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Abstract—An accurate liver tumour segmentation helps 

acquire the measurable biomarkers for decision support systems 

and Computer-Aided Diagnosis (CAD). However, most existing 

approaches fail to effectively segment tumours in the liver due to 

the overlapping of liver with any other organ in the image. To solve 

this problem, this research proposes Anchor Free with Masked 

Region-based Convolutional Neural Network (AFMRCNN) 

approach for segmenting liver tumours. The AF attains a precise 

localization of tumours by directly predicting the tumour location 

without relying on predefined anchor boxes. Standard datasets 

like LiTS and CHAOS are utilized to experiment with the 

efficiency of the proposed method. An EfficientNetB2 is 

performed to extract the most relevant features from the 

segmented data. The Deep Neural Network (DNN) is performed 

for the classification of liver tumours into binary classes by 

capturing intricate patterns and relationships in the data with the 

help of a non-linear activation function. The experimental results 

exhibit the proposed ARMRCNN method’s commendable 

segmentation performance of 0.998 Dice Similarity Coefficient 

(DSC), as opposed to the existing methods, UoloNet and UNet++ + 

pre-activated multiscale Res2Net approach with Channel-wise 

Attention (PARCA) on the LiTS dataset. 
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I. INTRODUCTION 

Medical segmentation plays a vigorous role in Computer-
Aided Diagnosis (CAD) by effectively improving the diagnostic 
performance and accuracy. This process enhances the precision 
of diagnosis, allowing more accurate identification and analysis 
of medical conditions [1], [2]. Globally, the liver disease is 
considered as the deadly disease and it is the predominant causes 
for liver cancer mortality. Liver tumour segmentation is 
important in the tumour phase and is a primary requirement for 
various radiological and surgical interventions including 
ablation therapy, liver transplant, etc. [3], [4]. There are various 
diagnosis tools like Computed Tomography (CT) scans, 
Magnetic Resonance Imaging (MRI), etc. which are the most 
extensively utilized techniques for the detection and diagnosis 
of hepatic cancer [5].  Among these, CT scans are majorly 
utilized to diagnose and provide highly detailed images of the 
body's internal structures and soft tissues. This high level details 

help accurately diagnosing various conditions. Different CAD 
solutions have been examined to aid radiologists in decision-
making with diagnostic effectiveness. Liver segmentation is the 
most complex phase of CAD systems and hence plays a pivotal 
in identifying the success of diagnosis [6]. This process allows 
doctors to identify tumours with similar appearances in medical 
images and assists in developing tailored treatment pathways 
[7]. The reliability and precision of the segmentation approaches 
are significant for acquiring the clinically relevant boundary, as 
well as the volumetric calculations in the stage of liver tumour 
[8]. 

The structural data of shape, size and location are obtained 
from the segmented liver areas which offer a helpful 
understanding for disease assessment and treatment planning 
[9],[10]. Thus, introducing the automatic and accurate 
approaches for liver tumour segmentation has fascinated to an 
enhancing consideration with a crucial worth in clinical practice 
[11], [12]. Additionally, researchers have introduced various 
CAD and Deep Learning (DL) approaches to aid radiologists in 
understanding the CT images [13],[14]. Simultaneously, the 
CAD systems detect Regions of Interest (RoI) and provide the 
probability of these areas being specific types of lesions of either 
malignant or benign [15]. However, most of the existing 
approaches have failed to effectively segment tumours in the 
liver due to the overlapping of the liver with any other organ in 
the image. To overcome this problem, this research proposes the 
novel DL approach of Anchor Free with Masked Region-based 
Convolutional Neural Network (AFMRCNN) approach for 
segmenting liver tumours. The foremost contributions of this 
research are as follows: 

 For liver tumour segmentation, this research proposes the 
AFMECNN approach. The AF directly detects the 
tumour location without relying on predefined anchor 
boxes, leading to the minimization of the existence of 
false positives and negatives. 

 For the feature extraction process, the pre-trained 
architecture of EfficientNetB2 is utilized to extract the 
pertinent features. The EfficientNetB2 technique attains 
the most efficient extraction of high-quality features 
from images by employing effective scaling approaches. 
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 The Deep Neural Network (DNN) is performed to 
classify liver portions into two categories: Tumour and 
Non-tumour. The DNN attains a greater accuracy by 
capturing intricate patterns and relationships in data with 
the help of non-linear activation functions. 

This research paper is further provided as follows: Section II 
displays the literature survey based on liver and tumour 
segmentation using DL approaches, Section III shows the 
proposed methodology, while Section IV demonstrates the 
results and discussion, and the conclusion of this research is 
given in Section V. 

II. LITERATURE SURVEY 

In order to address the issue of liver tumour segmentation, 
various approaches were introduced by researchers. This section 
discusses the related works of the DL-based approaches for liver 
and tumour segmentation, along with their advantages and 
limitations. Table I demonstrates the advantages and limitations 
of the literature survey of Liver and Tumor Segmentation 
discussed in this research. 

Zheng et al. [16] developed a UoloNet model to enhance the 
small target medical segmentation model for liver tumours using 
the LiTs17 dataset. The UoloNet model comprised three main 
modules namely, shared encoder module, object detection 
module, and mask generating module. The share encoder-
decoder module generally implemented the extracting features 
of the image. The object detection module performed in a dual 
task mode with object detection and segmentation. The 
prediction module enhanced the segmentation accuracy by 
utilizing detection outputs to improve and highlight specific 
regions. Finally, the Intersection Over Union (IOU) metric was 
used in the traditional YOLO approach to increase the 
convergence speed of the network. However, the high amount 
of noise in the prediction module affected the identification of 
small labels in the image. 

Huang et al. [17] implemented a Semi-supervised Double-
cooperative Network (SD-Net) for liver tumour segmentation 
using a CT scan image. The SD-Net framework reduced the 
requirement of dense labelling in liver image segmentation. For 
the segmentation process, collaborative networks like V-net and 
3D-ResVnet were utilized to transfer the labelled image from to 
the unlabelled image in the target domain. A dynamic Pseudo-
label generation strategy was introduced to enhance the label 
qualities in unsupervised learning by collecting better-predicted 
masks as pseudo-labels from both network models. Nonetheless, 
the implemented SD-net model was memory intensive due to the 
high resolution of images, leading to limited scalability. 

Yu et al. [18] presented a liver tumour segmentation network 
utilizing multi-phase CT images. To increase the importance of 
reciprocal data from various stages, Cross-Modal feature 
Guidance (CMG) and multi-feature fusion modules were 
developed in the model. The two modules were combined to 
effectively acquire the multi-phase features and improve the 
performance of liver tumour segmentation. The DL architecture 
was designed to exchange information between multiple phases 
and modalities accurately. However, the presented CMG model 
was constrained in its capability to analyse the complex details 

of lesions and generally focused only on segment lesions from 
inaccurate registration. 

Kushnure et al. [19] implemented a new lightweight multi-
level network through core architecture from the UNet++ 
network for automatic liver segmentation. The designed Pre-
activated multiscale Res2Net approach with Channel-wise 
Attention (PARCA) block in a network model was able to 
extract coarse multi-scale features from various levels. The 
modification in the UNet++ network with a PARCA feature 
mechanism extracted more semantic and contextual data, 
thereby enhancing the performance of the decoder in the 
network. In addition, a customized loss function was 
implemented to maintain data imbalance and effectively 
consider complex samples in the collected data. Nevertheless, 
the UNet++ failed to effectively segment tumours in the liver 
that overlapped with other tissues. 

Manjunath and Kwadiki [20] introduced a DL method for 
automatic liver tumour segmentation through CT scan images. 
For the liver tumour segmentation process, a 2D-modified 
ResUNet was designed to segment the affected regions in CT 
scan images. The 2D-modified ResUNet network was 
constructed by utilizing a parts encoder, the decoder, and the 
bridge. The encoder in the network encoded the resized image 
to a compact representation, then a pixel-wise fashion of an 
image was represented by the decoder, and finally, the bridge 
connected the paths of the encoder and decoder. Yet, the 2D-
modified ResUNet network model was unable to identify and 
segment small tumours in the image. 

TABLE I.  LITERATURE SURVEY OF LIVER AND TUMOUR 

SEGMENTATION 

Author Advantages Limitations 

Zheng et al. 

[16] 

UoloNet's CNN component 

significantly model spatial 
relationships within CT images, 

helping it identify subtle 

variations in tissue texture and 
intensity of a small tumour. 

A high level of noise in 

the segmented module 

impacted the accurate 
identification of small 

labels in the image. 

Huang et al. 

[17] 

SD-Net leveraged both labelled 

and unlabelled data by semi-
supervised learning approach, 

enabled for more accurate 

segmentation of small amount 
of labelled data. 

SD-net model was 

memory intensive 
because of its high 

resolution of images, 

resulted in limited 
scalability. 

Yu et al. 

[18] 

Cross-modal guidance 

mechanism enabled the network 
to significantly learn from 

balancing data over various 
stages, improved the 

segmentation performance. 

CMG model was 

limited in its capability 

to determine the 
complex details of 

lesions and basically 
focused only on 

segment lesions from 

inaccurate registration. 

Kushnure et 

al. [19] 

Through the fusion of features 

from various levels, the network 
integrated the global and local 

information, enhanced the 

segmentation accuracy. 

UNet++ was failed to 
significantly segment 

tumours in the liver that 

overlapped with other 
organs, resulted in poor 

performance. 

Manjunath 

and 
Kwadiki 

[20] 

The end-to-end approach 
removed the necessities of 

intermediate feature extraction 

steps and potentially enhanced 
the overall performance. 

2D-modified ResUNet 
network model was 

unable to identify and 

segment small tumours 
in the image. 
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From this overall analysis, the limitations of the existing 
methods are identified as follows: the presence of noise in the 
prediction module, memory intensive, limited detail analysis 
and ineffective tumour segmentation. To solve those 
aforementioned problems, this research proposes the 
AFMRCNN approach for the effective segmentation of liver 
tumours. The ARMRCNN approach solves the memory-
intensive problem by removing anchor-based complexity by 
considering effective sparse predictions. 

III. PROPOSED METHODOLOGY 

This research aims to overcome the segmentation in 
overlapping images. The AFMRCNN approach is proposed to 
effectively segment the liver tumour regions from the input 
images. The AF mechanism frequently utilizes key point-based 
predictions, provides more accurate boundary information and 
leads to enhanced segmentation performance. The DNN is used 
for the classification of segmented regions based on learned 
patterns by assigning the class labels to various regions in the 
image. The proposed method is comprised of five significant 
phases: data acquisition, pre-processing, liver tumour 
segmentation, feature extraction and classification. Fig. 1 
depicts the pipeline of the proposed method. 

 

Fig. 1. Pipeline of the proposed method 

A. Dataset Collection 

This research estimates the efficacy of the proposed method 
with two publicly available standard liver segmentation datasets, 
Liver Tumour Segmentation (LiTS) dataset [21] and Combined 
(CT-MRI) Healthy Abdominal Organ Segmentation (CHAOS) 
dataset [22]. The detailed explanation of these datasets is 
discussed below. 

1) LiTS dataset: The LiTS dataset involves 201-contrast 

enhanced 3D abdominal CT images, where 194 CT include 

lesions. This dataset is obtained from various scanners with 

scanning protocols from the clinical areas. The minimum and 

maximum number of axial slices in CT scans are 74 and 987, 

respectively. Fig. 2 depicts the sample images of the LiTS 

dataset. 

2) CHAOS dataset: CHAOS involves 120 DICOM 

volumes obtained from binary MRI modalities: T1-DUAL and 

T2-SPIR. T1-Dual involves phases which are, in-phase and out-

of-phase, each of 40 volumes. Every modality involves 20 

labelled training data and 20 unlabelled test data. The labelled 

training data are utilized for multi-modal medical image 

segmentation tests and estimations. Fig. 3 depicts the sample 

images of the CHAOS dataset. 

 

Fig. 2. Sample images of the LiTS dataset. 

 

Fig. 3. Sample images of the CHAOS dataset. 

Then, the collected datasets are portioned into two 
categories: 80% of the data are utilized for training and the 
remaining data for testing. Table II represents the sample 
number of datasets. The collected dataset is then provided for 
the pre-processing step. 

TABLE II.  SAMPLE NUMBER OF DATASETS 

Dataset Tumour Non-Tumour 

LiTS 21478 42160 

CHAOS 6217 8205 

B. Pre-processing 

After the data collection, pre-processing is performed to 
modify the input data for achieving the desired results of the DL 
approach. The collected data contains problems of high 
resolution and unwanted noise which leads to inaccurate 
segmentation results. Hence, this research utilizes pre-
processing techniques of image denoising and min-max 
normalization. In the image denoising process, the Gabor 
filtering approach [23] is utilized and is realized by performing 
convolution on the Gaussian function with trigonometric 
functions. By choosing the suitable Gabor function, various 
scales and directional features are detected from the collected 
data. This allows the utilization of Gabor filtering in image 
denoising and edge detection applications. By using image 
denoising, the Gaussian noise is removed as it produces random 
variations in pixel values, which obscure the significant features 
and structures in medical images. This denoising supports to 
enhance the precision of segmentation algorithms. 
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After denoising the image, the normalization is performed to 
equally balance the input data to enhance the segmentation 
performance because the collected data involves various units 
and scales. The min-max normalization [12] is a technique that 
is used to standardize and measure data in the direction to be 
taken out to the comparable range and magnitude. Then, the pre-
processed data are provided to the segmentation process to 
effectively localize the affected regions. 

C. Segmentation 

The pre-processed images are fed as input to the 
segmentation technique to effectively segment the liver tumour 
regions for classification. Segmentation is a technique generally 
used in image processing to segment into multiple parts or 
regions based on the characteristics of pixels in the image. To 
effectively segment the tumour regions, the AFMRCNN 
approach is proposed. The detailed explanation of this proposed 
method is described in the following section. Fig. 4 illustrates 
the segmented images of LiTS and CHAOS datasets. 

1) Anchor-free with mask region-based convolutional 

neural network: As compared with the other segmentation 

approaches, the MRCNN approach produces high-quality 

pixel-to-pixel masks for every case. It performs pixel-level 

segmentation operations and obtains better target-positioning 

performance in liver tumour segmentation. The MRCNN [24] 

approach utilizes a two-stage network model. Initially, the 

Region Proposal Network (RPN) generates predictions on 

Regions of Interest (RoI). Then, the Fully Convolutional 

Network (FCN) processes these RoIs to predict the binary 

mask, bounding box offsets, and categories for every RoIs. The 

network model of the MRCNN approach involves three 

significant types of backbone network, pixel (mask) prediction 

and alignment of RoI. 

In the process of liver tumour segmentation, this research 
designs the Anchor Free with RPN (AF-RPN) approach to 
acquire better localization of the liver tumours. The AF-RPN 
architecture is an FCN to achieve the sharing computation with 
the binary class classification network. To acquire the tumour 
regions, the AF-RPN uses a sliding window mechanism applied 
to feature maps developed through a fusion module. This 
network performs 3 × 3  spatial window on an input feature 
map, and extracts the features through every sliding window. It 
is mapped to 512-dimensional feature vector through 3 ×
3 kernel convolutional operation via 512 channels. These 
channel features are forwarded to the two parallel fully 
convolutional networks. One branch provides likelihoods for 
classification, demonstrating whether or not the regions are 
objects, while the other branch provides the coordinates of the 
boxes for localization. These are processed through the 1 × 1 
convolutional layer and eventually, all output proposals are 
performed through the Non-Maximum Suppression (NMS) 
approaches to eliminate irrelevant proposals. Here, the 
Receptive Field (RF) is developed and anchor-free boxes are 
applied within the proposed region network to acquire 
parameterization for position boxes. The RF is introduced by 
sliding the window across fusion feature maps in CNN. 

The RF for pixel is described as the rectangle region in the 
input data. Particularly for 𝑘 × 𝑘 sliding window with centroid 
(𝑥, 𝑦), the RF is obtained with (𝑥𝑟 , 𝑦𝑟 , 𝑤𝑟 , ℎ𝑟), where, 𝑥𝑟 = 𝑣 ×
𝑥 and 𝑦𝑟 = 𝑣 × 𝑦 and 𝑤𝑟 = ℎ𝑟 = 𝑘 × 𝑥 where 𝑣 represents an 
upsampling factor of the scaling coefficient from feature map to 
the input data. At every feature map location, there are 𝑘 anchor-
free boxes in the convolutional approach, but the proposed 
approach involves the individual RF. Providing the 
convolutional feature map of size 𝑤 × ℎ, obtaining the 𝑤 × ℎ 
RF samples in total leads to 𝑘 times, not more than the present 
AF mechanism. In this research, the RF is introduced as the 
position boxes to acquire parameterized coordinates of the 

ground truth bounding box 𝑡 ∗ (𝑡 ∗= {𝑡𝑥 ∗, 𝑡𝑦 ∗, 𝑡𝑤 ∗, 𝑡ℎ ∗}) and 

predicted box (𝑡 = {𝑡𝑥, 𝑡𝑦 , 𝑡𝑤, 𝑡ℎ}), as formulated in Eq. (1) and 

(2). 

𝑡 ∗=
(𝑥∗−𝑥𝑟)

𝑤𝑟
, 𝑡𝑦 ∗=

(𝑦∗−𝑦𝑟)

ℎ𝑟
, 𝑡𝑤 ∗=

𝑙𝑜𝑔(𝑤∗/𝑤𝑟)

𝑡ℎ
, 𝑡ℎ ∗=

𝑙𝑜𝑔(ℎ ∗/ℎ𝑟) 

𝑡𝑥 =
(𝑥−𝑥𝑟)

𝑤𝑟
, 𝑡𝑦 =

(𝑦−𝑦𝑟)

ℎ𝑟
, 𝑡𝑤 = 𝑙𝑜𝑔(𝑤/𝑤𝑟), 𝑡ℎ = 𝑙𝑜𝑔(ℎ ∗

/ℎ𝑟) 

Where, 𝑥 ∗  and 𝑦 ∗  represent the centre coordinates of 
ground truth box; 𝑤 ∗, ℎ ∗ denote the width and height, 𝑥, 𝑦, 𝑤 
and ℎ illustrates the complements of predicted box, 𝑥𝑟 , 𝑦𝑟 , 𝑤𝑟 
and ℎ𝑟 represent the RF box which is observed as the regression 
from the RF to its closest ground truth box. By eliminating the 
anchor-based predictions, this approach simplifies the prediction 
process, which supports the more effective maintenance of 
memory when processing high-resolution images. Then, the 
segmented results are provided to the feature extraction process. 

 

Fig. 4. Segmented images of LiTS and CHAOS datasets. 

D. Feature Extraction 

The segmented portions of the liver tumour are fed to the 
feature extraction process. Feature extraction is a process of 
identifying and extracting relevant features from the data, 
further used in classification and prediction tasks. Extracting the 
important features of shape, edge, texture and intensity 
information support the distinguishing between normal liver 
tissue and tumour tissue. This leads to more accurate 
segmentation results and outlines tumours from the surrounding 
healthy tissue. In this research, the pre-trained architecture of 
EfficientNetB2 is performed to extract the relevant (texture and 
shape) features. The detailed explanations of this architecture 
are discussed below. 
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1) EfficientNetB2: As compared to other pre-trained 

architectures, the EfficientB2 utilizes a compound scaling 

approach to balance the network resolution, depth and width. 

This process effectively scales dimensions, leading to the most 

effective utilization of floating-point operations and 

parameters. The network depth, resolution and width are 

reliably scaled through the Efficient Net logically by the 

utilization of compound coefficient. The EfficientNetB2 [25] 

involves arranging the model through global max pooling and 

the dropout layer to solve the overfitting problem and succeed 

through the dense layer for the binary classification. This 

architecture complies with the suitable loss as well as 

optimization functions and performs the callbacks for effective 

training. In EfficientNetB2, the CNN network involves various 

layers designed for the image processing tasks. With the output 

shape, the EfficientNetB2 incorporates the 7 × 7  spatial 

dimensions with 1408 channels. Ensuing the convolutional 

layers, the Global Average Pooling (GAP) operation minimizes 

the spatial dimensions while recollecting the most salient 

features, resulting in the size of (None, 1408). Then, the dropout 

layer is performed to alleviate overfitting by arbitrarily 

deactivating the neurons in training. Eventually, the dense layer 

with 1 unit is used for the extraction process with 1409 

parameters. The extracted texture and shape features using 

EfficientNetB2 provide detailed information about tumour 

regions. This information supports classification by helping 

differentiate tumour regions from normal liver tissue and other 

structures. Then, the extracted 1408 features from the GAP 

layer are provided for the classification process. 

E. Classification 

After feature extraction, the features are fed as input to the 
liver tumour classification. In this research, the DNN approach 
is utilized for the classification of tumours into two types as 
tumour and non-tumour. The detailed description of the DNN is 
discussed below. 

1) Deep neural network: The DNN [26] is inspired by the 

biological nervous network. The DNN is a robust promising 

approach in modelling the mechanical materials behaviour 

because of its powerful nonlinear mapping capability. The 

DNN approach comprises three significant layers of input, 

activation and Fully Connected (FC) layer which are utilized 

for the classification tasks. 

A neural network requires an activation function for the final 
prediction of liver tumours. Rectified Linear Unit (ReLU) is the 
default activation function; it extends the nonlinearity to the 
network which provides output 0 for negative values and similar 
values for non-negative values. Also, Sigmoid is an activation 
function which is appropriate for binary classification with the 
output within the range of 0 to 1. The sigmoid identifies the 
multinomial probability distribution with two classes. The dense 
layer is the Neural Network (NN) layer, in which every neuron 
in the layer obtains an input from whole neurons of its previous 
layer. It utilizes the operation function to map each input with 
output. 

In the classification process, the DNN effectively classifies 
the liver tumour into binary classes with the help of various 
layers. Hence, DNN is more robust to variations in input data 
like differences in tumour size, shape, and appearance, as 
opposed to the traditional classifiers which require effective 
tuning of parameters. The classified result are implanted to 
estimate the effectiveness of the model, and the detailed 
explanation result is represented in the following section. 

IV. EXPERIMENTAL RESULTS 

The segmentation effectiveness of the liver tumour is 
estimated experimentally based on two standard datasets. The 
experiments of the proposed AFMRCNN approach are 
implemented on Python 3.10.12 with the system configuration 
of Windows 10 (64 bit) OS, intel i5 processor and 8GB RAM. 
The model effectiveness is estimated through various 
segmentation performance metrics of Volumetric Overlap Error 
(VOE), Dice Similarity Coefficient (DSC), Relative Volume 
Difference (RVD) and Intersection over Union (IoU). The 
classification metrices of accuracy, precision, specificity, 
sensitivity/recall, and F1-score are used to estimate AFMRCNN 
performance. The mathematical expressions of these assessment 
metrics are formulated in Eq. (3) to (10). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                         (3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                            (4) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                           (5) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
                           (6) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
                      (7) 

𝐷𝑆𝐶 = 2
|𝐴∩𝐵|

|𝐴|+|𝐵|
                                (8) 

𝑉𝑂𝐸 = 1 −
|𝐴∩𝐵|

|𝐴∪𝐵|
                              (9) 

𝑅𝑉𝐷 =
|𝐵|−|𝐴|

|𝐴|
                             (10) 

Where, TN is True Negative, TP is True Positive, FN is False 
Negative and FP is False positive, while 𝐴 and 𝐵 represent the 
binary masks. Table III represents the hyper parameter settings 
of the proposed AFMRCNN approach. 

TABLE III.  HYPERPARAMETER SETTINGS OF THE PROPOSED AFMRCNN 

APPROACH 

Hyper parameters Values 

Optimizer Adam 

Learning Rate 0.0001 

Loss Function Binary cross entropy 

Batch size 32 

Activation function Sigmoid 

No. of Epochs 20 
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A. Quantitative and Qualitative Analysis 

The achievements of the proposed AFMRCNN method is 
estimated against the existing methods on the LiTS and CHAOS 
datasets. Table III demonstrates the analysis of the segmentation 
results. Table IV represents an analysis of the feature extraction 
results with an analysis of the classification results. 

In Table IV, the performance analysis of the segmentation 
results is presented on the LiTS and CHAOS datasets. The 
success of the proposed AFMRCNN method is estimated and 
compared with conventional segmentation approaches like 
UNet, CNN and MRCNN approaches. When compared to these 
conventional approaches, the AF in the MRCNN approach that 
depends on the predicting key points, leading to more accurate 
localization of liver tumours. This approach specifically aids 
when dealing with irregular shapes and sizes of tumours, leading 
to enhanced segmentation outcomes. In LiTS dataset, the 
proposed AFMRCNN approach attains a better DSC of 0.978, 
VOE of 14.75, RVD of 11.92 and IoU of 0.98. In the CHAOS 
dataset, the proposed AFMRCNN approach attains a superior 
DSC of 0.988, VOE of 6.52, RVD of 5.32 and IoU of 0.98. 

In Table V, the performance analysis of the feature 
extraction results is demonstrated based on the LiTS and 
CHAOS datasets. The efficiency of the EfficientNetB2 
approach is estimated and compared with existing feature 
extraction approaches of ResNet, VGG19 and InceptionNet. As 
opposed to these approaches, EfficientNetB2 architecture 
permits the model to extract relevant and detailed features, 
capturing complex patterns and structures in the collected data 
with the help of the compound scaling method. In the LiTS 
dataset, the performed EfficientNetB2 approach attains a better 
accuracy of 0.997, precision of 0.998, recall of 0.978, specificity 

of 0.995 and F1-score of 0.987. Also on the CHAOS dataset, the 
EfficientNetB2 attains a better accuracy of 0.996, precision of 
0.997 precision, recall of 0.988, specificity of 0.996 and F1-
score of 0.992. 

In Table VI, the performance analysis of the classification 
results is demonstrated based on the LiTS and CHAOS datasets. 
The effectiveness of the DNN approach is estimated and 
compared with the existing feature extraction methods of CNN, 
Simple Neural Network (SNN) and Feedforward Neural 
Network (FNN). When compared to these approaches, the DNN 
minimizes the loss of important features by allowing end-to-end 
learning. In the LiTS dataset, the performed DNN approach 
attains a superior accuracy of 0.997, precision of 0.998, recall of 
0.978, specificity of 0.995 and F1-score of 0.987. Additionally 
on the CHAOS dataset, the DNN attains a superior accuracy of 
0.996, precision of 0.997, recall of 0.988, specificity of 0.996 
and F1-score of 0.992. 

TABLE IV.  ANALYSIS OF SEGMENTATION RESULTS 

Dataset Method DSC VOE RVD IoU 

LiTS 

UNet 0.874 19.80 15.45 0.90 

CNN 0.896 18.90 14.75 0.91 

MRCNN 0.912 17.65 13.80 0.93 

AFMRCNN 0.978 14.75 11.92 0.98 

CHAOS 

UNet 0.853 8.45 6.75 0.85 

CNN 0.875 8.60 7.85 0.86 

MRCNN 0.893 7.95 6.45 0.88 

AFMRCNN 0.988 6.52 5.32 0.98 
 

TABLE V.  ANALYSIS OF FEATURE EXTRACTION RESULTS 

Dataset Method Accuracy Precision Recall Specificity F1-score 

LiTS 

ResNet 0.952 0.941 0.964 0.948 0.952 

VGG19 0.961 0.955 0.972 0.960 0.961 

InceptionNet 0.844 0.832 0.857 0.841 0.844 

EfficientNetB2 0.997 0.998 0.978 0.995 0.987 

CHAOS 

ResNet 0.923 0.912 0.934 0.921 0.923 

VGG19 0.938 0.929 0.945 0.937 0.938 

InceptionNet 0.819 0.806 0.832 0.818 0.821 

EfficientNetB2 0.996 0.997 0.988 0.996 0.992 

TABLE VI.  ANALYSIS OF CLASSIFICATION RESULTS 

Dataset Method Accuracy Precision Recall Specificity F1-score 

LiTS 

CNN 0.945 0.952 0.938 0.964 0.945 

SNN 0.889 0.895 0.874 0.870 0.884 

FNN 0.927 0.933 0.956 0.922 0.945 

DNN 0.997 0.998 0.978 0.995 0.987 

CHAOS 

CNN 0.918 0.921 0.905 0.934 0.913 

SNN 0.853 0.855 0.848 0.863 0.851 

FNN 0.896 0.901 0.878 0.869 0.889 

DNN 0.996 0.997 0.988 0.996 0.992 
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1) Accuracy function: Fig. 5(a) explains the training and 

validation of the accuracy for the AFMRCNN approach based 

on the LiTS dataset. Fig. 5(b) explains the training and 

validation of the accuracy for the AFMRCNN approach based 

on the CHAOS dataset. The accuracy of the validation is 

attained through the model on the 20th epoch. The training data 

is continuously partitioned into smaller portions, which are 

utilized to update the parameter of the model. The number of 

epochs describes the total number of iterations that the model 

works on the training data. Accuracy allows for the easy 

comparison among the models, representing a commendable 

model’s performance, considering the classes balanced. 

 
(a) 

 
(b) 

Fig. 5. Accuracy function: (a) LiTS and (b) CHAOS. 

2) Loss function: Fig. 6(a) explains the training and 

validation of the loss function for the AFMRCNN on LiTS 

dataset. Fig. 6(b) explains the training and validation of the loss 

function for the AFMRCNN on CHAOS dataset. The minimum 

loss of the validation is attained through the model on the 17th 

epoch, while the training continues until the 18th epoch. 

However, after the 17th epoch, the loss was further not 

minimized. At every epoch, the model often changes its internal 

parameters by focusing on the input data when compared with 

the target labels to reduce the loss. This loss function indicates 

that the AFMRCNN has learned to simplify well to the 

validation data up to this point. This is a significant indicator of 

the performance of the AFMRCNN on the given data. 

 
(a) 

 
(b) 

Fig. 6. Loss function: (a) LiTS and (b) CHAOS. 

3) ROC Curve: Fig. 7(a) depicts the confusion matrix for 

AFMRCNN with an affiliation among True Positive Rate 

(TPR) and False Positive Rate (FPR) based on LiTS dataset. 

Fig. 7(b) depicts the confusion matrix for AFMRCNN with an 

affiliation among TPR and FPR based on CHAOS dataset. ROC 

is used to depict the graphical evaluation of the binary 

classification. The ROC curve is widely used to evaluate the 

performance of classifiers. In this process, the area under the 

ROC curve is fixed at 0.72. Estimating the ROC curve with 

TPR and TNR supports understanding the trade-offs between 

sensitivity and specificity. This supports selecting the optimal 

balance between correctly identifying positives and minimizing 

false positives, leading to a commendable AFMRCNN 

performance. 
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(a) 

 
(b) 

Fig. 7. ROC curve: (a) LiTS and (b) CHAOS. 

B. Comparative Analysis 

The efficiency of the proposed method is compared with the 
existing methods based on the LiTS and CHAOS datasets in this 
section. The existing methods like UoloNet [16], CMG [18] and 
UNet+++ PARCA [19] are compared and estimated with the 
proposed AFMRCNN approach. AF mechanism significantly 
minimizes the chances of missing small or irregularly shaped 
tumours which are not aligned well with predefined anchors, 
leading to better segmentation results. In classification tasks, the 
DNN is utilized for classifying liver tumours with the help of the 
sigmoid activation function in the final layer to produce a 
probability distribution over different classes. This process 
allowing for straightforward interpretation of the DNN 
confidence in every class and enabling decision-making, 
resulting in a superior classification of tumour and non-tumour. 
Table VII represents the comparative analysis on the LiTS and 
CHAOS datasets. 

C. Discussion 

The advantages of the proposed AFMRCNN and limitations 
of the existing works are discussed. The limitations of the 
previous works: In UoloNet [16], a high level of noise in the 

segmented module impacted the accurate identification of small 
labels in the image. SD-net model [17] was memory intensive 
because of its high resolution of images, resulted in limited 
scalability. CMG model [18] was limited in its capability to 
determine the complex details of lesions and basically focused 
only on segment lesions from inaccurate registration. UNet++ 
[19] was failed to significantly segment tumours in the liver that 
overlapped with other organs, resulted in poor performance. To 
overcome these problems, the AFMRCNN mechanism 
enhances the detection of small objects like tumors through 
reducing the dependency on predefined anchor boxes, which 
often introduce noise. The anchor-free approach enables the 
network to focus more precisely on the actual regions of interest, 
enhancing the small label segmentation accuracy. The anchor-
free design enables the model to learn object boundaries 
dynamically, resulted in better segmentation. 

TABLE VII.  COMPARATIVE ANALYSIS USING LITS AND CHAOS 

DATASET 

Dataset Method Recall DSC VOE RVD 

LiTS 

UoloNet [16] 0.821 0.462 NA NA 

UNet++ + PARCA [19] 0.964 0.963 0.057 0.015 

Proposed AFMRCNN 0.978 0.978 0.147 0.119 

CHAOS 

CMG [18] 0.927 0.928 NA 0.061 

UNet++ + PARCA [19] 0.912 0.951 0.096 0.079 

Proposed AFMRCNN 0.988 0.988 0.652 0.532 

This research demonstrates that the binary classification 
with CNN is effectively utilized for semantic segmentation in 
medical diagnosis, particularly for liver tumour segmentation. 
Moreover, this research demonstrates that the segmentation has 
improved the AFMRCNN effectiveness by solving the 
individual network bias. This research proposes an end-to-end 
automatic liver segmentation by using the AFMRCNN 
approach. This approach conducts multi-level features and AF 
mechanism for decontaminating the features. ARMRCNN 
approach improves the quality of segmentation masks by 
considering them more accurately on RoI. This results in a better 
description of tumour boundaries, which is complex for 
treatment planning and assessment. Hence, the proposed 
AFMRCNN approach attains a better DSC of 0.978 and 0.988, 
VOE of 14.75 and 6.52, RVD of 11.92 and 5.32 and IoU of 0.98 
and 0.98 on LiTS and CHAOS datasets. The results of this 
research demonstrate that the utilization of AFMRCNN 
enhances both accuracy and performance of medical diagnostics 
in the segmentation of liver tumours. The development in the 
expertise has the latent to improve patients’ outcomes, while 
enabling the development of personalized treatment plans. 

V. CONCLUSION 

Utilizing the CT images for diagnosing the liver tumours is 
the most popular technique because it provides high-resolution 
images with fine anatomical details. Consistent liver tumour 
segmentation requires accurate image processing across 
different steps and inaccuracies in this process because of the 
subsequent segmentation tasks. Hence, this research proposes 
the AFMRCNN approach to address the problem of image 
overlapping for the precise segmentation of the liver tumour. 
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The AF mechanism attains greater segmentation accuracy, 
particularly for irregularly shaped liver tumours through the 
prediction of the presence and boundaries of tumours directly. 
The DNN approach is performed to classify the liver tumours 
into binary classes through the Adam optimizers and adjust the 
learning rate dynamically to enhance the convergence. The 
experimental results exhibit the proposed AFMRCNN 
approach’s commendable DSC of 0.147 on the LiTS dataset as 
compared to the existing methods, UoloNet and UNet++ + 
PARCA. However, UoloNet and UNet++ + PARCA attain a 
minimum DSC of 0.462 and 0.963 on the LiTS dataset. Future 
work will involve the hybrid DL approach for enhancing the 
overall model results during the segmenting of the liver tumour. 
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