrast, our approach leverages 
advanced game theory, specifically a customized Negamax 
algorithm, to provide a more adaptive and intelligent solution. 
The proposed system also incorporates predictive analytics and 
multi-factorial decision-making, whereas, earlier works 
primarily considered real-time data transmission and traffic 
signal control only. Doing this facilitates proactive resource 
allocation and efficient emergency response. Furthermore, 
existing research works have confined their scope to either 
route optimization or patient data transmission. In response, 
our research integrates these aspects with dynamic resource 
management across large and complex urban areas. The use of 
machine learning techniques for emergency prediction and 
traffic pattern analysis goes beyond the capabilities of systems 
described in previous literature. 

III. MATHEMATICAL MODELING 

This section describes our mathematical model considered 
for this research including the customized Negamax algorithm, 
possible constraints, dynamic updates, and predictive 
component. 

A. Customized Negamax Algorithm 

Let 𝐺 = (𝑉, 𝐸) be a graph where 𝑉 represents nodes 
(ambulance stations, hospitals, accident locations) and 𝐸 
represents edges (routes between nodes). A time-dependent 
distance matrix 𝐷 is considered where 𝐷[𝑖][𝑗][𝑡] represents the 
estimated travel time between node 𝑖  and node 𝑗  at time 𝑡 . 
Furthermore, a dynamic vector 𝐴  is also considered where 
𝐴[𝑖][𝑡] represents the number of available ambulances at node 
𝑖 at time 𝑡. Let 𝑆 be a severity matrix where 𝑆[𝑘] represents the 
severity level of emergency 𝑘 . Associating all the above 
notations, the objective function to minimize the total weighted 
response time 𝑇 is given in Eq. (1) as follows: 

𝑇 = ∑ 𝑚𝑖𝑛𝑖∈𝑉(𝐷[𝑖][𝑘][𝑡] ∙ 𝐼[𝑖][𝑘] ∙ 𝑊(𝑆[𝑘]))𝑁
𝑘=1  (1) 

Where I[i][k] is an indicator function that is 1 if an 
ambulance from node i is dispatched to emergency location k, 
and 0 otherwise. W(S[k]) is a weight function based on the 
severity of the emergency. 

For each emergency 𝑘 , 𝐷[𝑖][𝑘][𝑡] ∙ 𝐼[𝑖][𝑘] ∙ 𝑊(𝑆[𝑘])  is 
calculated for every possible dispatch location 𝑖. The minimum 
of these values is then selected which represents dispatching 
from the best location. This minimum is then weighted by the 
emergency's severity. It is done for all emergencies and sum of 
the results is calculated, giving us the total weighted response 
time 𝑇. The goal of optimization is to find the set of dispatch 
decisions (represented by 𝐼[𝑖][𝑘] values) that minimizes this 
total weighted response time 𝑇 , subject to the constraints 
discussed as follows. 

B. Constraints 

Following constraints are taken into account while 
modeling the system: 

 Emergency Coverage: It is the first constraint where 
each emergency must be responded to by at least one 
ambulance (see Eq. (2)). 𝑙𝑜𝑐𝑒𝑚𝑟  represents the 
emergency locations. 

∑ I[i][k] ≥ 1, ∀k ∈ 𝑙𝑜𝑐𝑒𝑚𝑟i∈V   (2) 

 Ambulance Availability: This constraint assures that the 
number of ambulances dispatched from any node 
cannot exceed the available ambulances at that node 
(see Eq. (3)). 

∑ 𝐼[𝑖][𝑘] ≤ 𝐴[𝑖][𝑡], ∀𝑖 ∈ 𝑉𝑘∈𝑙𝑜𝑐𝑒𝑚𝑟
   (3) 

 Response Time Limit: In this constraint, it is assumed 
that the response time for each emergency should not 
exceed a maximum threshold T_max (see Eq. (4)). 

𝐷[𝑖][𝑘][𝑡] ∙ 𝐼[𝑖][𝑘] ≤ 𝑇𝑚𝑎𝑥 , ∀𝑖 ∈ 𝑉, ∀𝑘 ∈ 𝑙𝑜𝑐𝑒𝑚𝑟  (4) 

C. Dynamic Updates 

Three parameters are dynamically updated in the system 
viz., traffic conditions, ambulance availability, and emergency 
severity. For traffic condition; historical data 𝑑𝑎𝑡𝑎ℎ𝑖𝑠𝑡 , real-
time traffic 𝑡𝑟𝑎𝑓𝑟𝑡, and time 𝑡 are considered as shown by the 
function in Eq. (5). Similarly, dispatch events 𝑒𝑣𝑡𝑑𝑝 , return 

events 𝑒𝑣𝑡𝑟𝑒𝑡 , and shift changes 𝑐ℎ𝑔𝑠ℎ𝑓  are considered to 

update ambulance availability (see Eq. (6)). To update the 
emergency severity, reported condition 𝑐𝑜𝑛𝑑𝑟𝑒𝑝, historical data 

𝑑𝑎𝑡𝑎ℎ𝑖𝑠𝑡 , and environmental factors 𝑓𝑎𝑐𝑡𝑒𝑛𝑣  are considered 
(see Eq. (7)). 

𝐷[𝑖][𝑗][𝑡] = 𝑓(𝑑𝑎𝑡𝑎ℎ𝑖𝑠𝑡 , 𝑡𝑟𝑎𝑓𝑟𝑡 , 𝑡)   (5) 

𝐴[𝑖][𝑡] = 𝑔(𝑒𝑣𝑡𝑑𝑝, 𝑒𝑣𝑡𝑟𝑒𝑡 , 𝑐ℎ𝑔𝑠ℎ𝑓)   (6) 

𝑆[𝑘] = ℎ(𝑐𝑜𝑛𝑑𝑟𝑒𝑝 , 𝑑𝑎𝑡𝑎ℎ𝑖𝑠𝑡 , 𝑓𝑎𝑐𝑡𝑒𝑛𝑣)  (7) 

D. Predictive Component 

Function 𝑃(𝑙, 𝑡) represents the predictive component as 
shown in Eq. (8). It gives the probabilistic estimation of an 
emergency that may occur at location 𝑙 at time 𝑡. 
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𝑃(𝑙, 𝑡) = 𝑀𝐿_𝑚𝑜𝑑𝑒𝑙(𝑑𝑎𝑡𝑎ℎ𝑖𝑠𝑡 , 𝑐𝑜𝑛𝑑𝑟𝑒𝑝, 𝑒𝑣𝑡𝑠𝑐ℎ) (8) 

It makes the system capable of anticipating where 
emergencies are likely to occur before they may actually 
happen. The 𝑀𝐿_𝑚𝑜𝑑𝑒𝑙 is a machine learning algorithm that 
takes historical data 𝑑𝑎𝑡𝑎ℎ𝑖𝑠𝑡 , current conditions 𝑐𝑜𝑛𝑑𝑟𝑒𝑝, and 

scheduled events 𝑒𝑣𝑡𝑠𝑐ℎ as its input. Historical data consists of 
past emergency calls, their respective locations, times, and 
types. It assists the model in identifying different patterns and 
trends. Similarly, for the current conditions parameter, we 
consider traffic patterns, weather, ongoing events, and time. 
For the scheduled events parameter, events that could impact 
the probability of emergency are considered. They may include 
sports, concerts or festivals, holidays, and road constructions. 
Initially, the model is trained on historical data. However, it is 
continuously updated with new data as it becomes available. 
The purpose is to make the model rational so that its 
predictions would improve over time. As the function is 
probabilistic, it outputs a value between 0  and 1  for each 
location 𝑙 at time 𝑡. Higher values indicate a higher likelihood 
of an emergency event. The calculated probability values serve 
the following purposes: 

 To allocate and position the ambulances in high-
probability areas proactively. 

 Weight adjustment in objective function to prioritize or 
highlight the areas with higher emergency probabilities. 

 To make staffing decisions and shift planning. 

Incorporating this predictive component in the system is 
imperative as it makes the system proactive in making 
important decisions. In other words, it assists the system in 
better resource allocation and potentially reducing response 
times by having ambulances positioned closer to where 
emergencies are likely to occur. 

IV. PROPOSED SYSTEM 

In this section, we discuss the architecture of our proposed 
system along with its working. 

A. System Architecture 

The design of the proposed smart ambulance system is 
made up of several interconnected components/modules that 
work together to ensure effective resource allocation and 
ambulance dispatch. The layered architecture of the proposed 
system is given in Fig. 1. The specific responsibilities for each 
module are described as follows: 

 Data Collection Module: It gathers real-time and 
historical data from many sources including GPS 
trackers on ambulances, weather stations, traffic sensors 
and cameras, hospital information systems, and 
emergency call centers. 

 Data Processing Module: Raw data collected by Data 
Collection Module is further processed here so that it 
can be analyzed in depth. This includes activities such 
as data cleaning, normalization and feature extraction 
[20], [21]. 

 Predictive Analytics Engine: The proposed system 
incorporates a vital component which examines past 
emergency data against current situations to estimate 
future emergencies as well as their possible extent. 
Within this component a suitable machine learning 
algorithm has been included. 

 Traffic Module: It produces and updates time-dependent 
distance matrix. The matrix shows estimated travel time 
between different nodes within the network taking into 
account dynamic traffic conditions. 

 Resource Management Module: This module tracks the 
availability and status of all resources (ambulances) in 
the system. It is also responsible to update their 
positions/locations and availability in real-time. 

 Dispatch Optimization Engine: This is the core 
component of our proposed system as the whole 
research is oriented around this. This engine uses a 
customized Negamax algorithm (as discussed in 
Section 3.1) to make optimal dispatch decisions. Each 
decision takes multiple factors into account for its 
dispatch [22]. These factors include ambulance 
availability, predicted emergency severity, and 
estimated response time. 

 

Fig. 1. Layered architecture of the smart ambulance system. 

 Real-time Communication Module: As the name 
suggests, this module facilitates seamless 
communication between various entities of the system. 
These entities include a central dispatch system, 
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ambulances, and hospitals. Consequently, this module 
ensures that all entities have access to the latest 
information. 

 User Interface Module: It is important for the 
dispatchers to monitor the system, view predictions, and 
override automated decisions (if necessary). This 
module provides the graphical user interface for the 
same. 

 Database Module: It is imperative to store historical 
data, real-time information, and system logs for 
continuous improvement and auditing. This module 
provides a centralized database to serve this purpose. 

B. System Working 

In the proposed system, different modules work together in 
a coordinated manner to enhance emergency response. 
Following steps explain the detailed working of smart 
ambulance system: 

 Step 1: The Data Collection Module begins with 
continuous data ingestion. This module collects real-
time information from trackers on ambulances, weather 
stations, traffic sensors, hospital capacity systems and 
emergency call centers. The Data Processing Module 
then cleans and normalizes this raw data, extracting 
relevant features for analysis. At the same time, this 
prepared data is processed by the Predictive Analytics 
Engine along with historical information from the 
central Database. In this research work, we consider the 
Random Forest algorithm (in the Predictive Analytics 
Engine) for its ability to handle complex, non-linear 
relationships and its robustness against overfitting [23], 
[24]. The engine produces two major outputs: (a) It 
predicts probable emergency hotspots as well as their 
likely severity levels. (b) It estimates current and 
forecasted travel times between different nodes in the 
network given prevailing traffic conditions. These 
predictions continue to be updated in the Traffic 
Module System that maintains an updated time 
dependent distance matrix. The dispatch optimization 
process will depend greatly on this matrix. 

 Step 2: Once an emergency call comes in, immediately 
the system starts its response protocol. The current 
status and location of all ambulances are evaluated by 
the Resource Management Module so as to update 
availability vector. Simultaneously, the Predictive 
Analytics Engine reviews the reported emergency 
details against its predictive models to predict its 
severity and possible complexity. This is then related to 
current hospital capacities and specializations enabling 
patients to be directed to relevant healthcare facilities. It 
is this comprehensive evaluation that provides basis for 
dispatch decision that will follow. 

 Step 3: To determine optimal ambulance dispatch 
strategies, the Dispatch Optimization Engine uses the 
customized Negamax algorithm. Several factors are 
taken into account by this engine at once: 

- The site of occurrence and seriousness of the 

reported emergency 

- Current and expected traffic situation (from Traffic 

Module) 

- Presence of ambulances and their locations (from 

Resource Management Module) 

- Expected future emergencies in different areas 

(from Predictive Analytics Engine) 

- Hospital capacities and specialties 

The goal of the algorithm is to reduce total weighted 
response time while still achieving comprehensive emergency 
coverage. It is responsible for choosing both the most 
appropriate ambulance among those available for an ongoing 
emergency and accounting for its potential influence on 
forthcoming emergencies. After a dispatch decision has been 
made, the system automatically generates an optimized route 
for the selected ambulance considering real-time traffic 
conditions. This optimized route is immediately communicated 
to the crew through the Real-Time Communication Module. 

 Step 4: As such, the system continues to monitor and 
adapt as it responds to emergencies. Real-Time 
Communication Module allows continual information 
exchange between an ambulance, a Dispatch Center, 
and a Receiving Hospital. If there are significant 
changes in traffic conditions, the Traffic Module will 
update its matrix and the Dispatch Optimization Engine 
can make recommendations on route adjustments in 
real-time. Also, if new emergencies occur then the 
entire network state should be re-evaluated by this 
system; hence optimal resources can be reassigned for 
maximum coverage. Throughout this process, all 
actions, decisions, and outcomes are logged in the 
Database Module. This data is then used to 
continuously refine and improve the system's predictive 
models and optimization algorithms, creating a 
feedback loop that enhances performance over time. 

This integrated approach allows our smart ambulance 
system to not only respond efficiently to current emergencies 
but also to anticipate and prepare for future ones. By 
leveraging advanced algorithms and real-time data, the system 
can make complex, multi-factorial decisions that optimize 
resource utilization and minimize response times across the 
entire emergency response network. 

V. EXPERIMENTAL DISCUSSION 

This section gives the experimental evaluation of proposed 
smart ambulance system and discusses obtained results. 
Section A introduces the experimental setup and section B 
analysis the performance of proposed system. 

A. Experimental Setup 

We conducted extensive simulations to compare the 
proposed system with a baseline system (discussed in the next 
sub-section) in order to determine the effectiveness of our 
proposed smart ambulance system. The experimental design 
was such that it represented real-life urban emergency response 
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scenarios. Table I as follows shows the considered simulation 
settings: 

TABLE I.  SIMULATION SETTINGS 

Setting Number 

Number of nodes (hospital/stations) 20 

Number of ambulances 50 

Simulation time steps 1000 

Number of simulations 50 

Synthetic data is generated in the simulations that would 
mimic real-world emergency scenarios. The data consists of 
the following attributes: 

 Emergency locations: In this attribute, emergencies are 
randomly generated at different locations across 20 
nodes. 

 Emergency timing: This data attribute is simulated 
using Poisson distribution [25], [26] with an average of 
2 emergencies per time step. 

 Emergency severity: It is randomly assigned on a scale 
of 1-5 with 1 being the least severe and 5 being the 
most. 

 Traffic conditions: It is a two-dimensional parameter, 
simulated with random fluctuations in travel times 
between the nodes. 

 Ambulance availability: It is updated dynamically based 
on dispatch and return events. 

Three key metrics are considered for the performance 
evaluation, they are defined as follows: 

 Average Response Time: It is defined as the meantime 
(in minutes) taken by an ambulance after dispatch to 
arrive at the location of the emergency. 

 Coverage Percentage: It is defined as the percentage of 
emergencies successfully responded to within the 
simulation period. 

 Average Resource Utilization: A percentage measure 
out here gives the number of ambulances that are 
engaged in handling emergencies at any given instance. 

B. Analysis of Result 

The proposed smart ambulance system is evaluated in 
terms of the metrics defined above. For comparison, we 
considered a baseline system implemented using the same 
experimental setup. The baseline system differs with the 
proposed system in two contexts: (a) It uses a simple dispatch 
logic based on greedy algorithm (takes first available option). 
(b) It does not have any predictive and optimization 
component. The obtained results demonstrate the superiority of 
proposed system as compared to the baseline counterpart. They 
are explained in terms of each metric as follows: 

Fig. 2 evaluates the proposed system in terms of average 
response time. It is clearly visible that the smart system shows 
an average response time of 8.54 minutes which is significantly 

lower than the one for the baseline system (17.53 minutes).  
The 51.28% improvement in this respect attributed to our 
advanced dispatch optimization engine of our system that uses 
real-time traffic data and predictive analytics for better decision 
making. The customized Negamax algorithm efficiently 
reduces response times by considering multiple factors 
simultaneously such as traffic conditions, ambulance 
availability, and emergency severity. 

 

Fig. 2. Comparison of smart system with baseline system in terms of 

average response time. 

Fig. 3 compares the two systems with respect to coverage 
percentage. It can be seen that both systems perform equally 
well but on closer examination some subtle yet important 
differences become apparent. Our smart system always 
attended emergencies faster thus managing slightly more 
incidents within a given time span. In reality, though, proposed 
system covered 98.46% emergencies while baseline covered 
96.98%. This slight shift becomes important in a real-world 
case whereby even one missed emergency would have very 
dire outcomes. 

 

Fig. 3. Comparison of smart system with baseline system in terms of 

coverage percentage. 

From the results in Fig. 4, it is clear that the smart system 
utilized resources far much better when compared with the 
baseline system at 41.27%, against baseline’s 33.82%. This 
means an improvement of about 22% implying that we 
designed a more efficient method for managing ambulances 
allocation and usage. The higher utilization rate is achieved 
without compromising response times, highlighting the 
effectiveness of our predictive analytics engine in anticipating 
emergency hotspots and strategically positioning ambulances. 
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Fig. 4. Comparison of smart system with baseline system in terms of 

average resource utilization. 

The superior performance our proposed smart ambulance 
system is attributed to five major factors. They are discussed as 
follows: 

 Predictive Analytics: The use of machine learning 
techniques helps our system to forecast accidents and 
place ambulances in precarious places beforehand with 
a view of decreasing response time. 

 Real-Time Optimization: Our customized Negamax 
algorithm can continually adapt to changing conditions 
and make optimal dispatch decisions based on current 
traffic, ambulance availability and emergency severity. 

 Multi-criteria Decision Making: Unlike the baseline 
system which mainly focuses on distance, the smart 
system takes into account several issues while making 
choices so that resource allocation is more intelligent 
and better targeted. 

 Dynamic Resource Management: The resource 
utilization in this case improves without affecting 
performance since it updates ambulance availability in 
real-time and considers future emergencies when 
choosing where they should be sent or dispatched. 

 Severity-based Prioritization: By using both actual 
emergency severity level and predicted ones while 
making a decision, our system ensures that urgent cases 
receive faster responses hence promoting overall 
improvement in average response time. 

 Despite these promising results, it's important to 
acknowledge some limitations of our study. The 
reliance on simulated data, while necessary for initial 
testing, may not fully capture the complexities of real-
world emergency scenarios. Additionally, the 
computational resources required for real-time 
optimization could pose challenges in very large urban 
areas. Future work should address these limitations 
through real-world pilot studies and further 
optimization of the algorithm for scalability. 

VI. CONCLUSION AND FUTURE RESEARCH SCOPE 

This research endeavors to design a smart ambulance 
system for enhancing emergency response in the urban 

environments. By customizing the Negamax algorithm from 
game-building theory alongside real-time optimization and 
predictive analytics, the proposed system shows considerable 
improvement as compared to the conventional baseline 
method. Numerically, more than 50% improvement is 
observed in the response time besides having a resource 
utilization of about 22%. 

The system acquires a proactive approach to predict 
emergencies using machine learning. Furthermore, the 
environment is dynamically updated through real-time 
optimization. The resource allocation is realized using multi-
criteria decision-making. As a result, it provides an efficient 
way of dispatching ambulances, and in turn, enhances the 
emergency response. The proposed smart ambulance system 
can serve as a benchmark for future research advancements in 
this area. Moreover, it can also be integrated into wider smart 
city initiatives and AI-driven emergency management 
platforms. 

For the future research perspective, different machine 
learning algorithms will be considered to model the predictive 
component. In addition, real-world dataset(s) will be taken into 
simulation for a better evaluation. 
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