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Abstract—The growing frequency of forest area fires poses 

critical challenges for emergency response, necessitating 

progressive solutions for effective navigation and direction 

planning in dynamic environments. This study investigates an 

adaptive technique to enhance the performance of autonomous 

robots deployed in forest area fireplace scenarios. The primary 

objective is to develop a hybrid methodology that integrates 

advanced studying strategies with optimization techniques to 

enhance route planning beneath unexpectedly changing situations. 

To reap this, a simulation-based total framework became hooked 

up, in which self-reliant robots were tasked with navigating 

diverse forest fire eventualities. The method includes schooling a 

model to dynamically adapt to environmental modifications at the 

same time as optimizing direction choice in real time. Performance 

metrics together with direction efficiency, adaptability to 

obstacles, and reaction time been analyzed to assess the 

effectiveness of the proposed solution. Results indicate an 

enormous improvement in path planning performance as 

compared to traditional methods, with more suitable adaptability 

main to faster response instances and extra effective navigation. 

The findings underscore the functionality of the proposed method 

to cope with the complexities of forest area fire environments, 

demonstrating its potential for real-world applications in disaster 

response. The results are shown in the conceived DRL-PSO 

framework where execution time is reduced up to 95% and the 

success rate of 95 % for the proposed method compared to the 

conventional ones. Python is used to implement the proposed 

work. Compared to the proposed method’s execution time of 68. 3 

seconds and the highest success rate among evaluated strategies, 

so it can be used as a powerful solution for autonomous drone 

navigation in dangerous situations. In the end, this research 

contributes precious insights into adaptive route planning for self-

sufficient robots in unsafe situations, providing a strong 

framework for destiny advancements in disaster management 

technologies. 

Keywords—Adaptive path planning; deep reinforcement 

learning; disaster environments; drone rescuing; particle swarm 

optimization; forest fire 

I. INTRODUCTION 

As a result of climate change and human activity, forest fires 
have become more severe and frequent threats posing serious 
threats to human safety and ecosystems These flames spread 
rapidly, and their unpredictable nature necessitates using state-
of-the-art technological solutions for efficient monitoring and 
rescue efforts RL) using those tasked with rescuing people in 
active forest fire situations The platform offers a new approach 
develop a flexible system for drones by using fire detection 
information and real-time data to inform and optimize the 
autonomous drone approach planning processes [1]. Drones can 
operate safely and effectively in a dangerous environment 
thanks to fire detection data, which provides vital information 
about fire locations and severity spread. Path planning is 
important in robotics, with the aim of determining the optimal 
path of material movement from start to finish, which can be 
used in aerospace, military, manufacturing, agriculture. A subset 
of autonomous guidance requires dynamic decisions as a robot 
moves forward toward its goal. Recent advances in participatory 
navigation and UAV technologies highlight their high 
scalability, scalability and adaptability for various applications 
such as search and rescue [2], agriculture, and inspection. UAVs 
are designed to operate without human intervention, making 
them ideal for projects such as visual inspection of large 
buildings. An important approach in this area is Coverage Path 
Planning (CPP), which focuses on efficient, collision-free paths 
that cover all important paths in an area Path planning can be 
offline, online, or hybrid, in which online channels are important 
for dynamic, unfamiliar environments and where robots must 
continuously collect and process distance data to safely navigate 
Challenges such as optimal, collision avoidance Method a three-
dimensional planning is adopted in UAVs often using global 
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solutions for complex problems and local solutions for dynamic 
constraints visibility graphs, fast searching random trees, 
probabilistic routing, . algorithms There are, although reasoning 
methods do not always find the best methods [3]. 

Intelligent transportation systems (ITS) [4] are aimed at 
increasing road capacity, reducing accidents, improving 
efficiency and reducing congestion, as well as reducing energy 
consumption and environmental impact Vehicles as it 
automatically develop key components of the ITS, including 
environmental concepts, road design, tracking and monitoring. 
The key to participatory transportation planning is to identify 
efficient, collision-free routes from the starting point to the 
destination [5]. Various path-planning algorithms have 
emerged, including geometric, graph search, intelligent bionic, 
artificial potential field, and sampling-based algorithms like 
RRT and probabilistic roadmap, which excel in complex 
environments. Traditional RRT methods focus on finding paths 
but lack efficiency in convergence, search speed, and path 
optimality. Improvements like Biased RRT, Bi-RRT, RRT-
connect, and RRT address these issues but often neglect vehicle-
specific constraints. For dynamic environments, algorithms like 
potential field combinations and enhanced Bi-RRT adapt paths 
in real-time, accounting for dynamic obstacles. Recent 
advancements integrate reinforcement learning and heuristic 
methods to enhance RRT-based planning for smooth, collision-
free paths in complex scenarios [6]. Path optimization 
techniques such as cubic B-splines, Dubins curves, and path 
pruning further refine paths, though challenges remain in 
maintaining curvature consistency and minimizing control 
difficulty. Disaster events like fires, floods, and landslides 
demand urgent and efficient rescue measures to minimize 
economic losses and threats to human life. Drones have become 
essential in disaster rescue, offering advantages such as 3D map 
reconstruction, emergency mapping, and environmental 
assessment. Multi-drone systems are particularly useful in 
complex terrains where traditional rescue methods struggle. 
However, effective mission planning for drones involves 
addressing environmental challenges and drone performance 
constraints. Heuristic algorithms like genetic algorithms (GA) 
and particle swarm optimization (PSO) are commonly used for 
mission planning but face issues like slow convergence and local 
optima. To overcome these limitations, this paper proposes 
improved GA and PSO algorithms for mission planning in 
complex 3D environments [7]. 

Autonomous vehicle systems, especially mobile robots, and 
autonomous vehicles have received considerable attention and 
commercialization, especially in the field of logistics and 
services in the service industry. The widespread use of 
reinforcement learning is limited by long training periods and 
limited computational resources Despite the advantages of DRL, 
such as intensive learning and large sensor dependence reduced, 
training in challenging environments is time-consuming and can 
lead to poor performance due to localized practice played a role. 
The high-quality research on DRL-based active obstacle 
avoidance and road systems from 2018 to 2022, identifying gaps 
and proposing future research directions to improve safety , 
efforts, and potential growth in this field [8]. Existing systems 
for route planning in autonomous robotic and mobile systems 
exhibit several shortcomings. Traditional RRT methods work 

well for challenging terrain but perform poorly in speed 
matching and road optimization, with enhanced versions such as 
Bi-RRT and RRT-Connect often ignoring vehicles specifically 
limited. They struggle with slow convergence and local change. 
Heuristic algorithms such as GA and PSO also face problems of 
slow convergence and local adaptability, especially in complex 
3D environments. DRL methods, although powerful, have long 
training times and high computational resource requirements 
and result in poor performance due to localized action execution 
AMRs, although simpler than AGVs, need to be limited by 
movement in for safety, and limits their operating range. The 
proposed DRL model addresses these issues by using real-time 
data for informed decision-making, integrating DRL into 
advanced road planning processes to increase efficiency and 
safety, and DRL and integrating PSO to improve robustness and 
performance This approach ensures flexibility and resilience 
scenarios are appropriate, and achieves high accuracy and 
reliability through the traditional DRLC limitations of training 
time and estimation by the effortful handling. 

The major key contribution are as follows: 

 The study introduces a novel hybrid approach combining 
Deep Reinforcement Learning (DRL) with Particle 
Swarm Optimization (PSO), enhancing the efficiency 
and adaptability of independent robots in navigating 
complicated, dynamic catastrophe environments. 

 The proposed approach permits real-time adaptation to 
unexpectedly changing environmental situations and 
obstacles normally determined in disaster zones, 
improving the robots' capacity to make well timed and 
optimal decisions 

 The research contributes to multi-agent structures 
through demonstrating how multiple independent robots 
can collaborate successfully to gain common desires, 
which includes search-and-rescue operations, by 
leveraging DRL and PSO coordination abilities 

 The model optimizes computational aid utilization 
through the integration of DRL and PSO, permitting 
robots to carry out path-making plans with decreased 
computational overhead while retaining high-
performance stages. 

The research validates the model by using the simulations in 
practical dynamic disaster environments, showing extensive 
enhancements in pathfinding efficiency, robustness, and 
undertaking of entirety in comparison to traditional techniques. 

The proposed research is arranged as follows: The current 
models are reviewed in Section II. In Section III, the drawbacks 
of the existing frameworks are briefly reviewed. In Section IV, 
the proposed approach and methodology are addressed in detail. 
Section V discusses the result and finally, Section VI presents 
the conclusions of this study. 

II. RELATED WORK 

Yao et al., [9] address the complex mobility constraints faced 
by autonomous robots operating in greenhouse environments. 
Their research highlights the need for accurate mapping, precise 
localization, and robust road planning specifically tailored to the 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 9, 2024 

500 | P a g e  

www.ijacsa.thesai.org 

challenges of agricultural conditions. A key aspect of their 
approach is the development of a centralized hardware system 
that integrates multiple sensors. This integration aims to 
effectively reduce the environmental impact that occurs in a 
greenhouse environment, thus increasing the reliability of the 
entire system. The concept of their innovations is to deal with 
modules for restoration role in the LeGO-LOAM system. These 
modules play an important role in improving the accuracy of 
pose estimation by significantly reducing the absolute pose error 
(APE) to 24.42%, as shown in their experiments Furthermore, 
their Enhanced OpenPlanner features sophisticated algorithms 
that it covers important factors in the cost of agricultural 
products A hysteresis strategy has been introduced to ensure 
stable variation, and contributes to improved operational 
efficiency. Although the findings show promise in greenhouse 
applications, many challenges remain. Scaling up their solutions 
to larger farms poses a significant barrier. However, this study 
faces challenges such as handling dynamically changing 
greenhouse environments, limited real-world testing, and 
dependency on structured infrastructure. Localization remains 
problematic due to unreliable GPS in indoor settings, and the 
system's computational demands may restrict deployment on 
low-cost robotic platforms, limiting overall flexibility and 
scalability. Addressing these challenges will be crucial for their 
proposed system to be widely adopted and effective under 
agricultural conditions. 

Kiani et al. [10]  delve into the complex demanding 
situations of direction-making plans and dynamic impediment 
avoidance for Unmanned Surface Vehicles (USVs) running 
within maritime environments. Their studies introduce a 
revolutionary vehicle-obstacle avoidance methodology 
employing the Ant Colony Algorithm (ACA) and Clustering 
Algorithm (CA). This method dynamically adjusts seek 
parameters to optimize direction planning performance via 
adapting to the complexities of the surroundings. A key 
characteristic of their approach is the law and smoothing of the 
dynamic search path, which efficaciously minimizes route 
period and turning angles, as evidenced by their simulation 
outcomes throughout diverse impediment distributions. Despite 
demonstrating successful direction planning abilities, the 
sensible implementation of their technique faces sizeable 
computational challenges, especially in situations with 
congested maritime traffic. The real-time decision-making 
needs in such dynamic and complicated environments present 
barriers to the seamless integration and operational effectiveness 
in their proposed technique. Overcoming those computational 
hurdles could be essential for boosting the feasibility and 
reliability in their approach in real-international maritime 
programs. 

In their comprehensive 2019 study Liu et al., [11] explore 
the intricacies of 3-d course planning for mobile robots in 
particular designed for agricultural environments. Their research 
specializes in the software of metaheuristic algorithms, inclusive 
of Incremental Gray Wolf Optimization (I-GWO) and Expanded 
Gray Wolf Optimization (Ex-GWO), geared toward correctly 
guiding robots via large and densely populated farmlands. The 
number one objective in their technique is dual-fold: first, to 
optimize route planning via minimizing computational overhead 
and aid utilization; 2d, to make certain sturdy obstacle avoidance 

talents. Through rigorous simulations, Liu et al., Exhibit 
promising outcomes, highlighting the Ex-GWO algorithm's 
outstanding fulfillment with a 55. 56% fulfillment in optimizing 
path prices. Despite those improvements, big demanding 
situations stay. Adapting those algorithms to diverse agricultural 
terrains poses hurdles, as does ensuring well timed 
responsiveness to dynamic limitations encountered in practical 
area operations. Addressing those challenges is vital to decorate 
the versatility and reliability in their technique for real-global 
agricultural packages, in the end paving the manner for greater 
green and effective robotic operations in complex agricultural 
landscapes. 

In their latest suggestion, Wu and Low [12] the Adaptive 
Path Replanning (APReP) technique designed specifically for 
drones navigating thru dynamic city environments. Their 
technique innovatively categorizes various sorts of dynamic 
environmental adjustments and develops tailor-made strategies 
for green path replanning, suitable for each single and multi-
drone missions. Central to their technique is the discrete rapidly 
exploring random tree algorithm, meticulously designed to 
generate paths that align with the discrete traits of city 
landscapes. Extensive validation through simulations 
underscores the effectiveness of their techniques in addressing 
the problematic challenges posed by way of large-scale city 
dynamics. Their method demonstrates strong overall 
performance in managing more than one dynamic changes, 
thereby improving adaptability and operational reliability in 
complex city situations. However, essential challenges continue 
to be, consisting of the need to improve coordination amongst 
more than one drones and ensure real-time responsiveness to 
sudden environmental fluctuations. These regions call for 
similarly refinement to decorate the general efficiency and 
applicability of the APReP approach for optimizing drone 
operations in dynamic city settings. 

Chang et al., [13] propose to further enhance the dynamic 
window method (DWA) for path planning of mobile robots in 
unknown environments, using Q-learning and their study 
focuses on the analytical application of DWA preparing and 
carefully defining conditions and work environments towards 
enabling global logistics operations. By integrating Q-learning, 
their approach facilitates adaptive changes at scale in response 
to real-time environmental feedback, increasing efficiency and 
success rate high in complex unfamiliar processes Limitations 
such as the need for adequate training data to ensure and ongoing 
learning processes. Addressing these challenges is essential to 
improve the reliability and applicability of their enhanced DWA 
methods in real-world scenarios, and paves the way for more 
efficient and adaptable transportation systems in different 
environments. However, the implementation faces hurdles such 
as the requirement for substantial training data and ongoing 
learning processes to ensure sustained adaptation to evolving 
environmental dynamics in practical applications. Addressing 
these challenges is crucial to furthering the reliability and 
applicability of their enhanced DWA approach in real-world 
scenarios, paving the way for more effective and adaptive 
autonomous navigation systems in diverse and dynamic 
environments. 

Zhuang et al., [14] presented a sophisticated design of 
collaborative routing systems for autonomous underwater 
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vehicles (AUVs) operating in dynamic environments Their 
approach is with global methods such as Legendre pseudo 
spectral the use of access to efficiently plan inconsistent paths in 
steady state It is designed to connect the points, which provided 
secure access between the control nodes A key feature of their 
design is real-time integration of design strategies, including 
local restructuring strategies that take advantage of the 
differential flatness property of AUVs this provides rapid 
response to unexpected dynamic obstacles encountered during 
missions on. While their system proves effective in avoiding 
collisions in dynamic underwater conditions, challenges 
continue in scaling up to accommodate larger AUV crews and 
adapting them to withstand changes real-time in the 
environment with ease. While their framework proves effective 
in managing collision avoidance in dynamic underwater 
scenarios, challenges persist in scaling the approach to 
accommodate larger teams of AUVs and in enhancing its 
adaptability to cope seamlessly with real-time changes in 
environmental conditions. Addressing these challenges is 
crucial for advancing the practical deployment and operational 
efficiency of cooperative AUV missions in complex and 
evolving underwater environments. 

Azizi et al., [15] introduces a new heuristic fire-hawk 
optimization algorithm that is called the FHO founded on 
consideration of; the feeding ecology of Whistling kites, Black 
kites and Brown falcons. These birds are termed Fire Hawks, 
special regarding the specific gestures they make to capture prey 
in nature, especially through the mechanism of setting free. It 
falls into conflict for the simple reason that nature, especially 
through the mechanism of setting free, Applying the described 
algorithm, a numerical It was conducted an investigation on 233 
mathematical test functions ranging from 2 to 100 dimensions 
and total of 150 000 function evaluations were used for 
optimization. In contrast, there are alternative approaches where 
ten different classical and new metaheuristic algorithms were 
employed. The statistical aspects include the max, average, 
median, and deviation of 100 independent optimization runs 
Other statistical tests that were used were the Kolmogorov–
Smirnov test, Wilcoxon test, Mann–Whitney test, Kruskal–
Walli’s test, and the Post Hoc test. The results obtained in the 
experiments confirm the superiority of the FHO algorithm 
compared to the other algorithms described in the literature. 
Moreover, two of the most recent CECs that are the bound 
constraint problems CEC 2020 and the real-world optimization 
problems including the mechanical engineering design problems 
CEC 2020 were considered for evaluating the performance of 
the FHO algorithm, which again clearly showed the enhanced 
performance of the optimizer over the other metaheuristic 
algorithms in literature. The performance of the FHO is also 
measured when solve the two actual size structural frames of 15 
and 24 stories where the new method is better than the 
previously developed metaheuristics. 

Obayya et al., [16] introduce an study devises an Improved 
Bat Algorithm with Deep Learning Based Biomedical ECG 
Signal Classification (IBADL-BECGC) approach. To 
accomplish this, the proposed IBADL-BECGC model initially 
pre-processes the input signals. Besides, IBADL-BECGC model 
applies NasNet model to derive the features from test ECG 
signals. In addition, Improved Bat Algorithm (IBA) is employed 

to optimally fine-tune the hyperparameters related to NasNet 
approach. Finally, Extreme Learning Machine (ELM) 
classification algorithm is executed to perform ECG 
classification method. The presented IBADL-BECGC model 
was experimentally validated utilizing benchmark dataset. The 
comparison study outcomes established the improved 
performance of IBADL-BECGC model over other existing 
methodologies since the former achieved a maximum accuracy 
of 97.49%. 

In recent years, many metaheuristic algorithms have 
attempted to explore feature selection, such as the dragonfly 
algorithm (DA). Dragonfly algorithms have a powerful search 
capability that achieves good results, but there are still some 
shortcomings, specifically that the algorithm’s ability to explore 
will be weakened in the late phase, the diversity of the 
populations is not sufficient, and the convergence speed is slow. 
To overcome these shortcomings, Chen et al., [17] propose an 
improved dragonfly algorithm combined with a directed 
differential operator, called BDA-DDO. First, to enhance the 
exploration capability of DA in the later stages, we present an 
adaptive step-updating mechanism where the dragonfly step size 
decreases with iteration. Second, to speed up the convergence of 
the DA algorithm, we designed a new differential operator. We 
constructed a directed differential operator that can provide a 
promising direction for the search and then sped up the 
convergence. Third, we also designed an adaptive paradigm to 
update the directed differential operator to improve the diversity 
of the populations. The proposed method was tested on 14 
mainstream public UCI datasets. The experimental results were 
compared with seven representative feature selection methods, 
including the DA variant algorithms, and the results show that 
the proposed algorithm outperformed the other representative 
and state-of-the-art DA variant algorithms in terms of both 
convergence speed and solution quality. 

This literature review examines various optimization 
algorithms for self-sufficient systems in dynamic environments, 
highlighting their strengths and drawbacks. Yao et al. deal with 
mobility constraints in greenhouses however conflict with GPS 
reliability and scalability. Kiani et al. consciousness on 
impediment avoidance for Unmanned Surface Vehicles, going 
through computational challenges in congested maritime 
settings. Liu et al. optimize  

3D path planning for agriculture but come across 
adaptability troubles in diverse terrains. Wu and Low broaden 
an Adaptive Path Replanning technique for drones however 
need to decorate multi-drone coordination. Chang et al. enhance 
the dynamic window approach for cell robots but require 
widespread training data. Zhuang et al. and Azizi et al. present 
collaborative systems and fire-hawk algorithms, respectively, 
facing scalability and comparative overall performance 
challenges. 

III. PROBLEM STATEMENT 

The current methods of autonomous navigation in dynamic 
environments including greenhouse, maritime, and urban 
environments have their shortcoming that affects their 
efficiency. Most approaches fail at some point to respond 
quickly and dynamically to time varying conditions that modify 
continually the environment of execution, which leads to a 
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decrease in the level of the process performance and an increase 
in the total time required for the process execution [18]. 
However, there are several disadvantages to some of these 
approaches, for example, the computational problems as well as 
the requirement of access to large amounts of training data. The 
avoidance of the obstacles in the traditional systems may not 
address well the dynamic and unpredictable scenarios hence 
higher collision rates and reduced success rates in the real world. 
Some of the challenges previously avoided include; lack of real 
time adaptability [19], inefficient routing and poor or non-
existent obstacle avoidance which the proposed work that 
incorporates DRL integrated with PSO will be able to overcome 
since it offers real time adaptability, improved routing and 
obstacle avoidance in a dynamic disaster environment. 

IV. INTEGRATED FRAMEWORK FOR ADAPTIVE PATH 

PLANNING USING DEEP REINFORCEMENT LEARNING AND PSO 

IN DYNAMIC FOREST FIRE ENVIRONMENT 

In the proposed study, the integrated framework for adaptive 
path-making plans combines Deep Reinforcement Learning 
(DRL) and Particle Swarm Optimization (PSO) to navigate an 

unmanned device via dynamic wooded area fire surroundings. 
DRL plays a vital role in real-time decision-making, permitting 
the system to analyses premiere navigation techniques by 
interacting with the environment. This learning system adapts 
the gadget to unpredictable changes, which include the spread 
of the fire or new boundaries. Through DRL, the machine 
receives comments from the environment, updating its rules for 
more secure and efficient navigation. PSO enhances DRL by 
optimizing the decision-making technique in complicated multi-
objective situations. Its quality-tunes the navigation route by 
balancing exploration (searching new paths) and exploitation 
(utilizing best-recognized paths). PSO is especially effective in 
continuously adjusting key parameters, like averting fire-prone 
areas while aiming for a target region. The aggregate of DRL’s 
learning capabilities and PSO’s optimization guarantees that the 
system learns the best techniques but additionally correctly 
adapts to actual-time adjustments in the surroundings. By 
integrating these procedures, the framework dynamically adjusts 
to the evolving nature of forest fires, offering a strong and 
adaptive solution to complicated navigation challenges, and 
making sure safe and well-timed response in fire management 
eventualities.  

 
Fig. 1. Integrated system for adaptive path planning of drones in dynamic forest fire environments.

Fig. 1 illustrates the comprehensive fire detection and drone 
navigation system integrates multiple components for effective 
emergency management. It processes fire data and real-time 
sensor inputs, utilizing Deep Reinforcement Learning (DRL) for 
decision-making and Particle Swarm Optimization (PSO) for 
dynamic path planning. The drone navigation system adjusts in 
real-time to avoid obstacles and changes in fire behavior, while 
performance evaluations ensure reliability and accuracy. 
Together, these technologies optimize fire detection and enhance 
response efficiency in dynamic environments. 

A. Data Collection 

The Fire Detection Dataset [20] available on Kaggle is vital 
to the proposed framework for adaptive path making plans of 
autonomous drones in dynamic forest fire environments. This 
dataset includes attributes along with the date, range, and 
longitude of hearth incidents, as well as the brightness 

temperature, scan width, track height, acquisition date and time, 
satellite and device information, detection confidence, dataset 
model, brightness temperature at 31 microns, Fire Radiative 
Power, and whether or not the fireplace changed into detected in 
the course of the day or night. In the proposed framework, this 
dataset serves multiple important features. Firstly, it enables 
specific identification and real-time tracking of hearth places and 
intensities via consuming and processing facts attributes to 
pinpoint the exact geographical places and characteristics of 
fires. The actual-time data processing module integrates those 
facts points with live sensor inputs from drones, making sure 
well timed and correct information flows into the gadget. The 
DRL module then makes use of this information to dynamically 
understand and adapt to the modern nation of the environment, 
learning surest navigation techniques to avoid hearth zones. The 
PSO algorithm similarly refines direction making plans by 
means of adapting routes in real-time based on fire intensity and 
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spread styles, the usage of metrics like FRP and brightness to 
modify drone trajectories for secure and efficient navigation. 
Additionally, the dataset supports the performance assessment 
of the system, supplying floor truth data for assessing detection 
accuracy, response instances, and navigation success quotes. 
Thus, the Fire Detection Dataset is crucial for enabling the 
framework's sturdy and adaptive path planning competencies. 

B. Data Pre-Processing 

The preprocessing of the Fire Detection Dataset inside the 
proposed framework is a crucial step to ensure correct and 
powerful adaptive course planning for autonomous drones in 
dynamic wooded area fireplace environments. Initially, raw 
statistics from the dataset undergoes an intensive cleansing 
method, which incorporates managing lacking values, casting 
off duplicates, and correcting any inconsistencies. This step 
guarantees the integrity and reliability of the information. Next, 
the dataset is filtered to keep most effective the maximum 
applicable attributes, which includes date, latitude, longitude, 
brightness temperature, detection and Fire Radiative Power 
(FRP), which are essential for actual-time fireplace detection 
and tracking. Following the cleaning and filtering steps, the 
statistics is normalized to convey all attribute values right into a 
consistent variety, which aids inside the green processing and 
correct analysis via the gadget gaining knowledge of algorithms. 

The temporal attributes like acquisition date and time are 
transformed into a standardized layout to facilitate time-series 
evaluation and monitoring of fireplace development over the 
years. Geographical coordinates are converted into a format 
compatible with the drone’s navigation gadget, making sure of 
specific geospatial awareness. The preprocessed statistics is then 
integrated with real-time sensor information from the drones, 
merging static historical facts with dynamic, real-time inputs to 
offer a comprehensive and up-to-date photograph of the fire 
surroundings. This incorporated dataset feeds into the Deep 
Reinforcement Learning (DRL) module, which uses it to train 
and continuously update the navigation model, permitting 
drones to adapt their paths in response to actual-time hearth 
dynamics. By meticulously preprocessing the dataset, the 
framework guarantees that the drones have get right of entry to 
tremendous. 

C. DRL and PSO Integrated Workflow for Dynamic Disaster 

Navigation 

The DRL workflow of the proposed framework for adaptive 
route planning of autonomous drones in dynamic forest fire 
environment is designed to enable real-time decision making and 
optimal navigation Performance the process begins with a 
representation of environmental conditions, where Pre-
processed fire detection data are used, with factors such as fire 
location, severity, spread, etc. are added, to explain the current 
situation 𝑆𝑡  of the environment. This state 𝑆𝑡  is a 
comprehensive snapshot of fire scenario at time 𝑡. 

The DRL model employs a policy 𝜋(𝑎𝑡 |𝑆𝑡 ; 𝜃) 
parameterized by 𝜃, which maps the state  𝑆𝑡  to an action 𝑎𝑡 , 
representing the drone's navigational decisions. The action 
𝑎𝑡 could involve moving to a new location, altering altitude, or 
performing a specific maneuver to avoid obstacles and optimize 
the path. The policy is typically modeled using a neural network, 

which is trained to maximize the expected cumulative reward 
𝑅𝑡 . The reward function 𝑅𝑡  is designed to incentivize desirable 
behaviors, such as minimizing travel time, avoiding obstacles, 
and accurately reaching target locations. It can be defined in the 
Eq. (1) 

𝑅𝑡 = ∑ 𝛾𝑘−𝑡𝑇
𝑘=𝑡 𝛾𝑘     (1) 

where 𝛾  is the discount factor that prioritizes immediate 
rewards over distant future rewards, and 𝛾𝑘 represents the 
reward received at time 𝑘 . The training process involves 
iteratively updating the policy parameters 𝜃  using gradient 
descent methods. One popular approach is the Q-learning 
algorithm, where the Q-value ( Q( 𝑆𝑡 , 𝑎𝑡 ;  𝜃 ) estimates the 
expected utility of taking action 𝑎𝑡  in state 𝑆𝑡  as illustrated in 
the Eq. (2) 

Q(𝑆𝑡 , 𝑎𝑡 ;  𝜃) = 𝑟𝑡  + 𝛾𝑚𝑎𝑥a′ Q(𝑆𝑡 +1, 𝑎′;  𝜃)  (2) 

The drone interacts with the environment, collects 
experiences (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑆𝑡+1) and stores them in a replay buffer. 
The neural network parameters are periodically updated by 
minimizing the loss function as represented in the Eq. (3) 

L(𝜃)=E[( 𝑟𝑡 +  𝛾𝑚𝑎𝑥𝑎′ 𝑄(𝑆𝑡 +1, 𝑎′;  𝜃−)  −
 𝑄(𝑆𝑡 +1, 𝑎′;  𝜃) ) 2]    (3) 

where, 𝜃−  represents the parameters of a target network, 
which is periodically synchronized with 𝜃. PSO has been 
integrated to optimize the DRL design by evaluating several 
possible solutions, which will increase the efficiency and 
performance of the road system. This hybrid approach ensures 
that drones can dynamically adapt to changing fire conditions, 
travel safely, and make decisions in real-time accuracy, 
ultimately providing rescue operations effective in hazardous 
areas is effective. 

D. Particle Swarm Optimization (PSO) Workflow for Adaptive 

Path Planning 

The PSO workflow within the proposed framework for 
adaptive path planning of autonomous drones in dynamic forest 
fire environments plays a crucial role in optimizing navigation 
paths by simulating the social behavior of birds flocking or fish 
schooling. Each potential solution, called a particle, represents a 
candidate path for the drone, characterized by a position vector 
𝑥𝑖  in the solution space and a velocity vector 𝑣𝑖   dictating the 
particle's movement. The position vector 𝑥𝑖 denotes the drone's 
coordinates in the environment, while the velocity vector 
influences the path direction and speed adjustments. 

The workflow begins with initializing a swarm of particles 
randomly distributed across the solution space. Each particle 𝑖 
has an associated position 𝑥𝑖(𝑡) and velocity 𝑣𝑖(𝑡) at time t, as 
well as a memory of its best-known position 𝑝𝑖  (personal best) 
and the global best position 𝑔 discovered by the swarm. The 
particles' velocities and positions are updated iteratively to 
explore the solution space and converge towards the optimal 
path. The velocity update rule combines three key influences: 
inertia, personal best, and global best, governed by the following 
Eq. (4). 

𝑣𝑖(𝑡 + 1) = 𝑤𝑣𝑖(𝑡) + 𝑐1𝑟1(𝑝𝑖  −  𝑥𝑖(𝑡)) + 𝑐2𝑟2(𝑔 − 𝑥𝑖(𝑡) (4) 
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where  𝑤  is the inertia weight balancing exploration and 
exploitation, 𝑐1 𝑎𝑛𝑑 𝑐2  are cognitive and social acceleration 
coefficients, respectively, and 𝑟1𝑎𝑛𝑑 𝑟2 are random numbers 
uniformly distributed in [0,1]. The new position of particle ( 𝑖 ) 
is then updated by the Eq. (5). 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)    (5) 

In the context of dynamic forest fire environments, particles 
represent various path trajectories for the drone. The fitness 
function evaluates each particle's position based on criteria such 
as distance to the target, obstacle avoidance, and fire intensity. 
The fitness function 𝑓(𝑥𝑖) can be formulated to minimize a 
combination of these criteria as shown in the Eq. (6). 

𝑓(𝑥𝑖) =∝ 𝑑(𝑥𝑖 , 𝑡𝑎𝑟𝑔𝑒𝑡) + 𝛽 ∑
1

𝑑(𝑥𝑖,𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠)
+𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠 

𝛾 ∑ 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑥𝑖)  𝑓𝑖𝑟𝑒 𝑍𝑜𝑛𝑒𝑠     (6) 

where ∝, 𝛽 and 𝛾 are the distance to the target, proximity to 
obstacles, and intensity of fire are weighting factors. Throughout 
the iteration process, particles effectively communicate with 
their individuality and update the global optimal position based 
on fitness checks. The DRL module readjusts the processes 
generated by PSO by optimizing production schedule changes 
and real-time adjustments. By combining PSO and DRL, the 
system uses the global search capability of PSO to find optimal 
path solutions and the learning capability of DRL to dynamically 
optimize and solve these paths in real time. This approach it is 
this synergy ensures safe and effective navigation for 
autonomous drones, unexpected and dangerous forest fires. It 
enhances their ability to conduct effective pursuit and rescue 
operations under different circumstances.

 

Fig. 2. Framework for adaptive path planning of autonomous drones in dynamic forest fire environments.

Fig. 2 shows a detailed schematic of adaptive strategies for 
autonomous drones in active forest fires. This form line is part 
of the dawn, and the in-depth reinforcing education is combined 
with an unhindered hybrid mindset, the form line begins with 
the fire detection team, which is required as a result of the, 
according to date, State changes, Light the, scan, panel, date and 
time of acquisition, satellite, instrument, and firelight power ( 
FRP). During the Pre-Processing phase, the raw data goes 
through several important steps to ensure its accuracy and 
usability. Data Cleaning involves addressing missing values, 
removing duplicates and resolving inconsistencies. This is 
followed by Data Filtering which retains only relevant elements 
needed for analysis. Data normalization is performed to bring all 
feature values into a constant range that facilitates the efficiency 
of machine learning algorithms. Additionally, terrain 
modification adjusts the geographic information of the network 

to match the drone’s navigation pattern, resulting in more 
accurate geographical information. 

The DRL and PSO Optimization phase is at the center of the 
design process, starting with determining the initial position of 
the drone. This first location is included in the tree structure for 
path planning. The system then uses a DRL that accurately 
determines the direction in which the fire is likely to spread and 
directs the growth of the fire. The algorithm checks whether this 
instruction leads to the Obstacle Area; if it does, an error is 
returned, otherwise it goes to the next test for checking. The 
process continues by checking if the new node is at a Small 
Distance from the Target Position. If it is, the process is marked 
as successful, indicating that the drone has effectively navigated 
towards the target position. If not, the new node is added to the 
tree, and the process iterates. This ensures that the framework 
continuously updates and optimizes the drone's path based on 
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real-time fire growth predictions and obstacle detection. This 
comprehensive framework integrates multiple sophisticated 
processes to ensure efficient and effective path planning for 
autonomous drones in dynamic and hazardous forest fire 
environments. Trained CNN is tested on an independent dataset 
(the testing set) to evaluate its real-world performance. 

V. RESULTS AND DISCUSSION 

The framework for adaptive route planning of autonomous 
drones in dynamic forest fire environments was evaluated 
through simulation and real-world experiments to measure the 
effectiveness. When combining DRL and PSO, this hybrid 
system showed significant improvements in multiple key areas: 
route planning efficiency, while implementing real-time 
flexibility, precise navigation, and robust scheduling, the DRL 
side was tasked with making decisions real-time, provides 
dynamic state updates from fire detection data sets including fire 
locations, severity, and obstacles. The results showed a 34.95% 
decrease in execution time compared to traditional methods, 
which was attributed to PSO global search capability and DRL-
learning optimal matching Real-time adjustment of the system 
became apparent as the DRL module continued to develop new 
routes in response to changing fire conditions; This flexibility, 
which enabled drones to maneuver faster and safer in dangerous 
areas, was further enhanced by the PSO, which optimized routes 
in real-time to ensure continuous operational efficiency. The 
accuracy of the system was improved by significant 
improvements in mapping accuracy and efficient obstacle 
avoidance, demonstrating the system’s ability to make accurate 
and reliable navigation decisions. 

A. Comparison of Success Rate and Processing Time Path 

Planning Methods in Dynamic Fire Environments 

The proposed DRL-PSO framework accomplished the 
shortest execution time of 68 seconds. Three seconds among all 
strategies evaluated. This represents a splendid improvement in 
comparison to conventional strategies which include ACO-
APF-APP (105.2 seconds), APFA-APP (a hundred and ten. Five 
seconds), GWO-APP (115.8 seconds), and PSO-APP (one 
hundred twenty.0 seconds). The reduced execution time of 
DRL-PSO indicates its performance in computing choicest 
paths swiftly, which is critical for time-sensitive packages like 
emergency response in dynamic disaster eventualities as shown 
in Fig. 3. 

 
Fig. 3. Proposed frameworks execution time in seconds. 

A high success rate suggests the framework's functionality 
to efficaciously deal with the complexities and uncertainties 
inherent in dynamic forest fire scenarios. Factors contributing to 
this high fulfilment rate consist of the framework's ability to 
evolve in actual-time to changing fire situations, optimize path 
trajectories to avoid obstacles, and make informed navigational 
decisions primarily based on environmental inputs. By 
integrating DRL with PSO, the framework leverages superior 
machine learning strategies to continuously examine and refine 
its direction planning strategies, making sure robust 
performance throughout various environmental conditions. The 
success fee measures the proportion of trials in which the course 
making plans technique correctly navigated via the simulated 
woodland fireside environment without failure. The proposed 
DRL-PSO framework performed the highest achievement price 
at 95%, indicating its robustness and reliability in navigating via 
complicated and risky environments. In comparison, the 
achievement quotes for ACO-APF-APP, APFA-APP, GWO-
APP, and PSO-APP ranged from 78% to 84%, highlighting the 
superior performance of DRL-PSO in making sure a success 
path in ensuring successful path completion. 

TABLE I. EXECUTION TIME AND SUCCESS RATE OF THE PROPOSED 

FRAMEWORK 

Method 
Execution Time 

(seconds) 
Success Rate (%) 

Proposed DRL-PSO 68.3 95 

ACO-APF-APP 105.2 78 

APFA-APP 110.5 81 

GWO-APP 115.8 80 

PSO-APP 120 84 

Table I shows that the proposed DRL-PSO algorithm offers 
significant advantages over the traditional methods in terms of 
implementation time and success rate. Its ability to accurately 
calculate optimal routes while maintaining a high success rate 
establishes its suitability for real-world applications where 
navigation is timely and reliable and emphasizes importance, 
such as the success of autonomous drones in road planning 
strategies in complex forest fires in disaster management and 
surveillance operations. The value indicates the percentage of 
trials, in which the drone successfully moved from the starting 
position to the designated position without encountering 
obstacles or obstacles to reach its completion mission. In the 
given comparison table, the success rates range from 78% to 
95%, where the proposed deep learning reinforcement with 
particle swarm optimization (DRL-PSO) algorithm achieved 
success rates highest of 95%. 

B. Evaluation of Navigation Accuracy and Obstacle 

Avoidance 

The proposed algorithm achieved a 26.36% improvement in 
mapping time compared to the existing methods, indicating that 
more accurate mapping can be achieved when traveling in 
dynamic and hazardous environments When a comprehensive 
reward function is used in DRL, which takes into account target 
distance, obstacle avoidance and fire intensity The hybrid DRL-
PSO method follows an efficient and safe approach  after 
showed good performance in avoiding static and mobile 
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obstacles, with significantly lower collision rates than traditional 
methods. The adaptive nature of the framework allowed for 
seamless transitions between reactive navigation and trajectory 
tracking, ensuring smooth and continuous movement even in the 
presence of unexpected obstacles. 

TABLE II. COMPARISON OF OBSTACLE AVOIDANCE AND DYNAMIC 

ADAPTATION 

Method 
Obstacle 

Avoidance 

Dynamic 

Adaptation 

Proposed Framework 
DRL-PSO 

Very High High 

ACO-APF-APP Moderate Moderate 

APFA-APP High Moderate 

GWO-APP High Moderate 

PSO-APP High Moderate 

Table II compares the optimal dynamic obstacle avoidance 
capabilities and path schemes under active fire conditions, in the 
proposed DRL-PSO algorithm with traditional methods such as 
ACO-APF-APP, APFA-APP, 2013-2014. GWO-APP, and 
PSO-APP. It has focused on the proposed DRL-PSO algorithm 
exhibiting very high obstacle avoidance, which means that it can 
handle obstacle encounters in the environment in the 19th 
century. This is important in a dynamic fire environment where 
trees, terrain changes, fire fronts and other obstacles pose 
significant navigation challenges namely ACO-APF-APP, 
APFA-APP, GWO-APP, PSO-APP and obstacles moderate-to-
high avoidance contradicts Displayed. Although these 
techniques can avoid constraints to some extent, their 
performance may be limited in complex or rapidly changing 
environments. DRL-PSO also excels in being dynamically 
adaptive, characterized by its ability to adapt route planning 
strategies in real-time based on changing fire conditions and 
environmental factors. 

This high stability ensures that the drone can continuously 
makeover its course to avoid hazards and reach mission 
objectives efficiently Compared to traditional strategies such as 
ACO-APF-APP, APFA-APP, GWO- APP, in the case of PSO-
APP, shows a moderate level of active optimization. These 
methods may need to be updated or modified more frequently to 
better handle sudden changes in the environment, which may 
affect their performance reliability DRL-PSO system for 
obstacles better avoidance and energy efficiency compared to 
traditional path planning methods. Utilizing deep reinforcement 
learning and particle swarm optimization, the system enhances 
the drone’s ability to safely and efficiently. 

C. Performance Metrics and Comparison of Average Cost 

Table III provides a comprehensive comparison of average 
cost results across different path planning methods evaluated 
within dynamic disaster environments. Each method, including 
the Proposed DRL+PSO, AGA+PSO, GA+APFA, and 
AGA+APFA, is assessed based on four key performance 
metrics: Best Value, Worst Value, Standard Deviation Value, 
and Mean Value. 

The Best Value column represents the lowest average cost 
achieved by each method in multiple simulations or scenarios 

simulations it was calculated by using the Eq. (7). For the 
Proposed DRL+PSO, the best value is 0.1454, indicating its 
capability to achieve minimal path planning costs under optimal 
conditions. AGA+APFA, on the other hand, shows a slightly 
lower best value of 0.1409, suggesting potentially superior 
performance in cost minimization. 

𝐵𝑒𝑠𝑡 𝑉𝑎𝑙𝑢𝑒 = 𝑚𝑖𝑛(𝐶1, 𝐶2. . . 𝐶𝑛)     (7) 

Where 𝐶𝑖 is the cost of the i-th simulation. The Worst Value 
column displays the highest average cost observed for each 
method across simulations it was calculated by using the Eq. (8). 
Here, the Proposed DRL+PSO records 0.2845, highlighting its 
performance in more challenging scenarios. In contrast, 
AGA+APFA demonstrates the lowest worst value of 0.1711, 
indicating its robustness in maintaining lower costs even under 
adverse conditions. 

𝑊𝑜𝑟𝑠𝑡 𝑉𝑎𝑙𝑢𝑒 = 𝑚𝑎𝑥(𝐶1, 𝐶2, . . . , 𝐶𝑛)      (8) 

The Standard Deviation Value measures the variability in 
average cost across simulations it was calculated by using Eq. 
(9). The Proposed DRL+PSO shows a standard deviation of 
0.0317, indicating moderate variability in performance. 
AGA+APFA, with a standard deviation of 0.0013, exhibits the 
least variability, suggesting highly consistent performance 
across scenarios. 

Standard Deviation =√
1

𝑛
∑ (𝐶𝑖 − 𝜇)2𝑛

𝑖=1   (9) 

Where 𝑛 is the number of simulations and 𝜇 is the mean cost 
(average of all simulations). The Mean Value provides the 
average cost calculated over all simulations for each method 
simulations it was calculated by using Eq. (10). The Proposed 
DRL+PSO framework demonstrates a mean average cost of 
0.1675, reflecting its typical performance across a range of 
dynamic disaster scenarios. 

𝑀𝑒𝑎𝑛 𝑉𝑎𝑙𝑢𝑒 =  𝜇 =
1

𝑛
∑ 𝐶𝑖

𝑛
𝑖=1   (10) 

TABLE III. COMPARISON OF AVERAGE COST RESULT WITH EXISTING 

FRAMEWORK 

Method 
Best 

Value 

Worst 

Value 

Standard 

Deviation 

Value 

Mean 

Value 

Proposed 

DRL+PSO 
0.1454 0.2845 0.0317 0.1675 

AGA+PSO [21] 0.1401 0.1909 0.015 0.1523 

GA+APFA[22] 0.1435 0.1837 0.0226 0.1681 

AGA+APFA [23] 0.1409 0.1711 0.0013 0.138 

Table III underscores the comparative performance of the 
Proposed DRL+PSO framework against existing methods like 
AGA+PSO, GA+APFA, and AGA+APFA in terms of average 
cost metrics. It highlights the framework's strengths in achieving 
competitive average costs while navigating complex and 
dynamic disaster environments. The variability in results across 
methods also indicates their respective strengths in cost 
minimization and stability, crucial for real-world applications 
requiring efficient and reliable autonomous path planning also 
shown in Fig. 4. 
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Fig. 4. Comparison of performance metrices. 

D. Discussion 

The research aims to use DRL and PSO as a hybrid model in 
articulating the advancement of adaptive path planning for the 
autonomous robot in the dynamism of disaster scenarios. 
Disclosed results show a time-saving at the execution stage by 
34% and 95% success percentage with reference to the 
conventional techniques [24]. The efficacy of the system is also 
felt during dynamic traffic management including real-time path 
planning and avoidance of other oncoming vehicles. An 
improvement to this addresses some of the issues surrounding 
existing work that may include; a lack of flexibility in 
responding to changing environmental conditions or the way 
paths are selected within crowded scenarios. The DRL 
component improves the decision-making process at the time, 
and PSO makes the global route planning more robust to 
overcome uncertain scenarios. Despite those advantages, the 
proposed system has limitations, which include capacity 
computational complexity and reliance on correct 
environmental facts. Future developments could consist of 
enhancing the usage of better sensors for increasing the 
awareness of the environment or increasing the capability of 
DRL algorithms to explain a greater number of scenarios. 
Possibilities to increase the synchronization of several drones 
and improve the system’s ability to respond to unpredictable 
alterations in the environment could also upgrade the system. 
The proposed research faces drawbacks associated with the 
reliance on specific environmental models that may not seize the 
complexities of real-world disaster eventualities. Current sensor 
technology might also limit the robot's environmental sensing 
abilities, hindering its adaptability. Additionally, the deep 
reinforcement learning (DRL) algorithm may struggle with 
managing noticeably dynamic conditions and unexpected 
boundaries. Cooperation among multiple drones requires further 
research, as does the want for rapid reaction mechanisms to 
sudden environmental modifications. These factors may also 
impact the system's effectiveness and reliability in diverse 
emergency response situations. 

VI. CONCLUSION AND FUTURE WORK 

The study presents the flexibility of the proposed Deep 
Reinforcement Learning (DRL) with Particle Swarm 
Optimization (PSO) in path planning of autonomous robots in 
disaster areas. This has helped in boosting this hybrid method as 
much better strategy compared to traditional methods because it 
cuts on the time taken to effect by 34%. Consequently, the 

course attained its intended vision of achieving a success rate of 
95% with percentage the students scoring 95% or above. The 
DRL component is most successful in decision making in real 
time and responding to changes in fire environment conditions 
whereas the PSO boosts the global route, better-facilitating route 
guidance and making it easier to avoid obstacles in the forest. It 
is seen that the proposed system can work perfectly in real-world 
noisy, complex and risky situations and therefore, can be used 
in emergency response and autonomous navigation systems. 
However, all is not well with the proposed system as it also has 
the following disadvantages: There are some limitations: 
computational complexity, and the dependency on accurate 
environmental data There is also a requirement for better 
integration of sensors and improved algorithms in the methods. 
The integration of DRL and PSO improves the theoretical 
frameworks in adaptive path-making by optimizing navigation 
in dynamic environments. This research promotes 
interdisciplinary collaboration across robotics, AI, and 
optimization ideas, whilst deepening the data on how 
autonomous systems adapt to changes in their environments. 
The results from this study can enhance disaster response with 
the aid of enhancing the performance of self-reliant robots in 
actual-world eventualities, probably saving lives and resources. 
The adaptable framework may be deployed throughout 
numerous sectors, at the same time as insights on sensor 
integration will enhance robots’ environmental notion, and 
cooperative strategies may improve swarm intelligence in 
catastrophe management. The study demonstrates that the 
hybrid technique of Deep Reinforcement Learning (DRL) and 
Particle Swarm Optimization (PSO) effectively addresses key 
contributions, considerably real-time adaptation, multi-agent 
collaboration, optimized aid utilization, and enhanced 
navigation accuracy. The framework executed a 34.95% 
reduction in execution time, allowing for on-the-spot path 
updates based on converting fire conditions. With an excessive 
success rate of 95%, it allows effective coordination amongst 
independent robots in search-and-rescue operations. The model 
also minimized computational overhead, accomplishing an 
execution time of 68.3 seconds, while displaying sufficient sized 
improvements in mapping and impediment avoidance, 
validating its effectiveness for disaster control applications. 

The proposed study offers sufficient realistic advantages, 
such as improved emergency response through optimized path 
planning, and permitting self-sustaining robots to efficiently 
navigate dynamic environments. The integration of DRL and 
PSO allows for real-time adaptability to changing challenges, 
enhancing coordination amongst multiple devices in seek-and-
rescue operations. Additionally, the hybrid version reduces 
computational overhead even while maintaining high 
performance, making sure of robust navigation accuracy and 
impediment avoidance. Its versatility across diverse programs, 
including logistics and surveillance, in addition, underscores its 
ability for broad effect and aid performance in self-reliant 
systems. 

Future work should put efforts in mitigating such limitations 
by enhancing the environment sensing capability by involving 
more advanced sensors and enhancing the algorithm of DRL in 
handling more complex environment. Further, it is necessary to 
investigate approaches to improve the co-operation between 
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multiple drones and approaches to react on sudden changes in 
the environment. The effectiveness and reliability of the system 
can best be determined by and gauged by how it performs in the 
face of a variety of different real-life disasters that are different 
from the ones used in the development of the system. Constant 
enhancement and upgrading will keep the system to be one of 
the best in the market for autonomous navigation technology 
making its applicability in various and dynamic emergency 
response scenarios. 

REFERENCES 

[1]  E. Menendez, J. G. Victores, R. Montero, S. Martínez, and C. Balaguer, 
“Tunnel structural inspection and assessment using an autonomous 
robotic system,” Autom. Constr., vol. 87, pp. 117–126, 2018. 

[2]  M. F. Pinto, A. L. M. Marcato, A. G. Melo, L. M. Honório, and C. 
Urdiales, “A Framework for Analyzing Fog-Cloud Computing 
Cooperation Applied to Information Processing of UAVs,” Wirel. 
Commun. Mob. Comput., vol. 2019, pp. 1–14, Jan. 2019, doi: 
10.1155/2019/7497924. 

[3]  W. A. Neto, M. F. Pinto, A. L. M. Marcato, I. C. Da Silva, and D. D. A. 
Fernandes, “Mobile Robot Localization Based on the Novel Leader-
Based Bat Algorithm,” J. Control Autom. Electr. Syst., vol. 30, no. 3, pp. 
337–346, Jun. 2019, doi: 10.1007/s40313-019-00453-2. 

[4]  X. Zhang, T. Zhu, L. Du, Y. Hu, and H. Liu, “Local Path Planning of 
Autonomous Vehicle Based on an Improved Heuristic Bi-RRT Algorithm 
in Dynamic Obstacle Avoidance Environment,” Sensors, vol. 22, no. 20, 
Art. no. 20, Jan. 2022, doi: 10.3390/s22207968. 

[5]  P. Goswami et al., “AI based energy efficient routing protocol for 
intelligent transportation system,” IEEE Trans. Intell. Transp. Syst., vol. 
23, no. 2, pp. 1670–1679, 2021. 

[6]  J. Peng, Y. Chen, Y. Duan, Y. Zhang, J. Ji, and Y. Zhang, “Towards an 
online RRT-based path planning algorithm for Ackermann-steering 
vehicles,” in 2021 IEEE International Conference on Robotics and 
Automation (ICRA), IEEE, 2021, pp. 7407–7413. Accessed: Jun. 21, 
2024. [Online]. Available: 
https://ieeexplore.ieee.org/abstract/document/9561207/ 

[7]  T. Xiong et al., “Multi-Drone Optimal Mission Assignment and 3D Path 
Planning for Disaster Rescue,” Drones, vol. 7, no. 6, Art. no. 6, Jun. 2023, 
doi: 10.3390/drones7060394. 

[8]  K. Almazrouei, I. Kamel, and T. Rabie, “Dynamic Obstacle Avoidance 
and Path Planning through Reinforcement Learning,” Appl. Sci., vol. 13, 
no. 14, Art. no. 14, Jan. 2023, doi: 10.3390/app13148174. 

[9]  X. Yao, Y. Bai, B. Zhang, D. Xu, G. Cao, and Y. Bian, “Autonomous 
navigation and adaptive path planning in dynamic greenhouse 
environments utilizing improved LeGO‐LOAM and OpenPlanner 
algorithms,” J. Field Robot., p. rob.22315, Mar. 2024, doi: 
10.1002/rob.22315. 

[10]  F. Kiani et al., “Adaptive metaheuristic-based methods for autonomous 

robot path planning: sustainable agricultural applications,” Appl. Sci., vol. 
12, no. 3, p. 943, 2022. 

[11]  X. Liu, Y. Li, J. Zhang, J. Zheng, and C. Yang, “Self-adaptive dynamic 
obstacle avoidance and path planning for USV under complex maritime 
environment,” Ieee Access, vol. 7, pp. 114945–114954, 2019. 

[12]  Y. Wu and K. H. Low, “An adaptive path replanning method for 
coordinated operations of drone in dynamic urban environments,” IEEE 
Syst. J., vol. 15, no. 3, pp. 4600–4611, 2020. 

[13]  L. Chang, L. Shan, C. Jiang, and Y. Dai, “Reinforcement based mobile 
robot path planning with improved dynamic window approach in 
unknown environment,” Auton. Robots, vol. 45, no. 1, pp. 51–76, Jan. 
2021, doi: 10.1007/s10514-020-09947-4. 

[14]  Y. Zhuang, H. Huang, S. Sharma, D. Xu, and Q. Zhang, “Cooperative path 
planning of multiple autonomous underwater vehicles operating in 
dynamic ocean environment,” ISA Trans., vol. 94, pp. 174–186, Nov. 
2019, doi: 10.1016/j.isatra.2019.04.012. 

[15]  M. Azizi, S. Talatahari, and A. H. Gandomi, “Fire Hawk Optimizer: A 
novel metaheuristic algorithm,” Artif. Intell. Rev., vol. 56, no. 1, pp. 287–
363, 2023. 

[16]  M. Obayya et al., “Improved Bat Algorithm with Deep Learning-Based 
Biomedical ECG Signal Classification Model,” Comput. Mater. Contin., 
vol. 74, no. 2, 2023. 

[17]  Y. Chen et al., “A Hybrid Binary Dragonfly Algorithm with an Adaptive 
Directed Differential Operator for Feature Selection,” Remote Sens., vol. 
15, no. 16, p. 3980, 2023. 

[18]  M. Hank and M. Haddad, “A hybrid approach for autonomous navigation 
of mobile robots in partially-known environments,” Robot. Auton. Syst., 
vol. 86, pp. 113–127, Dec. 2016, doi: 10.1016/j.robot.2016.09.009. 

[19]  H. Taghavifar, B. Xu, L. Taghavifar, and Y. Qin, “Optimal Path-Planning 
of Nonholonomic Terrain Robots for Dynamic Obstacle Avoidance Using 
Single-Time Velocity Estimator and Reinforcement Learning Approach,” 
IEEE Access, vol. 7, pp. 159347–159356, 2019, doi: 
10.1109/ACCESS.2019.2950166. 

[20]  “Fire Detection Dataset.” Accessed: Jun. 21, 2024. [Online]. Available: 
https://www.kaggle.com/datasets/atulyakumar98/test-dataset 

[21]  Q. Cai, T. Long, Z. Wang, Y. Wen, and J. Kou, “Multiple paths planning 
for UAVs using particle swarm optimization with sequential niche 
technique,” in 2016 Chinese Control and Decision Conference (CCDC), 
IEEE, 2016, pp. 4730–4734. Accessed: Jun. 23, 2024. [Online]. Available: 
https://ieeexplore.ieee.org/abstract/document/7531839/ 

[22]  O. D. Montoya, A. Molina-Cabrera, L. F. Grisales-Noreña, R. A. 
Hincapié, and M. Granada, “Improved genetic algorithm for phase-
balancing in three-phase distribution networks: A master-slave 
optimization approach,” Computation, vol. 9, no. 6, p. 67, 2021. 

[23]  Q. Yao et al., “Path planning method with improved artificial potential 
field—a reinforcement learning perspective,” IEEE Access, vol. 8, pp. 
135513–135523, 2020. 

[24]  N. Gomathi and K. Rajathi, “Adaptive path planning for unknown 
environment monitoring,” J. Ambient Intell. Smart Environ., vol. 15, no. 
4, pp. 287–314, Jan. 2023, doi: 10.3233/AIS-220175. 


