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Abstract—Agriculture has a considerable contribution to the 

economy. Agriculture automation is a serious issue that is 

becoming more prevalent around the world. Farmers' traditional 

practices were insufficient to achieve these objectives. Artificial 

Intelligence (A1) and the Internet of Things (IoTs) are being used 

in agriculture to improve crop yield and quality. Distributed 

solar energy resources can now be remotely operated, monitored, 

and controlled through the IoT and deep learning technology. 

The development of an IoT-based solar energy system for 

intelligent irrigation is critical for water- and energy-stressed 

areas around the world. The qualitative design focuses on 

secondary data collection techniques. The deep learning model 

Radial Basis Function Networks (RBFN) is used in conjunction 

with the Elephant Search Algorithm (ESA) in this IoT-based 

solar energy system for future smart agriculture. Sensor systems 

help farmers understand their crops better, reduce their 

environmental impact and conserve resources. These advanced 

systems enable effective soil and weather monitoring, as well as 

water management. To provide the required operating power, 

the proposed system, RBFN-ESA, employs an IoT-based solar 

cell forecasting process. The proposed model RBFN-ESA will 

collect these data to predict the required parameter values for 

solar energy systems in future smart agriculture systems. The 

results of the RBFN-ESA model are effective and efficient. 

According to the findings, RBFN-ESA outperforms CNN, ANN, 

SVM, RF, and LSTM in terms of energy consumption (56.764J 

for 100 data points from the dataset), accuracy achieved 

(97.467% for 600 nodes), and soil moisture level (94.41% for 600 

data). 

Keywords—Precision agriculture; smart monitoring; Internet 

of Things; Radial Basis Function Networks; Elephant Search 

Algorithm (ESA) 

I. INTRODUCTION 

Food manufacturing in the 20th century is a pressing issue 
as long as population growth continues to increase. Between 
9.4 and 10.1 billion people will rely on biodiversity for their 
livelihood by 2050, which would raise the demand for 
locations set aside for agricultural production, especially for 
farming and the rearing of farm animals [1]. Human-induced 
changes to the environment can result in conditions that make 
it difficult for new crops to flourish. Similarly, rising 
urbanization raises food prices while decreasing food. 

Production and employment in food-producing regions. In 
an effort to address the challenges of fulfilling the demands of 
food production and the working population decline, smart 
agriculture aims to lower farm management expenses [2–3]. It 
employs techniques and technology at various agricultural 
production scales and levels. Precision farming, for example, 

can employ a range of sensing devices to collect data (heat, 
moisture, light, stress, presence, etc.), connectivity networks to 
receive and send that data, information management systems to 
keep and process that data, and analysis tools to do so [4]. 
"IoT" is a term used frequently to describe this network of 
connected devices [5]. The right actions can be taken thanks to 
the knowledge that intelligent farming generates. 

Recent developments in wireless technology have 
completely changed how farmers can interact with their crops 
and track their growth [6]. Advanced management concepts 
can be used to monitor crops using new technologies and 
respond to their needs appropriately. Precision agriculture (PA) 
is one method that combines technology and conventional 
farming methods [7, 8]. Using PA in farming can increase 
control and accuracy when raising animals and crops. Farmers 
are becoming increasingly productive and cost-effective by 
utilizing new technology to enable agriculture because they can 
use more precise solutions rather than simply attempting to 
manage the many elements of their farming systems. 

Instead of using modern technology, traditional farming 
practices are used to manage fields. More experience is 
required to maintain proper efficiency. With traditional farming 
methods, the best course of action for a successful harvest must 
be determined by considering both the current weather and 
historical data when making decisions about planting, 
harvesting, and irrigation. Contrarily, PA helps farmers use less 
labour while giving their crops more attention as needed by 
using tools like sensors, actuators, the Global Positioning 
System (GPS), robots, and data analysis software. Monitoring 
livestock and vegetation with Internet of Things (IoT) devices 
is one effective method for achieving PA [9]. IoT devices are 
minuscule, energy-efficient embedded electronics with 
network data transmission capabilities. An IoTs network is 
frequently used to describe a group of connected devices that 
work together to accomplish a common objective. Sensors, for 
example, can be installed in an IoT-based agricultural system 
to collect environmental information about soil moisture. An 
automated irrigation system can use the measured data to water 
plants appropriately, avoiding over- and under-watering. 
Farmers might be able to instantly and remotely monitor field 
conditions thanks to an IoT system. It is just as crucial to keep 
an eye on the vegetation in a field as it is to keep an eye on 
livestock to ensure that they are fed and cared for properly. The 
use of IoT devices can lower labour costs significantly and 
enhance animal welfare. IoT devices can be used to find the 
livestock's location and assess its health. 
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II. LITERATURE SURVEY 

Systems remain a type of feedforward neural system that 
activates using radial basis functions and universal 
approximators. Classification, regression, pattern recognition, 
and time series forecasting problems are frequently solved 
using RBFN [10–11]. In addition to their strong ability to 
approximate any continuous network, RBFNs also possess 
strong characteristics like their compact structure, noise 
tolerance, and ability to approximate any global approximation. 
The new elephant algorithm is among the most recent meta-
heuristic methodologies to be suggested. The search areas of 
elephant males are widened as they travel farther and farther. 
The female elephants focus on seeking out the best response 
locally. A lifespan mechanism that regulates birth and death 
gives all agents a gradually increasing chance of dying as they 
age. The heuristic knowledge of these elephants' forebears will 
be passed down to them, and this mechanism is designed to 
keep whole agents from entering the local optimum. The solar 
energy-driven polygene ration system configurations and 
classified them based on design, benefits, technical potentials, 
challenges, and market prospects. A solar-driven 
multigeneration system enhances the system's efficiency and 
reduces the capital and operation costs as well as carbon 
dioxide emissions to improve the environment [12]. 

Soil temperature modelling to assess the viability of using 
soil air exchangers for agricultural structures. In this context, 
the ability of soil to cool or heat agricultural structures such as 
greenhouses was determined by modifying temperature 
behaviour at various depths [13]. A solar thermal system 
produces inexpensive, environmentally friendly heat using the 
sun's energy. Temperature pushes, electronic warmers, and 
rotation forces are all controlled in accordance with the need 
for hot water in a building. First, take into account clear, 
cloudy, rainy, and dark weather[14]. The network's overall 
node count could be decreased while the sampling frequency 
was raised. Although reducing the number of sensor nodes has 
been shown to result in a similar network lifetime, it is 
unknown how much data is lost from specific locations within 
a field. Even though there are more samples, most agricultural 
systems don't need quick responses because the environment 
doesn't change quickly over short periods of time [15]. The 
temperature readings taken by the drone while it was flying 
over the crop were incorrect, according to experiments. The 
drone was able to get more precise readings when it was nearer 
the area of interest. The devices had to be in constant time sync 
for the data collected among the drone and nodes to be accurate 
[16]. In order to implement multiple networks, the system was 
built with nodes that could switch between two operating 
frequencies. Nodes were organized into clusters, and the cluster 
leader forwarded data from each cluster to the target node. The 
outcomes showed that the design used very little energy and 
could work for a whole season on just one charge of the battery 
[17]. 

Wen-tai Li et al. presented by [18]. Building managers can 
achieve their energy management objectives with the aid of the 
Solar Water Heating (SWH) control mechanisms. The methods 
are based on the price of electricity, the weather, and the 
demand for hot water. An important source of solar energy for 
buildings, solar thermal systems are the subject of this study. A 

solar thermal system produces inexpensive, environmentally 
friendly heat using the sun's energy. Temperature pushes, 
electronic warmers, then rotation forces remain all controlled 
in accordance with a building's need for hot water. First, take 
into account clear, cloudy, rainy, and dark weather. To run the 
simulations, three different days were picked: a cloudy day, a 
sunny day, and a semi-synthetic day with no solar. The ideal 
control mechanism for heat pumps, electric heaters, and 
circulator pumps has been researched to enhance the SWH 
system's performance. 

Mohammadi et al. [19] reviewed various solar and hybrid 
solar energy driven polygene ration system configurations and 
classified them based on design, benefits, technical potentials, 
challenges, and market prospective. Solar-driven 
multigeneration system enhances the system efficiency and 
reduces the capital and operation costs as well as carbon di-
oxide emissions to build environment. 

Faridi et al. [20] Soil temperature modelling was used to 
assess the viability of using soil-air exchangers for agricultural 
structures. The ability of soil to heat or cool agro constructions 
like greenhouses was detected by means of modifying the 
behavior of temperature at various depths in this context. 

The objective of the paper is 

1) First this IoT-based solar energy system for a future 

smart agriculture system, a deep learning [36, 37] model 

called Radial Basis Function Networks (RBFN) with the 

Elephant Search Algorithm (ESA) has been used. 

2) IoT and automation are linked with agriculture and 

farming practises in order to recover the efficacy and 

efficiency of the entire process. 

3) Sensory systems promoted resource conservation, 

decreased detrimental environmental effects, and improved 

farmers' understanding of crops. These innovative systems 

allow for effective soil and weather monitoring as well as 

efficient water management. 

4) To supply the necessary operating power, the proposed 

system, RBFN-ESA, makes use of a forecasting method from 

an IoT-based solar cell. 

5) The IoT controller reads the data from the humidity, 

field-based temperature and soil moisture sensors and then 

outputs the required actuation command signals to drive 

irrigation pumps. 

6) The proposed model RBFN-ESA will collect these data 

to predict the values of the important solar energy system 

parameters for a future smart agriculture system. 

III. PROPOSED SYSTEM  

Every aspect of conventional farming practices can be 
drastically altered by integrating the most recent sensing and 
IoT technologies. Now that the IoTs and wireless sensors are 
available, smart agriculture [35] can reach new heights. By 
implementing smart farming techniques like drought response, 
yield enhancement, land applicability, irrigation [34], and pest 
control, the Internet could really help improve options for so 
many traditional farming problems. The RBFN-ESA method's 
block diagram is shown in Fig. 1. 
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Fig. 1. Block diagram for the approach proposed by RBFN-ESA. 

A. Data Pre-processing 

The method for considering the weather parameter, data 
collection, and normalised data during the data pre-processing 
is described as follows. 

1) Weather metric: Accuweather is used to get the daily 

weather parameters and their measurement units. Based on the 

temperature (in degrees Celsius), date (dd/mm/yy), season, 

and daily rainfall, this parameter is used to calculate the 

amount of rain that will fall on a specific day. The probability 

of rainfall is taken into account when choosing the 

aforementioned parameters. The chosen parameter is only 

equipped to predict the weather. 

2) Data collection: For this experiment, we made use of 

actual data, particularly weather information from Kolkata, 

West Bengal. The data has been standardized. This data was 

gathered from the online weather resource Accuweather.com. 

Data from the first year is used for training, and data from the 

next 50 days is used for testing. 

3) Normalized data: The next stage of data processing, 

known as "normalization," has arrived after the choice of 

weather parameters and completion of data collection. 

Random data in GA must be in normalized form for training 

and testing. It might be challenging to combine when the GA 

is trained using real data. Every bit of data is fixed and 

changed to a value of 0 or 1. 

B. Web-Based Water Motor Control Service 

A web server built atop the HTTP protocol has been 
developed to stop and start the water motor. The programming 
language in R-Pi has accessed this web service to start or stop 
this same water motor. The Pic Microcontroller's programming 
language sends signals to the Arduino-Uno, which controls the 
spread circuit to start and stop the fluid motor. 

C. Digital Water Pump 

In this subsystem, an aquatic force is attached to a convey 
button that is managed by a base station with Bluetooth 
capabilities. For real time monitoring, the web service 
stimulates base station control from the flexible web-based 

interface. The water pump can be controlled remotely, both 
automatically and manually, using this web-based interface. 

D. Internet of Things 

The IoT is a station of smart, interrelated substances that 
can transmit information and generate useful data about the 
market environment. As a result, almost any object that can 
connect to the Internet can be referred to as a "thing" in the 
context of the IoTs, including furniture, electronics, appliances, 
agricultural or industrial machinery, and level public [21-23]. 

The IoT concept is not new-fangled, but acceptance has 
recently risen. Some of the technologies that have developed to 
support it include big data, cloud computing, artificial 
intelligence, and hardware advancements that have reduced the 
scope and control of feasting and improved connectivity via the 
Internet and among plans via wireless connections [24]. 
Together, these technical parts make a net of nodes that can 
send and receive information and data and react to interference 
from the network. 

Even though the structure of an IoT network is similar to 
that of other computer system architectures, [25] says that the 
identification, sensing, and control of remote devices, as well 
as the limited computing power of the equipment, are some of 
the unique aspects of this framework that must be taken into 
account. 

E. Classification using RBFN 

The most basic RBFN configuration is a three-layer feed-
forward neural network. The network's inputs are represented 
by the first layer, and its final output is represented by the 
second layer, which is a hidden layer made up of numerous 
RBF non-linear activation units. Gaussian functions are 
frequently used in RBFNs to implement activation functions 
[26]. An illustration of the RBFN framework can be found in 
Fig. 2. Let's say we have a dataset D that contains N structures 
of (xp, yp), where xp is the data set's input. 

Eq. (1) can be used to calculate the production of the ith 
initiation function φi in the net's unseen coating based on the 
separation among the input pattern x and the centre i. 
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The majority of conventional training methods for RBFNs 
described in the literature consist of two step [27]. For 
example, in the first stage, an unsupervised clustering 
algorithm is used to compute the widths and centers. In order 
to reduce an error criterion, such as the common mean squared 
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error (MSE) over the whole dataset, the hidden layer and 
output layer's connection weights must be determined in the 
second step. 

 
Fig. 2. The RBFN's structure. 

F. Elephant Search Algorithm (ESA) 

The most recent generation of meta-heuristic search 
optimization algorithms includes ESA. A dual search 
mechanism, or the ability to divide the search agents into two 
groups, is the foundation of this algorithm's approach, which 
mimics the characteristics and behaviours of an elephant [28]. 
Elephants live in herds, and each herd is made up of several 
smaller clans or groupings, each led by the eldest elephant in 
the herd. The ESA mimics elephant herds' major characteristics 
and qualities. Elephants have different social systems, with 
males preferring solitary living and females preferring family 
units. Female elephants are more concerned with improving 
their surroundings, whilst male elephants are in charge of 
discovering new locations to explore. 

In this case, ESA is a good search optimization algorithm 
that has the following three main traits: 

1) The search process enhances the present response 

iteratively in order to identify the ideal one. Chief female 

elephants also conduct extensive local searches in regions 

where they believe there is a better chance of finding the 

greatest solution. 

2) Male elephants are in charge of foraging outside the 

neighborhood's ideal range. 

3) Elephants possess a variety of traits, making it crucial 

to draw inspiration from their biological behaviour. Here is a 

description of the ESA. 

Algorithm 1: Elephant Search Algorithm (ESA) 

Input: SearchSpace, HerdSize, MaxIterations 

Output: BestSolution 

Initialize the herd 

Herd ← InitializeHerd(HerdSize, SearchSpace) 

BestSolution ← None 

Main search loop 

for iteration = 1 to MaxIterations do 

Evaluate the herd's position 

    for each elephant in Herd do 

elephant.fitness ← EvaluateFitness(elephant.position) 

if BestSolution is None or elephant.fitness is better than 
BestSolution.fitness then 

     BestSolution ← elephant 

end if 

   end for 

Communication among elephants (sharing the best known solution) 

BestElephant ← FindBestElephant(Herd) 

for each elephant in Herd do 

    if elephant ≠ BestElephant then 

elephant.position ← MoveTowards(BestElephant.position, 

elephant.position)  

    end if  

end for  

Random exploration to avoid local optima  

for each elephant in Herd do  

    if rand() < ExplorationProbability then  

elephant.position ← RandomMove(SearchSpace)  

    end if  

end for  

Memory retention (remembering good positions)  

for each elephant in Herd do 

     if rand() < MemoryRetentionProbability then  

elephant.position ← elephant.bestKnownPosition  

    else  

elephant.bestKnownPosition ← elephant.position  

    end if  

end for  

end for  

Return the best found solution  

return BestSolution  

End Algorithm 

Each elephant must be a member of a clan since they all 
live together in a herd under the leadership of the oldest 
elephant [29]. The equation below can be used to represent the 
animal j in the cli clan. 

, , , , ,( ).new cli j cli j Best cli cli jY Y c Y Y r  


where ,Best cliY
 denotes the clan cli and 

[0,1]r
, and 

, ,new cli jY
 and ,cli jY

 are the elephant j's newly updated and old 

places in clan cli, separately. 
[0,1]c

 determines how clan 

cli influences ,cli jY
. Eq. (3) cannot be applied when 

, ,cli j Best cliY Y
, but the fittest elephant can be determined 

using the formula shown below. 

 , , ,.new cli j center cliY Y 

where 
[0,1]

 stands for the ,center cliY
s impact on the 

, ,new cli jY
. The d th dimension of the new individual , ,new cli jY

 is 
then updated using the formula below. 
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There are that many elephants in the cli clan, 

1 dimd Dindicate the dth ension 
e, D is its overall 

dimension, and , ,cli j dY
 is the d th of the individual ,cli jY

 
elephant.  

As mentioned earlier, adult male elephants continue living 
alone in a remote area after leaving their families [30]. By 
using a separating operator to solve challenging optimization 
problems, this scenario can be simulated. Let's assume that the 
animal individual people with worst fitness particular instance 
will use the trying to separate operator in compliance with the 
appropriate equation to enhance the search functionality of 
ESA [31]. 

, , ( 1).worst cli d Min Max MinY Y Y Y Rand   


where MaxY
 and MinY

 are the highest and lowest limits of 

an elephant's position, ,worst cliY
is the worst elephant member 

of clan cli, and 
[0,1]Rand

 is a random distribution [32]. 
The description of the clan updating and separating operator 
has been included in the ESA development. 

IV. RESULT AND DISCUSSION 

The main goal of this experiment is to use sensors to gather 
the physical characteristics of a farming area. From there, an 
algorithm will be developed using the sensor data and weather 
forecast information to predict soil moisture for the upcoming 
days [33]. This study compares the proposed MPNN-MCOA 
algorithm with the convolution neural network, support vector 
machine, artificial neural network, long short-term memory 
and random forest as five machine learning algorithms. 

A. Assessment Criteria 

 True Positives (TP) are instances where both the actual 
yield and our expectations came true. 

 True Negatives (TN): Occurrences in which the true 
yield turned out to be incorrect, as predicted. 

 False Positives (FP): We expected real results, but the 
yield was incorrect. 

 False Negatives (FN): When an outcome that we 
anticipated to be untrue proved to be accurate. 

Precision: It is also known as the ratio of results that were 
correctly predicted as positive to results that were actually 
positive. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
TP

TP FP


Recall: It is determined by separating the total amount of 
successful results by the total amount of conjugate samples. 

𝑅𝑒𝑐𝑎𝑙𝑙
TP

TP FN


F1-score: It also goes by the name "harmonic mean" and 
aims to balance precision and recall. The computation works 
well on an unbalanced dataset and allows for both false 
negatives and false positives. 

𝐹−𝑠𝑐𝑜𝑟𝑒
2

2

TP

TP FP FN 


Accuracy:  The percentage of precise predictions to all 
input models is referred to by this expression. 

𝐴𝑐
TP TN

TP TN FP FN



  


B. Precision Analysis 

Fig. 3 and Table I provide a comparison of the RBFN-ESA 
method's precision with that of other methods now in use. The 
precision with which the deep learning with IOT method has 
enhanced performance is illustrated by the graph. For example, 
the precision of the RBFN-ESA method for data 100 is 
86.743%, whereas the CNN, ANN, SVM, RF, and LSTM 
methods have precision values of 83.487%, 78.256%, 
75.187%, 69.664%, and 72.387%, respectively. However, the 
RBFN-ESA method has shown optimal performance over a 
range of data set sizes. Under 600 data points, the RBFN-ESA 
methods precision value is 92.864%; in contrast, the CNN, 
ANN, SVM, RF, and LSTM methods have precision values of 
84.754%, 81.242%, 77.854%, 71.643%, and 74.532%, 
respectively. 

TABLE I.  PRECISION ANALYSIS OF THE RBFN-ESA METHOD 

No of data 

from 

dataset 

CNN ANN SVM RF LSTM 
RBFN-

ESA 

100 83.487 78.256 75.187 69.664 72.387 86.743 

200 82.954 78.654 75.533 70.532 72.854 87.953 

300 82.843 79.054 76.863 70.843 73.454 88.435 

400 83.543 79.435 77.095 69.853 72.964 91.653 

500 84.864 80.774 76.346 71.254 73.964 93.643 

600 84.754 81.242 77.854 71.643 74.532 92.864 

 

Fig. 3. Precision analysis for RBFN-ESA method. 
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C. Recall Analysis 

Fig. 4 and Table II compare the recall analysis of the 
RBFN-ESA method with existing methods. The graphic shows 
how recall performance has increased with the deep learning 
with IOT method. For example, the recall value for data 100 
for the RBFN-ESA method is 90.542%, whereas the 
corresponding values for the CNN, ANN, SVM, RF, and 
LSTM methods are 77.76%, 86.543%, 80.187%, 74.875%, and 
85.765%. The RBFN-ESA method has performed at its best 
with various data sizes, though. Similar to this, for 600 data, 
the recall value of the RBFN-ESA is 94.765%, while for CNN, 
ANN, SVM, RF, and LSTM methods, it is 79.942%, 88.864%, 
84.854%, 78.543%, and 87.912%, respectively. 

TABLE II.  RECALL ANALYSIS FOR RBFN-ESA METHOD 

No of data 

from 

dataset 

CNN ANN SVM RF LSTM 
RBFN-

ESA 

100 77.765 86.543 80.187 74.875 85.765 90.542 

200 76.643 86.954 81.286 75.278 85.265 89.542 

300 77.923 87.254 84.543 73.478 87.397 91.467 

400 78.743 87.854 83.567 76.187 86.093 93.965 

500 79.654 88.145 82.864 77.098 87.743 92.376 

600 79.942 88.864 84.854 78.543 87.912 94.765 

 
Fig. 4. Recall analysis for RBFN-ESA method. 

D. F-Score Analysis 

Fig. 5 and Table III provide comparative f-score analyses 
of the RBFN-ESA method with other existing methods. The 
graph shows that the f-score performance has improved with 
the deep learning with IOT method. For example, the f-score 
value of the RBFN-ESA method for data 100 is 94.095%, 
whereas the corresponding values for the CNN, ANN, SVM, 
RF, and LSTM methods are 88.643%, 85.865%, 78.543%, 
91.754%, and 81.765%. However, the RBFN-ESA method has 
shown optimal performance over a range of data sizes. In 
comparison to the CNN, ANN, SVM, RF, and LSTM methods, 
which have respective f-score values of 90.345%, 86.324%, 
80.864%, 94.865%, and 83.265%, the RBFN-ESA method has 
an f-score value of 97.565% under 600 data points. 

TABLE III.  F-SCORE ANALYSIS FOR RBFN-ESA METHOD 

No of data 

from 

dataset 

CNN ANN SVM RF LSTM 
RBFN-

ESA 

100 88.643 85.865 78.543 91.754 81.765 94.095 

200 87.045 84.345 79.465 92.865 82.644 94.345 

300 87.345 85.234 78.843 91.245 81.438 95.346 

400 88.934 84.846 80.245 92.533 82.835 95.755 

500 87.834 86.987 81.258 93.546 83.095 96.346 

600 90.345 86.324 80.864 94.865 83.265 97.565 

 
Fig. 5. F-Score analysis for RBFN-ESA method. 

E. Accuracy Analysis 

Fig. 6 and Table IV compare the accuracy of the RBFN-
ESA method to other methods. The graph shows how applying 
the deep learning with IOT method has improved performance 
with accuracy. For example, the RBFN-ESA method accuracy 
value for data 100 is 94.509%, while the accuracy values for 
CNN, ANN, SVM, RF, and LSTM methods are 79.346%, 
89.453%, 84.578%, 90.353%, and 81.756%, respectively. 
However, the RBFN-ESA method has shown optimal 
performance over a range of data sizes. Comparing the 
accuracy values of CNN, ANN, SVM, RF, and LSTM method, 
which are 83.653%, 88.245%, 86.953%, 92.465%, and 
83.543%, respectively, to the RBFN-ESA, which has an 
accuracy value of 97.467 % is 600 data. 

TABLE IV.  ACCURACY ANALYSIS FOR RBFN-ESA METHOD 

No of data 

from 

dataset 

CNN ANN SVM RF LSTM 
RBFN-

ESA 

100 79.346 89.453 84.578 90.353 81.756 94.509 

200 79.754 89.775 84.965 91.654 82.467 94.356 

300 80.645 87.464 85.196 93.464 82.776 95.864 

400 80.356 87.865 85.853 92.098 83.854 96.245 

500 81.246 88.353 86.257 93.834 81.943 96.865 

600 83.653 88.245 86.953 92.465 83.543 97.467 
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Fig. 6. Accuracy analysis for RBFN-ESA method. 

F. Training Validation and Training Loss 

Fig. 7 shows training validation and training loss analysis 
for RBFN-ESA method. 

 

Fig. 7. Training validation and training loss analysis for RBFN-ESA method. 

G. Soil Moisture 

Fig. 8 and Table V compare the RBFN-ESA method with 
existing methods for examining soil moisture. The graph shows 
how soil moisture performance has increased with the deep 
learning with IOT method. For example, with 100 data, the 
RBFN-ESA method's soil moisture is 90.16%, whereas the 
CNN, ANN, SVM, RF, and LSTM methods' soil moisture 
values are 71.87%, 77.76%, 76.17%, 79.96%, and 84.67%, 
respectively. However, the RBFN-ESA method has shown 
optimal performance over a range of data sizes. Similarly, the 
RBFN-ESA has soil moisture of 94.41% under 600 data, while 
CNN, ANN, SVM, RF, and LSTM methods have 73.18%, 
79.17%, 76.62%, 82.78%, and 88.76%, respectively. 

TABLE V.  SOIL MOISTURE ANALYSIS FOR RBFN-ESA METHOD 

No of data 

from dataset 
CNN ANN SVM RF LSTM 

RBFN-

ESA 

100 71.87 77.76 76.17 79.96 84.67 90.16 

200 73.43 76.17 74.36 77.12 83.87 92.65 

300 73.12 78.19 75.42 79.65 85.15 91.76 

400 70.98 76.54 74.17 81.65 88.44 93.43 

500 72.98 78.66 75.77 80.32 88.91 95.17 

600 73.18 79.17 76.62 82.78 88.76 94.41 

 
Fig. 8. Soil moisture Analysis for RBFN-ESA method. 

H. Energy Consumption Analysis 

Table VI and Fig. 9 provide a comparison of the energy 
consumption of the RBFN-ESA method with existing methods. 
With 100 data, the CNN, ANN, SVM, RF, and LSTM methods 
consume 59.324J, 57.276J, 64.865J, 67.897J, and 69.256J of 
energy, respectively, whereas the proposed RBFN-ESA 
method uses 54.632 J. In a similar vein, the proposed RBFN-
ESA method uses just 56.764 J with 600 data, compared to 
62.543 J, 58.721 J, 65.443 J, 68.432 J, and 73.876 J for CNN, 
ANN, SVM, RF, and LSTM. The recommended method shows 
enhanced performance with lower energy usage. 

TABLE VI.  ENERGY CONSUMPTION ANALYSIS FOR RBFN-ESA METHOD 

No of data 

from 

dataset 

CNN ANN SVM RF LSTM 
RBFN-

ESA 

100 59.324 57.276 64.865 67.897 69.256 54.632 

200 60.633 57.642 63.269 66.265 70.765 55.853 

300 61.287 58.973 64.249 66.875 70.236 53.842 

400 62.843 58.423 63.865 65.854 69.246 55.062 

500 61.865 59.053 65.089 68.532 71.663 55.187 

600 62.543 58.721 65.443 68.432 73.876 56.764 

 

Fig. 9. Energy consumption analysis for RBFN-ESA method. 

V. CONCLUSION 

Environmental variables, such as relative humidity, 
temperature, soil temperature, UV rays, etc., impact soil 
moisture. Technology advancements have greatly enhanced the 
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precision of weather forecasts, and the information can now be 
used to predict variations in soil moisture. The intelligent 
irrigation system described in this week's IoT-based planet 
comprehensive liveliness classification is essential for areas of 
creation where water and energy are uncommon. Using a 
qualitative methodology and focusing on secondary data 
collection, a deep learning model called Radial Basis Function 
Networks (RBFN) with the Elephant Search Algorithm (ESA) 
was used for this IoT-based solar energy system for a Future 
intelligent agriculture system. To supply the necessary 
operating power, the proposed RBFN-ESA uses a forecasting 
process from an IoT-based solar cell. The IoT controller reads 
the data from the humidity, field-based temperature and soil 
moisture sensors and then outputs the required actuation 
command signals to drive irrigation pumps. In forecast the 
value systems of the crucial solar power system variables for a 
future intelligent agriculture system, the suggested framework 
RBFN-ESA will gather these data. In terms of defining 
whether a user will belong to a specific group, the proposed 
model performed better than other models like Random Forest 
(RF), Artificial Neural Network (ANN), Support Vector 
Machine (SVM), Convolution Neural Network (CNN) and 
Long Short-Term Memory (LSTM). This approach makes use 
of existing models, such as SVM, RF, LSTM, and convolution 
neural. We want to conduct further assessments of water 
savings based on the proposed algorithm with numerous nodes 
and system cost reduction. 
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