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Abstract—In the domain of modern agricultural automation, 

precise grape detection in orchards is pivotal for efficient 

harvesting operations. This study introduces the Grapes 

Enhanced Feature Detection Network (GEFDNet), leveraging 

deep learning and convolutional neural networks (CNN) to 

enhance target detection capabilities specifically for grape 

detection in orchard environments. GEFDNet integrates an 

innovative Enhanced Feature Fusion Module (EFFM) into an 

advanced YOLO architecture, employing a 16x downsampling 

Backbone for feature extraction. This approach significantly 

reduces computational complexity while capturing rich spatial 

hierarchies and accelerating model inference, which is crucial for 

real-time object detection. Additionally, an optimized dual-path 

detection structure with an attention mechanism in the Neck 

enhances the model's focus on targets and robustness against 

dense grape detection and complex background interference, a 

common challenge in computer vision applications. Experimental 

results demonstrate that GEFDNet achieves at least a 3.5% 

improvement in mean Average Precision (mAP@0.5), reaching 

89.4%. It also has a 9.24% reduction in parameters and a 10.35 

FPS increase in frame rate compared to YOLOv9. This 

advancement maintains high precision while improving 

operational efficiency, offering a promising solution for the 

development of automated harvesting technologies. The study is 

publicly available at: 

https://github.com/YangxuWangamI/GEFDNet. 
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I. INTRODUCTION 

Grapes, as deciduous vines of the Vitis genus, are celebrated 
as the "Queen of Fruits." They are not only rich in nutrients but 
also possess significant medicinal value, making them one of the 
most popular fruits globally [1]. In the field of agricultural 
automation, precise grape detection is key to improving 
harvesting efficiency and fruit quality. Although manual 
harvesting is still the mainstream method, it is inefficient and 
labor-dependent [2], creating an urgent need for automated 
solutions. Existing vision detection systems face challenges in 
complex orchard environments, such as changes in lighting, 
occlusions, and fruit overlapping, which limit their performance. 
Therefore, a robust detection model is crucial for robots to 
achieve target perception in complex vineyard scenarios [3]. 

To enhance the recognition ability and efficiency of deep 
learning models in orchard grape detection, the goal of this study 
is to develop a fast, parameter-reduced, and low-miss detection 
model for dense and occluded grape detection in orchards, 
named Grapes Enhanced Feature Detection Network 

(GEFDNet). At the same time, YOLOv9 [4], as the latest 
generation of the YOLO series, has demonstrated its excellent 
accuracy and speed in various general object detection tasks 
through optimized network architecture and detection 
algorithms. Despite this, applying YOLOv9 directly to grape 
detection tasks in orchards still faces specific challenges. In 
response to these challenges, the GEFDNet model targets 
grapes, innovatively designing a 16x downsampling Backbone 
network and proposing a new high-efficiency scale fusion 
module called the Enhanced Feature Fusion Module (EFFM) 
module, aiming to capture target feature information at a finer 
granularity. Applied to the main trunk and detection neck 
networks, it significantly reduces the model's computational 
burden and parameter volume, enabling GEFDNet to better 
adapt to the complex and variable agricultural environment. 

In the experiments, to objectively and comprehensively 
evaluate model performance, this study conducted comparative 
experiments with seven other advanced methods, especially an 
in-depth performance evaluation against the benchmark model 
YOLOv9. Performance analysis results show that GEFDNet has 
increased the mean Average Precision (mAP@0.5) on the test 
dataset by at least 3.5%. Through visual analysis, the model's 
advantages in dealing with challenging complex scenes were 
further revealed. In addition, compared to YOLOv9, GEFDNet 
has reduced the parameter volume by about 9.24% and increased 
the frame rate (FPS) by 10.35. This series of data highlights the 
efficiency of GEFDNet in object detection tasks. 

The main contributions of this paper are as follows: 

 The design of the EFFM module, which enhances the 
accuracy and efficiency of target detection in images by 
providing a powerful feature extraction and fusion 
mechanism for grape target detection tasks. 

 The innovative design of a 16x downsampling Backbone 
network addresses the prolonged training times and 
weight redundancy issues associated with YOLOv9's 
detection neck and auxiliary branch structures. 

 Optimization of the main detection neck design 
overcomes the difficulty of detecting occlusions and 
dense targets, reduces the model's computational burden 
and parameter count, and ensures high detection 
accuracy in resource-constrained environments. 

 Comparative experiments with seven other popular 
detection models demonstrate GEFDNet's advantages in 
lightweight design, further verifying its effectiveness and 
feasibility. 
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The layout of this paper is as follows: Section I (this section) 
introduces the prominent issues in the research field and the 
motivation behind the model design. Section II summarizes the 
research background and the challenges of existing technology. 
Section III provides a detailed introduction to the characteristics 
of the dataset and the principles of model design. Section IV 
includes the experimental process, model performance 
comparison, and result analysis. Section V discusses the 
research findings and proposes future research plans. Section VI 
summarizes the entire paper. 

II. BACKGROUND 

With the rapid development of computing power and deep 
learning techniques [5], convolutional neural networks have 
attracted attention across various industrial sectors. Object 
detection models integrated with deep learning are being 
increasingly applied to agricultural studies, including fruit 
recognition [6, 7], disease detection [8, 9, 10], and yield 
estimation [11, 12]. Currently, deep learning-based fruit object 
detection models are mainly divided into two categories: one 
category is the region proposal-based two-stage detection 
models, such as Faster R-CNN [13] and Spatial Pyramid Pooling 
Network (SPP-Net) [14], which have high detection accuracy 
but are slower due to their two-stage nature. The other category 
is the regression-based single-stage detection models, such as 
SSD [15], YOLO [16, 17], and CenterNet [18], which maintain 
high detection accuracy while offering faster detection speeds 
and stronger real-time capabilities. Due to the high demand for 
detection speed in most tasks, especially in real-time scenarios, 
single-stage algorithms have more advantages in practical 
applications. 

In recent years, research on deep learning models for grape 
detection has been continuously emerging. The latest research 
from Wu et al., 2024 [19], uses Adaptive Training Sample 
Selection (ATSS) as a label matching strategy to improve the 
quality of positive samples and address the challenge of 
detecting grape stems with similar colors. They utilize the Wise-
IoU (Sequential Evidence for Intersection over Union) loss 
function with weighted interpolation to overcome the limitations 
of CIoU, which does not consider the geometric properties of 
targets, thus improving detection efficiency. Behera et al., 2023 
[20], proposed an FR-CNN algorithm for plant fruit prediction 
using Intersection over Union (IoU), achieving an 89% accuracy 
rate in fruit yield estimation. Aguiar et al., 2021 [21], used deep 
learning models for grape cluster detection with an average 
accuracy of 66.96%. Pereira et al., 2019 [22], introduced a grape 
detection method based on the AlexNet neural network 
architecture, achieving a high average accuracy of 77.30%. 
Rong et al., 2024 [23], proposed a grape cluster detection 
method based on Spatial-to-Depth Convolution (STD-Conv) 
and Simple Attention Mechanism (SimAM), expanding the 
dataset through data augmentation technology, enabling the 
improved YOLOX model to achieve an 88.40% average 
accuracy in grape cluster detection. Marani et al., 2020 [24], 
proposed a vehicle-mounted RGB-D camera system for grape 
recognition using a deep learning framework. Sozzi et al., 2021 
[25], used the YOLOv4 model for the detection and counting of 
grape clusters, achieving an accuracy rate of 48.90%. Li et al., 
2021 [26], proposed an improved YOLOv4-tiny model, YOLO-

Grape, to address the issue of unrecognizable accuracy caused 
by complex background scenes such as shadows and overlaps. 

III. MATERIALS AND METHODS 

This section provides a detailed description of the datasets 
used in the experiments and elucidates the design principles, 
innovations, and activation functions of the GEFDNet model. 

A. Datasets 

To validate the effectiveness and adaptability of the 
proposed method, the experiments in this study are conducted 
using the Embrapa Wine Grape Instance Segmentation Dataset 
(Embrapa WGISD) [27]. This dataset was created for the 
application of object detection and instance segmentation 
techniques in image monitoring and field robot vision in 
vineyards, containing instance images of five different grape 
varieties. These images were captured under natural field 
conditions, encompassing various postures, lighting and focus 
conditions, as well as genetic and phenotypic variations such as 
shape, color, and compactness. 

The images of the dataset were taken using a Canon EOS 
REBEL T3i DSLR camera and Motorola Z2 Play smartphone at 
the Guaspari Winery in São Paulo, Brazil. The image resolution 
was adjusted to a width of 2,048 pixels to balance image detail 
and processing time. The dataset was annotated with rectangular 
bounding boxes to identify grape clusters using the LabelImg 
tool [28], comprising a total of 300 images with 4,432 annotated 
grape clusters. 

In summary, experiments conducted on the Embrapa 
WGISD dataset will provide a comprehensive evaluation of the 
universality and effectiveness of the proposed method. However, 
the orchard environment is challenging, as depicted in Fig. 1, 
which categorizes the dataset's characteristics and key detection 
challenges into four types, including densely packed 
arrangements of grapes, occlusions by leaves or trunks, complex 
backgrounds, and varying lighting conditions. 

 
Fig. 1. Four typical challenges in dataset images. 
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B. Model Construction 

When applying neural networks for grape detection in 
orchard environments, numerous factors must be considered. To 
address these, this study introduces the Grapes Enhanced 
Feature Detection Network (GEFDNet), a novel high-precision, 
low-complexity grape detection model for orchard 
environments. The model adopts a Backbone-Neck structure 
and integrates the proposed Enhanced Feature Fusion Module 
(EFFM). The Backbone is responsible for extracting key 
features from the input images, employing a deep convolutional 
neural network to ensure the capture of rich spatial hierarchical 
information while reducing computational complexity. The 
Neck features a dual-path detection structure [4], including the 
Main Branch and the Auxiliary Branch, which further process 
target features, providing additional feature fusion and 
contextual information through parallel processing paths, 
enhancing the model's robustness against complex 
environmental variations. The architectural framework of 
GEFDNet is illustrated in Fig. 2, with detailed module 
structures, including EFFM, presented in Fig. 3. The auxiliary 
detection components are denoted with dashed lines in the 
diagrams. The following sections will detail their configuration 
specifics. 

C. Enhanced Feature Fusion Module (EFFM) 

Feature fusion is crucial for enhancing the model's 
generalization capability and detection accuracy in grape target 
detection tasks. By integrating features from different levels and 
scales, the model can more comprehensively understand image 
content, leading to more accurate identification and localization 
of grapes. 

 

Fig. 2. Architecture of GEFDNet. 

 
Fig. 3. Detailed module structures. 

This paper introduces an innovative and efficient scale 
fusion module referred to as the Enhanced Feature Fusion 
Module (EFFM), as depicted in Fig. 3. After the input feature 
maps undergo a 1×1 convolution, the channel count is halved. 
The feature maps are evenly divided into two subsets of the same 
spatial size, denoted as X1, each with a quarter of the channel 
count of the input feature maps. One X1 subset is retained as is, 
while the other is processed through the RepNCSP module, 
further divided into four feature map subsets. These subsets 
undergo channel adjustments as they pass through each 
RepNCSP module, achieving efficient feature processing and 
fusion. For instance, a feature map may transition from channel 
count c to c//4, processed through a Conv layer, and further 
refined by the RepNCSP module, ultimately restoring to the 
original channel count c at the output. It is notable that each 
convolution can receive feature information from the preceding 
features, and for each feature branch after the RepNCSP module, 
the output has a larger receptive field and richer features 
compared to the unprocessed branch. 

D. GEFDNet 

1) Backbone Component: The Backbone component is 

tasked with feature extraction from input images. The 

architecture initiates with a Silence Module that serves as the 

preliminary processing unit, accepting raw image data and 

performing necessary preprocessing steps to maintain the initial 

feature information of the image, ensuring that the Main Branch 

and Auxiliary Branch can fully utilize this information for 

precise target localization. Subsequently, the model integrates 

multiple standard convolutional and pooling layers, each 

equipped with a 3×3 convolutional kernel, and employs stride-

2 downsampling to reduce the dimensionality of the feature 

maps. 

To enhance the model's nonlinear feature expression and 
integration capabilities, the Backbone network incorporates the 
innovative EFFM module, which facilitates deep integration of 
cross-layer features and effectively captures complex spatial 
hierarchies within the image. Notably, the core network of 
GEFDNet innovates in its downsampling strategy, adopting a 
16x downsampling design that significantly reduces the loss of 
spatial resolution, enabling the model to excel in detecting 
small-sized targets and under varying lighting conditions. 
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Upon processing through the Backbone network, the model 
achieves 16x downsampling through four downsampling 
convolutional layers and three EFFM feature extraction layers, 
with the output feature map size being 1/16th of the original 
image, transitioning to multi-scale, multi-depth feature 
representations. This aids in reducing the model's computational 
load while retaining sufficient feature information to support 
subsequent detection tasks. 

2) Neck Component: The Neck serves as the critical link 

between the Backbone and the detection Head, comprising both 

the Main Branch and the Auxiliary Branch. The Main Branch 

receives feature maps of varying downsampling levels output 

from the Backbone and initially processes them through an 

SPPELAN module to expand the receptive field, enhancing 

feature abstraction and expression. To further enhance the 

model's robustness, an attention mechanism is integrated into 

the Main Branch, allowing the model to adaptively focus on key 

image regions, such as grape edges and textures, thereby 

maintaining high accuracy despite challenges like occlusions 

and overlaps. Computational efficiency is also a significant 

consideration in the design of the Main Branch, where 

lightweight network components and depthwise separable 

convolutions are employed, effectively reducing the model's 

parameter count and computational complexity without 

compromising detection accuracy. 

A series of upsampling and concatenation operations then 
follow, merging deep and shallow features from the Backbone 
to construct a multi-scale feature representation. Upsampling 
employs nearest neighbor interpolation to enlarge the feature 
map size, increasing resolution for more precise small target 
localization and facilitating fusion with larger feature maps. The 
concatenation operation integrates features from different levels, 
importantly, further processed through the innovatively 
designed EFFM feature extraction layer. Ultimately, the Main 
Branch outputs feature maps with high semantic information 
and spatial resolution, providing the Head with high-quality 
inputs for detection. 

In addition to the Main Branch, the model's innovation lies 
in the design of the Auxiliary Branch, incorporating a reversible 
auxiliary branch design, utilizing cross-layer connections to 
directly extract and fuse features from the Backbone with high-
level features from the Main Branch. Modules such as CBLinear 
and CBFuse are employed, unifying feature map sizes through 
cross-block connections and feature fusion strategies, followed 
by an addition operation to achieve multi-level auxiliary 
information fusion. This design not only enhances the model's 
detection capabilities for small targets and complex scenes but 
also reduces computational load through parallel processing, 
balancing computational efficiency with detection accuracy. 
Furthermore, the Auxiliary Branch serves as a regularization 
technique to prevent overfitting during model training. 

3) Head Component: Upon the completion of the Neck's 

operations, the Head detection component receives five feature 

maps with varying spatial resolutions and semantic depths from 

the Neck. This enables the detection head to generate bounding 

boxes and aim frames of corresponding scales based on the 

feature map scales, overlaying the model's inference results 

onto the input image. 

E. Activation Functions 

In the realm of deep learning, activation functions play an 
indispensable role in dictating the performance and convergence 
rate of a model, determining the network's capacity to learn 
nonlinear relationships. Commonly utilized activation functions 
include Sigmoid Linear Unit (SiLU) [29], Rectified Linear Unit 
(ReLU) [30], and Leaky ReLU [31]. In constructing the 
GEFDNet model, this paper specifically selects SiLU as the 
activation function due to its combination of linear and nonlinear 
characteristics, which effectively enhances the network's 
nonlinear expressive power and learning efficiency. The 
definition of the SiLU activation function is presented in Eq. (1): 

𝑆𝑖𝐿𝑈(𝑥) = 𝑥 ⋅ 𝜎(𝑥) = 𝑥 ·
1

1+𝑒−𝑥                     (1) 

The primary features of SiLU include its monotonicity, 
ensuring that as the input 𝑥 increases, the output also increases, 
aiding in mitigating the vanishing gradient problem in deep 
networks. Its linearity for positive input values simplifies the 
nonlinear complexity in the positive range. SiLU's zero-
centering characteristic, which outputs zero when 𝑥 = 0, helps 
in centering the data, and when combined with batch 
normalization techniques, further improves the efficiency of 
model training. Additionally, SiLU boasts high computational 
efficiency as it involves only basic exponential and division 
operations, making it suitable for rapid execution on limited 
computational resources. 

The Rectified Linear Unit (ReLU) activation function is one 
of the most popular nonlinear activation functions in deep 
learning. Its definition is straightforward and intuitive, 
expressed in Eq. (2): 

𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥)                                 (2) 

This function introduces nonlinearity by setting all negative 
values to zero, allowing only positive values to pass through, 
while maintaining computational efficiency. The main 
advantage of ReLU is its acceleration of the neural network 
training process; however, it also has some drawbacks, the most 
notable being the "dead ReLU" problem, where neurons 
corresponding to negative inputs may never activate, causing 
their weights to no longer update during training. In addition, 
ReLU's output is not zero-centered, which may affect the 
stability and convergence speed of the model during training. 

Leaky ReLU is an improved version of ReLU, aiming to 
address the dead ReLU problem. Its formula is given in Eq. (3): 

𝐿𝑒𝑎𝑘𝑦 𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥 (𝛼 · 𝑥, 𝑥)                     (3) 

Where 𝛼 is a small positive number, typically taken as 0.01. 
Leaky ReLU introduces a small linear term when the input value 
is negative, ensuring that neurons with negative inputs still have 
a non-zero gradient, thus alleviating the problem of neuron death. 
This slight linear operation allows neurons with negative input 
values to still update their weights during the training process. 
However, Leaky ReLU introduces an additional hyperparameter 
𝛼 , which, if not chosen properly, may affect the network's 
convergence speed or lead to suboptimal model performance. 
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In deep learning, the choice of the appropriate activation 
function is crucial for model performance. Compared to ReLU 
and Leaky ReLU, SiLU offers several significant advantages, 
making it an ideal choice for grape detection models. SiLU's 
self-normalizing characteristic makes its output a linear 
transformation of the input in the positive range and approaches 
zero in the negative range, which helps stabilize network output 
and enhance generalization ability. Moreover, SiLU does not 
require additional parameters like Leaky ReLU, simplifying 
model training and hyperparameter adjustment. At the same 
time, the biological plausibility of SiLU further ensures the 
naturalness and efficiency of the activation pattern. 

IV. EXPERIENCE 

This section provides an overview of the evaluation criteria 
and experimental design, followed by a presentation of the 
GEFDNet model's performance and a comparison with existing 
technologies. In addition to a comprehensive performance 
assessment using metrics such as Precision, Recall, and F1-score 
(F1), visual attention contrast experiments are introduced to 
further analyze the model's detection mechanisms. Utilizing 
Grad-CAM technology, the areas of focus when processing 
different grape samples are visualized, revealing GEFDNet's 
advantages in target recognition. Finally, the model's 
lightweight effect is evaluated, emphasizing its potential for 
efficient deployment in resource-constrained environments. 

A. Experimental Conditions and Details 

The study was conducted on a PC equipped with an AMD 
Ryzen 7 5800H 8-core processor (3.20 GHz) CPU and an 
NVIDIA GeForce GTX 3090 GPU. The software tools included 
the PyTorch 2.0.0 deep learning framework [32], CUDA version 
11.8 parallel computing framework, and CUDNN version 8.9.5 
deep neural network acceleration library. Standard data 
preprocessing methods were employed to fully leverage the 
dataset's information, including image scaling, cropping, and 
normalization, along with data augmentation techniques such as 
random flipping and rotation to enhance the model's 
generalization capability. Stochastic Gradient Descent (SGD) 
was used as the optimizer, with network training parameters set 
to an input size of 640×640 pixels, a batch size of 16, an initial 
learning rate of 0.01, a decay rate of 0.001, and a momentum 
parameter of 0.937. Considering convergence, 300 epochs of 
training were deemed sufficient for the model to reach a state of 
convergence. 

B. Assessment of Model Performance 

For the assessment of the proposed model within this study, 
the metrics of mAP@0.5, mAP@0.5:0.95, and F1-score were 
selected. The performance was compared against seven 
benchmark models, namely CenterNet [18], Faster R-CNN [13], 
SSD [33], FCOS [34], EfficientDet [35], YOLOv7-tiny [36], 
and YOLOv9 [4], utilizing the same dataset. The GEFDNet 
model underwent training and testing under identical conditions 
as the benchmark models, with evaluation based on Precision 
(P), Recall (R), F1-score (F1), and mean Average Precision 
(mAP). 

Understanding the significance of these metrics requires 
clarity on the concepts of true positives (TP), false positives 
(FP), and false negatives (FN). TP represents the count of 

correctly identified samples, while FP denotes the instances of 
incorrect identifications. FN corresponds to the number of 
missed detections. The sum of "TP + FP" indicates the total 
inferred grape fruits by the model, and "TP + FN" accounts for 
the actual total count of fruits in the image. 

Precision (P), which measures the accuracy of the model's 
positive predictions, is calculated as the ratio of true positive 
predictions to the total predicted positives, as illustrated in Eq. 
(4). This metric reflects the model's proficiency in accurately 
predicting positive outcomes. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                  (4) 

Recall (R), depicted in Eq. (5), is the ratio of true positive 
predictions to the total actual positives, quantifying the model's 
effectiveness in capturing all actual positive instances. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                      (5) 

The F1-score, represented by Eq. (6), is the harmonic mean 
of Precision and Recall, with a higher F1-score indicating a 
better balance between Precision and Recall. 

𝐹1 = 2 ·
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛·𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                            (6) 

Average Precision (AP) signifies the area under the 
Precision-Recall (P-R) curve, calculated using an integral as 
shown in Eq. (7), a comprehensive indicator that takes into 
account both Precision and Recall. 

𝑚𝐴𝑃 =
1

𝑛
∑ ∫ 𝑃(𝑑𝑅)𝑛

1                            (7) 

The mAP@0.5 variant computes the average AP value at an 
Intersection over Union (IoU) threshold of 0.5 for all object 
categories. Furthermore, mAP@0.5:0.95 is determined to 
evaluate the model's performance across a spectrum of IoU 
thresholds, offering a stringent assessment of performance by 
representing the average mAP at various IoU thresholds ranging 
from 0.5 to 0.95 with increments of 0.05. The F1-score evaluates 
the methodology's performance by balancing the importance of 
accuracy and recall. 

The results of the GEFDNet experiments are detailed in 
Table I, showcasing the performance of each model within the 
test dataset. 

TABLE I.  QUANTITATIVE RESULTS ON THE TEST DATASET 

Model P R F1 mAP@0.5 mAP@0.5:0.95 

CenterNet 0.79 0.85 0.82 0.751 0.330 

Faster R-

CNN 
0.79 0.82 0.81 0.815 0.398 

SSD 0.26 0.59 0.36 0.239 0.095 

FCOS 0.82 0.85 0.84 0.843 0.508 

EfficientDet 0.07 0.57 0.12 0.095 0.018 

YOLOv7-
tiny 

0.44 0.45 0.44 0.423 0.111 

YOLOv9 0.88a 0.78 0.83 0.864 0.601 

GEFDNet 0.88 0.81 0.84 0.894 0.596 

a.
The best performance is indicated in bold. 
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The experimental results demonstrate GEFDNet's 
significant advantage in target detection performance compared 
to other advanced methods. GEFDNet achieved an F1-score of 
0.84, tying with YOLOv9 for the highest score, indicating an 
excellent balance between precision and recall. Particularly, in 
the key metric of mAP@0.5, GEFDNet surpassed all other 
models with a value of 0.894, including YOLOv9's 0.864, 
highlighting its superior detection accuracy at medium IoU 
thresholds. Furthermore, GEFDNet's comprehensive evaluation 
of model performance across different IoU thresholds from 0.5 
to 0.95, mAP@0.5:0.95, achieved a value of 0.596, slightly 
trailing YOLOv9's 0.601, but this performance still ranks second 
among all compared models, showing its consistency and 
robustness across different IoU threshold ranges. 

C. Visual Attention Contrast Experiment 

To further examine the differences in detection effects 
between the proposed GEFDNet model and the existing 
YOLOv9 model, the Grad-CAM algorithm [37] was employed 
to visualize and compare the activation heat maps of the two 
models at different layers. Grad-CAM generates visual heat 
maps by combining the model's gradients and feature maps, 
revealing the visual areas the model focuses on when making 
specific predictions. This intuitive approach allows for a deeper 
understanding of the model's performance advantages and 
potential limitations, as shown in Fig. 4, which provides two sets 
of diagrams. 

 
Fig. 4. Grad-CAM Visualization results. 

When evaluating heat maps, focus on the following three key 
features to measure model performance: 

 Clear boundary identification: The heat map should 
clearly depict the outline of the target object, 
demonstrating the model's high precision in spatial 
positioning. 

 Noise suppression ability: The ideal heat map should not 
show excessive activation on image noise or irrelevant 
details, indicating that the model can effectively filter out 
unimportant information. 

 Coverage of important features: The heat map should 
cover the key features of the target object, which are 
crucial for the object's recognition and classification. 

Through the visualization results of Grad-CAM, it can be 
observed that GEFDNet has advantages in the above three 
aspects. Firstly, when localizing fruit targets, GEFDNet shows 
clearer boundaries and more focused attention, while YOLOv9, 
although able to recognize targets, also pays attention to the 
background, leading to scattered attention. Secondly, the heat 
map of GEFDNet performs better in suppressing image noise, 
indicating that it has stronger robustness when dealing with 
complex backgrounds and occlusions. Thirdly, the heat map of 
GEFDNet better covers the key features of grapes, aiding the 
model in more accurate recognition and classification of target 
objects. 

D. Validation of Comprehensive Detection Capability 

To verify the comprehensive detection capability of the 
improved GEFDNet model in different environments, we 
selected samples with varying lighting and density and 
conducted comparative experiments focusing on the model with 
similar performance to YOLOv9. We also conducted a detailed 
analysis of the visualization results of both models. This process 
revealed potential errors when detecting specific types of 
targets, thereby providing targeted guidance for subsequent 
model optimizations. Building on this, we further investigated 
specific conditions where the model might encounter 
difficulties. Fig. 5 illustrates the three most severe errors in the 
test dataset. The blue frames indicate the magnified portions of 
the images, while the yellow areas denote the regions of the 
grape clusters that were missed by the detection model. 

 
Fig. 5. The three most severe errors. 
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Firstly, there is the situation of extreme occlusion, where 
grapes are almost completely obscured by a large amount of 
foliage, with very little exposed. Under such extreme conditions, 
although GEFDNet performs better than YOLOv9 overall, there 
is a decline in detection accuracy. This is mainly because in the 
extreme occlusion environment, the information available for 
extracting effective features is greatly reduced. Despite the 
model's dual-path detection structure and EFFM module trying 
their best to capture features, it is still difficult to overcome the 
severe lack of information. 

The second scenario is when facing extremely small grapes, 
the detection accuracy of GEFDNet decreases. This is because 
during the downsampling process of the model's Backbone 
network, the detailed features of very small grapes may be lost, 
making it difficult for the model to identify them accurately. The 
third scenario is in highly complex backgrounds, which include 
a large number of distractors similar in color and texture to 
grapes, as well as scenes with complex lighting and shadow 
variations. In such cases, although GEFDNet can filter out some 
irrelevant information, it is still interfered with by similar objects, 
resulting in a certain degree of false positives and false negatives. 
This indicates that the model's ability to resist interference needs 
to be further improved when dealing with highly complex 
backgrounds. 

During the evaluation process, particular attention was given 
to the confidence threshold setting that yields the optimal mean 
Average Precision (mAP@0.5) across the entire test dataset. 
This strategy ensures the objectivity of the assessment while 
filtering for detections that the model is more confident in, 
effectively avoiding the impact of low-confidence predictions 
on the fairness of the evaluation. After the detection process, 
representative cases of false positives and false negatives were 
selected and visually presented, as shown in Fig. 6, where the 
blue areas indicate targets that were either missed or 
misidentified by the model. 

 
Fig. 6. Comparison of detection effects between YOLOv9 and GEFDNet 

models. 

By carefully examining these results, the following typical 
errors and their causes can be identified: Under sunny 
conditions, both YOLOv9 and GEFDNet demonstrated good 
detection performance. However, YOLOv9 exhibited missed 
detections for small targets, likely due to insufficient feature 
extraction capabilities. Under overcast and uneven lighting 
conditions, YOLOv9 missed detections for grapes obscured by 
leaves and for small grapes beneath larger grapes. Furthermore, 
under varying densities, YOLOv9 consistently missed 
detections for grapes obscured by leaves, whether in sparse or 
densely clustered distributions. In contrast, GEFDNet 
effectively addressed these issues, particularly in detecting 
occluded and densely clustered grape clusters. These analyses 
not only reveal the limitations of YOLOv9 but also point the 
way for further optimization and development of GEFDNet. 

E. Model Lightweighting 

In the development of deep learning models, lightweighting 
is a critical optimization direction, particularly for application 
scenarios with constrained resources, such as edge device 
deployment in the agricultural sector. Lightweight models 
maintain sufficient detection accuracy while reducing 
computational load and storage requirements, thereby 
enhancing model operational efficiency and lowering 
deployment costs. In the experiments focused on model 
lightweighting, the recognition performance parameters of the 
YOLOv9 and GEFDNet models on the test dataset were 
compared, with the results presented in Table II. Key 
performance indicators such as Frames Per Second (FPS) were 
utilized, supplemented by the count of parameters and the size 
of the weight files to evaluate the models. 

TABLE II.  LIGHTWEIGHTING COMPARISON BETWEEN YOLOV9 AND 

GEFDNET MODELS 

Model F1 mAP@0.5 FPS Parameters Weights 

YOLOv9 0.83 0.864 42.01 48.60 M 98.00 M 

GEFDNet 0.84 0.894 52.36 44.11 M 88.90 M 

The comparative experimental data clearly demonstrate the 
advantages of GEFDNet across multiple key indicators. 
Specifically, in terms of mAP@0.5, GEFDNet outperformed 
YOLOv9 with a score of 0.894 versus 0.864, marking a 3.5% 
improvement. This enhancement indicates that GEFDNet has 
achieved higher detection accuracy. Moreover, alongside the 
increase in precision, GEFDNet has also realized optimizations 
in lightweighting. The model's parameter volume has been 
reduced from 48.60M in YOLOv9 to 44.11M, and the weight 
file size has also been minimized from 98.00M to 88.90M. 
Furthermore, the detection frame rate (FPS) has been increased 
from 42.01 FPS of YOLOv9 to 52.36 FPS. These enhancements 
not only alleviate the storage burden but also imply that in 
resource-constrained environments, such as edge devices in the 
agricultural sector, GEFDNet can be deployed at a reduced cost. 
For application scenarios demanding high real-time 
performance, such as harvesting robots, these improvements are 
crucial for ensuring the system's response speed and processing 
capabilities. 
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V. DISCUSSION AND FUTURE WORK 

The GEFDNet model introduced in this study offers a range 
of significant advantages in the field of grape detection in 
orchards. Firstly, the model integrates an innovative and 
efficient feature fusion module, the Enhanced Feature Fusion 
Module (EFFM), with a 16x downsampling Backbone network. 
This integration effectively balances detection accuracy and 
computational efficiency, reducing the model's parameter 
volume while increasing the frame rate, which is crucial for 
applications with high real-time requirements. Secondly, the 
introduction of the EFFM module enhances the model's ability 
to detect grapes against complex backgrounds and dense targets. 
Moreover, the high mean Average Precision (mAP) values 
demonstrated on the Embrapa WGISD dataset substantiate the 
model's excellent generalization and robustness. 

Despite the positive outcomes of this study, there are certain 
limitations. It should be noted that the dataset used in this study 
is derived from a single crop species, and therefore, future 
testing and validation on more diverse datasets are required. 
Particularly, testing under poor lighting conditions and for 
extremely dense or very small-sized grapes should be conducted. 
Additionally, future research plans should expand and diversify 
the training datasets. Although the Embrapa WGISD dataset 
provides valuable resources for grape detection research, it has 
limitations, such as insufficient images of certain grape varieties, 
ripeness levels, and environmental conditions [38]. Moreover, 
to fully assess the potential of GEFDNet in real-world 
applications, future work will include real-time deployment 
assessments on actual hardware platforms like edge devices, 
drones, and agricultural robots. This aligns with the current trend 
in the field of agricultural automation towards evaluating 
practical application of models [39, 40]. This will help reveal the 
model's performance in resource-constrained environments and 
provide key insights for practical applications. 

VI. SUMMARY 

Efficient and accurate detection of grapes in orchards has 
always been a challenging task. In this study, a high-precision, 
low-complexity deep learning model for grape detection in 
orchard environments, GEFDNet, was proposed, along with the 
innovative EFFM module integrated into the 16x downsampling 
Backbone network and optimized Neck structure. GEFDNet 
achieves model lightweighting while maintaining high 
accuracy, significantly enhancing the model's operational 
efficiency and practicality. The main achievements include a 
minimum 3.5% increase in mean Average Precision 
(mAP@0.5) on the test dataset, a reduction of about 9.24% in 
model parameter volume, and a 10.35 FPS increase in frame 
rate, validating the effectiveness of model lightweighting. 
Through Grad-CAM visualization analysis, GEFDNet's 
superior detection capabilities and precision in target 
recognition in complex scenarios have been demonstrated. 

In summary, the development of the GEFDNet model not 
only promotes the advancement of agricultural automation 
technology but also provides a new perspective for the 
application of deep learning in complex scenarios. With the 
continuous deepening of future work, it is anticipated that 
GEFDNet will unleash greater potential in practical applications 

and make a substantial contribution to agricultural 
modernization. 
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