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Abstract—Most of improvement strategies for surrogate-as-

sisted optimization algorithms fail to help the population quickly 

locate satisfactory solutions. To address this challenge, a novel 

framework called dimensionality reduction surrogate-assisted 

evolutionary (DRSAE) framework is proposed. DRSAE intro-

duces an efficient dimensionality reduction network to create a 

low-dimensional search space, allowing some individuals to search 

in the population within the reduced space. This strategy signifi-

cantly lowers the complexity of the search space and makes it eas-

ier to locate promising regions. Meanwhile, a hierarchical search 

is conducted in the high-dimensional space. Lower-level particles 

indiscriminately learn from higher-level peers, correspondingly 

the highest-level particles undergo self-mutation. A comprehen-

sive comparison between DRSAE and mainstream HEPs algo-

rithms was conducted using seven widely used benchmark func-

tions. Comparison experiments on problems with dimensionality 

increasing from 50 to 200 further substantiate the good scalability 

of the developed optimizer. 

Keywords—Dimensionality reduction; high-dimensional expen-

sive optimization; Surrogate-assisted model 

I. INTRODUCTION 

Evolutionary algorithms (EAs) have been effectively uti-
lized in addressing optimization problems owing to their sim-
plicity and efficiency. In the era of big data, an increasing num-
ber of optimization problems involve a substantial quantity of 
decision variables, such as traffic vehicle scheduling [1], routing 
network issues [2], and biological gene identification [3]. When 
confronted with high-dimensional optimization problems com-
prising hundreds or even thousands of decision variables, tradi-
tional EAs often struggle to identify the optimal solution within 
the limited number of fitness evaluation (FE) iterations [4]. In 
high-dimensional expensive problems (HEPs), not only does the 
search space undergo exponential expansion and increased com-
plexity, but also the time required for evaluating the objective 
function becomes exceedingly costly. Therefore, simply apply-
ing existing EAs to solve HEPs is both time-consuming and in-
efficient. 

Incorporating dimensionality reduction techniques into 
high-dimensional optimization problems, thereby reducing the 
complex high-dimensional search space to a lower-dimensional 
space with higher information density, represents an effective 
approach for addressing high-dimensional challenges. In the re-
duced dimensional space, it becomes easier to swiftly identify 

promising regions, facilitating the generation of high-quality 
offspring at an accelerated pace. The application of Sammon 
mapping [5] for dimensionality reduction in EAs problem is mo-
tivated by its ability to preserve adjacent structures. However, 
literature [6] suggests that the performance of Sammon mapping 
often falters when dealing with intricate datasets. To tackle this 
issue, SAEO [7] proposed an evolutionary algorithm based on 
autoencoders (AE), which incorporates a reconstruction stage 
capable of restoring low-dimensional particles to their original 
high-dimensional space for real fitness evaluation. Nevertheless, 
AE necessitates a substantial amount of historical data before 
reaching training maturity and initial historical data is frequently 
comprised of poorly performing particles, potentially leading to 
biased evolutionary directions towards unpromising regions. 
Furthermore, training the neural network using backpropagation 
demands a significant time investment. 

In response to the challenge of identifying promising regions 
in HEPs amidst the "dimension disaster," there is a pressing de-
mand for an effective dimensionality reduction technique that 
can efficiently minimize the search space, facilitating the rapid 
identification of promising regions while retaining the capacity 
to reconstruct meaningful information in the original space. This 
paper presents a Dimensionality Reduction Surrogate-Assisted 
Evolutionary (DRSAE) framework. Its specific contributions 
are as follows: 1) It initiates the exploration of low-dimensional 
space, enhancing precise dimensionality reduction and recon-
struction of spatial particles by employing an Extreme Learning 
Machine based on autoencoder (ELM-AE) for space particles. It 
uncovers implicit information in the low-dimensional space 
through evolutionary search variations within that space. 2) The 
hierarchical search for particles in high-dimensional space aims 
to balance convergence and diversity, with lower-level particles 
focusing more on exploration and higher-level particles empha-
sizing development. Finally, the algorithm's performance is fur-
ther validated through experiments. 

II. RELATED WORK 

A. High-Dimensional Expensive Problems (HEPs) 

The design of contemporary complex products often entails 
addressing a multitude of high-dimensional and costly optimi-
zation challenges, necessitating thousands of precise simulation 
analyses that consume substantial computing resources [8]. In 
this study, we focus on a category of minimization problems: 
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 :subject to  x x x                        (2) 

Above the (1) and (2), 1 2( , ,..., ) d
dx x x x represents a d

dimensional decision vector within the feasible search space d

, and ( )f   denotes the objective function used for fitness evalu-

ation. Additionally, x and x correspond to the lower and upper 

bound vectors of the search space, respectively. In cases where 
the value of d is exceedingly large and evaluating ( )f  requires 

significant time and resources, these issues are classified as 
HEPs. 

Whether dealing with a continuous or combinatorial single- 
or multi-objective problem, agent-assisted evolutionary algo-
rithms are widely recognized as a promising approach for ad-
dressing HEPs. The essence of these algorithms lies in develop-
ing suitable agent models based on historical data samples to 
approximate the true objective function. In terms of computa-
tional resource requirements, the evaluation cost of these agent 
models is significantly lower than that of the real model, ena-
bling them to effectively pre-screen candidate solutions. Based 
on the predictions generated by the agent model, certain candi-
date individuals are chosen for re-evaluation using the real 
model. 

B. Extreme Learning Machine-Autoencoder (ELM-AE) 

ELM-AE is a single-hidden-layer neural network model, in 
which the number of nodes in the input and output layers are 
identical. The input and output of the model represent positions 
within a high-dimensional space, while the hidden layer's output 
represents positions within a lower-dimensional space following 
dimensionality reduction; hence, the dimension or number of 
nodes in the hidden layer is reduced. 

 

Fig. 1. ELM-AE. 

As depicted in Fig. 1, the input weights are initially initial-
ized with random values, employing a unitary orthogonal matrix 
chosen at random as the input weight [9]. This selection serves 
to maintain the Euclidean distance between data points and ex-
hibits favorable generalization properties. 

The hidden layer output ( , , )GH X A b is obtained by apply-

ing the activation function ( )G  to the result of multiplying sam-

ple X by A , adding the bias b , and passing it through. For a 

given dataset   
1

,
N
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i ix t , H denotes the output of the hidden 
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In (3), N represents the number of training samples, L de-

notes the number of nodes in the hidden layer, 1 2, ... Lg g g  are in-

dicative of the activation functions associated with the hidden 
layer nodes, and ix signifies the i -th training data. Essentially, 

H serves as a feature mapping representation of the training data
X following matrix operations and activation functions. The 

aforementioned process can be succinctly represented in matrix 
form as follows: 

H G(XA+ b)                 (4) 

T  represents the target matrix corresponding to the training 
samples: 
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T             (5) 

M represents the number of nodes in the output layer, while 

it denotes the corresponding target value for ix . The primary ob-

jective of ELM is to minimize the error associated with fitting 
the expired output T , as per (6): 

Hβ T          (6) 

The analytical solution for the weight matrix connecting the 
hidden layer and the output layer is derived [10]: 

†β H T          (7) 

The Moore-Penrose generalized inverse matrix †H serves as 
an effective tool for rapidly adjusting X to T . As the character-
istic representation of X , H can analytically compute the output 
weight β that maps to T . 

Hβ X             (8) 

† XHβ              (9) 

Importantly, when the ELM-AE target value equals X itself, 
the computed H serves as a high-quality representation of X and 

can be reconstructed to X using the calculated β in (9). 

III. DIMENSIONALITY REDUCTION SURROGATE-ASSISTED 

EVOLUTIONARY FRAMEWORK 

This paper proposes dimensionality reduction techniques to 
HEPs, enabling the algorithm to create a low-dimensional space 
for extracting implicit information for local search. Simultane-
ously, it preserves the multi-population optimization strategies 
within the high-dimensional space. Furthermore, it is viable to 
substitute the costly evaluation function in the high-dimensional 
space with a surrogate model, such as a radial basis function 
(RBF) network [11], to capture the global contour of the fitness 
landscape and facilitate rapid identification of the region con-
taining the global optimum by the population. 
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Subsequently, we present an overview of our algorithm's 
framework, which integrates our enhanced ELM-AE dimen-
sionality reduction network and hierarchical particle search 
strategy within high-dimensional space. We then provide a de-
tailed exposition of two parallel search paths before concluding 
with an analysis of the algorithm's time complexity. 

A. DRSAE Overall Framework 

Fig. 2 illustrates the comprehensive process of DRSAE. 
Prior to activating the RBF agent model, this study employs the 
classical differential evolution algorithm [12] to iteratively re-
fine the initial population, thereby gathering sufficient real eval-
uation data pairs conducive to training the initial agent model in 
a more favorable region. Upon activation of the agent model, the 
population is sorted based on fitness value and divided into two 
subpopulations. The subpopulation with lower fitness values un-
dergoes hierarchical search in the original high-dimensional 
space, while the other subpopulation conducts a search in low-
dimensional space through ELM-AE. The size of each subpop-
ulation will dynamically adjust as follows: 

In (10), Z denotes the population size, 1Z denotes the size of 

the high-dimensional subpopulation, 2Z denotes the size of the 

low-dimensional subpopulation, maxFE represents the maximum 

number of fitness evaluations, and curFE represents the current 

number of consumed fitness evaluations. 

B. Revised ELM-AE-Guided Exploration of Low-Dimensional 

Spaces 

It exploits the advantages of rapid training in ELM and data 
representation learning in AE. This investigation utilizes ELM-
AE to tackle HEPs and introduces enhancements. As illustrated 
in Fig. 1, the input layer and output layer represent the positions 
of high-dimensional space particles in the original space, while 

the hidden layer signifies the positions of low-dimensional space 
particles. The input weight matrix A is typically generated ran-
domly. In this study, A is a unit random orthogonal matrix, 
which can be denoted as: 

TA A I             (10) 

Where I represents the identity matrix. 

1ij A            (11) 

200/
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In (12), ijA denotes the element in the i-th row and j-th col-

umn of matrix A , while  represents the absolute value function. 

Each element of matrix A possesses an absolute value less than 
1, and the columns are mutually orthogonal. The unit random 
orthogonal matrix A can effectively preserve the Euclidean dis-
tances between data points [9] and demonstrate enhanced gen-
eralization. As per (4), N particles in X undergo dimensional re-
duction to a low-dimensional space denoted by H for brevity as 
follows: 

( )g





b 0

X X
             (13) 

The bias vector b is a zero vector, and the activation function 

( )g  is a linear function. The output weight matrix beta is deter-

mined from the low-dimensional space to the high-dimensional 
space using (9), which ensures an effective transformation be-
tween different dimensional spaces. 

 

Fig. 2. DRSAE process schematic. 
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In numerous practical scenarios, it is crucial to acknowledge 
that H may not be a square matrix ( L N ), leading to the com-

puted †H being the generalized inverse matrix of H rather than 
the true inverse matrix. As a result, there is a loss of high-dimen-
sional information. This investigation enhances the architecture 
of ELM-AE to ensure that H 's output forms a square matrix. 
Specifically, setting the number of input particles equal to the 
dimension of the low-dimensional space enables obtaining the 

true †H , thereby circumventing any information loss upon res-
toration of the high-dimensional space. 

It is apparent that the reduction in variation within low-di-
mensional space leads to a corresponding decrease in error dur-
ing projection into high-dimensional space. In order to address 
the potential dominance of reduction errors over evolutionary 
processes, a Gaussian field variation algorithm as described in 
[12] has been incorporated within the low-dimensional space to 
enhance local fine-tuning search capabilities. The subsequent 
section will present the updated formula for low-dimensional 
particles. 

 1 2, ,..., L

 

   

i iH H Δ

Δ
                   (14) 

iH denotes the position vector of the i -th individual in the 

low-dimensional space, Δ denotes the L -dimensional Gaussian 

perturbation vector, where (0, )d N   , 1 d L  . The pertur-

bation component in each dimension is randomly sampled from 

a region with a mean of 0 and a variance of 2 , as per literature 

[12]. Here, is set to 0.2 for enhanced performance across most 

test functions. From a geometric perspective, the algorithm gen-
erates new individuals within a Gaussian hypersphere centered 
at the current individual's position. 

C. Evolutionary Strategies Employing Multi-Level Hierarchy 

in High-Dimensional Spaces 

In the process of evolution within a high-dimensional space, 
individuals typically exist in various evolutionary states and 
possess different potentials for exploring and developing the 
search space. To distinguish them, they are categorized into dis-
tinct hierarchical levels based on their fitness values. Specifi-
cally, assuming that NP individuals are divided into NL hierar-

chical levels denoted as iL   1 i NL  , prior to classification, 

the particles in the population are arranged in ascending order of 
fitness. Particles with superior fitness belong to higher hierar-
chical levels, where a lower index indicates a higher level. Con-
sequently, 1L represents the highest hierarchical level while NLL

denotes the lowest one. Each hierarchical level consists of an 
equal number of individuals referred to as "level size", denoted 
by LS . 

Fig. 3 illustrates an optimization framework based on the 
Level Learning (LL) strategy. The algorithm arranges the parti-
cles in the swarm by sorting them in ascending order of their 
fitness values and then categorizes them into 4 levels based on 
their performance. Particles in level 4 learn from individuals in 
levels L1 to L3, individuals in level 3 learn from individuals in 
levels L1 and L2, and individuals in level 2 learn from particles 
in level L1. To safeguard superior particles from being errone-
ously updated, individuals at level L1 abstain from updating and 
proceed directly to the next generation. The following presents 
the update formula for high-dimensional space particles: 

   , 1 , 2 1, 1 , 3 2, 2 ,
d d d d d d
i j i j rl k i j rl k i jv rv r x x r x x      (15) 

, , ,
d d d
i j i j i jx x v            (16) 

In (15) and (16), 1
, , ,,..., ,...,d M

i j i j i jx x x  i, jX denotes the spatial 

coordinates of the j-th individual within layer iL  of the i-th hier-

archy, while M represents the dimensionality of the high-dimen-

sional space. 1
, , ,,..., ,...,d M

i j i j i jv v v  i, jV  signifies the particle veloc-

ity. Here, rl1,k1X  and rl2,k2X represent the positions of two 

individuals randomly selected from hierarchies 1rl  and 2rl , 

with corresponding indices 1k and 2k independently chosen 

from  1,LS . Additionally, 1rl and 2rl  are indices randomly se-

lected from  1, 1i  . The variables 1r , 2r and 3r are uniformly 

distributed random numbers in the range  0,1 , while  is a con-

trol parameter that governs the influence of a secondary learning 

objective within the range  0,1 . It should be noted that 

1 2rl rl i   implies that rl1,k1X is superior to rl2,k2X
,
both are su-

perior to i, jX . 

 

Fig. 3. Based on level learning strategy (LL). 
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D. The Flow of DRSAE 

Fig. 2 illustrates the flowchart of DRSAE, while Algorithm Ⅰ 
delineates the procedural steps of DRSAE. 

Algorithm Ⅰ: DRSAE Algorithm 

Input: population P, maximum number of fitness evaluations FE-

max, dimension of the problem D. 

Output: The final solution x and its fitness f(x). 

1. FEcur = 0; 

2. Establish database of {position, its fitness}; 

3. Initialize the swarm randomly and calculate the fitness  
 of particles; 

4. Initialize surrogate model RBF using first generation popula-

tion； 

5. Update FEcur; 

6. While size(database) < 150 do 

7.  P '  = DE(P); 

8.   Evaluate the fitness of P ' : f (P ' ); 

9.   Select and update P and f (P); 

10.   database = {database, new particles}; 

11.   If new data added to database then 

12.    RBF = UpdateRBF(new_data); 

13.   End if 

14. End while 

15. While FEcur< FEmax do 

16.   Population split: Split P into P1 and P2 according to  

  the dynamic size adjustment strategy; 

17.   /* high dimensional evolution */ 

18.   P1 ' = LL(P1) by (15)—(16); 

19.   Evaluate the fitness of P1 ' : f (P1 ' ); 

20.   Select and update P1 and f (P1); 

21.   /* low dimensional evolution */ 

22.   Dimensionality reduction: P2low= ELM-AE(P2); 

23.   P2low ' = Mutation (P2low) by (14); 

24.   Reconstruction: P2 '  = ELM-AE(P2low); 

25.   Evaluate the fitness of P2 ' : f (P2 ' ); 

26.   Select and update P2 and f (P2); 

27.   Update database and  FEcur; 

28.   If new data added to database then 

29.    RBF = UpdateRBF(new_data); 

30.   End if 

31. End while 

E. Complexity Analysis of DRSAE 

In the initial iteration of the algorithm, the time complexity 
for collecting the initial training samples for the surrogate model 
is denoted as ( )O KD , where K represents the number of train-

ing samples activated by the surrogate model. In this study, we 

assume K to be 5d , resulting in a time complexity of 2( )O D  for 

this stage. During each iteration process, sorting the subpopula-
tion (i.e., ranking) has a time complexity of 2( log ( ))O N N . The 

maintenance of the surrogate model carries a time complexity of 
5( ( / 2) )O D N , which can be approximated as 5( )O DN . Within 

high-dimensional space during hierarchical learning evolution, 
lower-level particles learn from higher-level particles; according 
to (15), this results in a time complexity of ( )O ND . For Gauss-

ian variation evolution based on dimensionality reduction in 
low-dimensional space as per (6), both dimensionality reduction 

and restoration have a time complexity of 2( )O DN ; and accord-

ing to (14), the variation process has a time complexity of ap-

proximately 2 5 2( + + + )O D DN ND DN . Consequently, ultimately, 

it is determined that DRSAE algorithm exhibits a time complex-

ity of approximately 2 5( + )O D DN . 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

To assess the performance of DRSAE, in this session, we 
conducted experiments on seven benchmark functions [13-17] 
commonly employed in the field. These functions demonstrate 
varying decision space dimensions and function characteristics, 
offering a comprehensive illustration of DRSAE's applicability 
to HEPs. The test functions ranged in dimensionality from 50 to 
200 dimensions, with essential information about these bench-
mark functions presented in Table Ⅰ. Each algorithm was inde-
pendently executed on each benchmark function 20 times in all 
experiments, and the results were subsequently averaged. The 
best average value for each benchmark function is highlighted 
in bold. The experimental environment consisted of an Intel i5 
CPU running at 2.50 GHz, equipped with 8 GB RAM and oper-
ating on Windows 10 system alongside matlab R2020a. 

TABLE I.  INFORMATION REGARDING THE BENCHMARK FUNCTION 

Fun Name 
Design 

space 
f * † Property 

F1 Ellipsoid [-5,5]d 0 Unimodal 

F2 Rosenbrock [-2,2]d 0 
Multimodal with nar-

row valley 

F3 Ackley [-32,32]d 0 Multimodal 

F4 Griewank [-600,600]d 0 Multimodal 

F5 Rastrigin [-5,5]d 0 Multimodal 

F6 
Shifted ro-

tated F5 
[-5,5]d -330 

Multimodal & Com-

plex 

F7 
Hybrid ‡ func-

tion 
[-5,5]d 10 

Multimodal & Com-

plex 

†: means global optimum. 

‡: Rotated hybrid composition function with a narrow basin for the global optimum. 

A. Algorithm Peers and Parameter Setting 

DRSAE integrates the concept of agent models. To assess 
the efficacy of DRSAE, this study assesses six agent-based op-
timization algorithms, namely GSGA [13], SA_COSO [14], 
ESAO [15], SHPSO [16], SAMSO [17], and SAEO [7]. Similar 
to traditional algorithms, the population size in DRSAE is fixed 
at 100, with a maximum number of re-evaluations per genera-
tion set at 5. The activation criteria for the agent models are con-
tingent on problem dimensionality and are triggered when the 
training point count reaches 1000. Experimental findings 
demonstrate that DRSAE requires fewer computational re-
sources than the algorithm proposed in [18] while approaching 
closer to an optimal solution. This unequivocally substantiates 
the substantial advantages of DRSAE in terms of optimization 
efficiency and effectiveness. 

B. Sensitivity Analysis of Surrogate Model Activation Point 

Surrogate models have demonstrated high efficacy in ad-
dressing HEPs. However, a critical concern arises: when should 
the surrogate model be initiated within this framework? The in-
itial training of the surrogate using data samples can ensure its 
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accuracy while managing time resource overhead. We desig-
nated different time points for activating the surrogate model, 
consuming 400, 600, and 800 FEs respectively. We evaluated 
the performance of each parameter using F1 and F5 metrics, 
highlighting the optimal result for each function. The optimiza-
tion outcomes are presented in Table Ⅱ, and the convergence 
curve is depicted in Fig. 4. 

Fig. 4 illustrates that the activation strategy for data sur-
passes other strategies in identifying an optimal solution with 
limited resources, indicating that the dimension-based strategy 
is well-suited for activating the agent model. As shown in 
Fig. 4(a)-(b), it is apparent that even if the constructed agent is 
sufficiently precise, delaying its activation until later stages of 
the optimization process may restrict subsequent optimization 
due to the limited number of remaining FEs. For high-dimen-
sional problems, as demonstrated in Fig. 4(c)-(d), an agent 
model built with a small number of data samples does not offer 
accurate search guidance. Therefore, it can be inferred that there 
is no discernible efficiency advantage to activating the agent 
early in the optimization process, and using data samples as an 
activation condition yields optimal results. 

C. Sensitivity Analysis of Dynamically Adjusting Subpopula-

tion Size 

To assess the efficacy of dynamically adjusting subpopula-
tion size, we compared the dynamic subpopulation size adjust-
ment strategy with the fixed subpopulation size strategy using 
DRSAE (Z1, Z2) to present experimental findings. The study 
evaluated F1 and F5 functions, each possessing distinct charac-
teristics, with bold highlighting the optimal results for each func-
tion. 

As depicted in Table Ⅲ, the dynamic subpopulation size ad-
justment strategy demonstrates superiority over the fixed sub-
population size strategy throughout the optimization process. 
Fig. 5 illustrates the dynamic sizing of subpopulation I for the 
F1 function at dimensions 50 and 200. Given that subpopulation 
I primarily emphasizes exploration, it is initially larger and grad-
ually diminishes according to (10) as optimization progresses to 
emphasize exploitation. With an increase in search space dimen-
sionality, a more intricate environment necessitates efficient ex-
ploration during initial stages; hence, as problem dimensions es-
calate, so does the initial size of subpopulation I. 

D. Comparative Experiments on Benchmark Functions 

Table Ⅳ presents the mean and standard deviation of 
DRSAE's independent runs conducted 20 times on 7 test func-
tions listed in Table I. The convergence curves from the original 
papers of SA_COSO [14], SAEO [7], SHPSO [17], and ESAO 
[15] were re-plotted, and the Wilcoxon signed-rank test results 
were calculated at a significance level of α = 0.05. The optimal 
result for each function is indicated in bold typeface. "Standard 
deviation" is shortened to "Std devi" for compact formatting. 

 
a(F1_50D)  b(F5_50D) 

  
c(F1_100D)  d(F5_100D) 

Fig. 4. Effects of activating surrogate models time-point. 

 
a(50D)   b(200D) 

Fig. 5. The dynamic size of sub-population. 

TABLE II.  OPTIMIZATION RESULTS OF ACTIVATING THE AGENT MODEL AT DIFFERENT TIME POINTS 

Fun & Dimension Metrics 400 600 800 5d 

F1(50)  
Mean 4.86e-23 1.77e-17 1.09e-09 1.51e-26 

Std deviation 2.12e-22 3.01e-16 2.18e-08 2.46e-26 

F5(50) 
Mean 0.00e-00 4.00e-11  6.10e-10 0.00e-00 

Std deviation 0.00e-00 1.60e-10 4.08e-09 0.00e-00 

F1(100) 
Mean 1.29e-10 1.42e-12 5.43e-10 8.99e-13 

Std deviation 1.52e-09 1.05e-11 1.52e-09 3.12e-12 

F5(100) 
Mean 1.37e-08 1.73e-09 1.12e-08  2.22e-11 

Std deviation 2.69e-07 1.84e-08 2.63e-07 8.87e-11 

F1(200) 
Mean 4.54e-03 1.18e-02 6.92e-04  1.79e-04 

Std deviation 1.06e-02 2.94e-02 9.51e-04 2.45e-04 

F5(200) 
Mean 6.63e-01 1.56e-02 9.32e-03 2.26e-04 

Std deviation 2.04e-00 2.40e-02 3.24e-02 5.15e-04 
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TABLE III.  OPTIMIZATION RESULTS OF DIFFERENT SUBPOPULATION ALLOCATION STRATEGIES 

Fun & Dimension Metrics DRSAE(10,90) DRSAE(50,50) DRSAE(90,10) DRSAE(dynamic) 

F1(50)  
Mean 3.51e-02 5.61e-02 1.08e-02 1.51e-26 

Std deviation 4.78e-02 9.67e-02 6.70e-03 2.46e-26 

F5(50) 
Mean 1.05e+01 1.05e+01 3.64e-01 0.00e-00 

Std deviation 7.99e+00 1.95e+01 5.90e-01 0.00e-00 

F1(100) 
Mean 2.48e-02 1.84e-02 3.21e-02 8.99e-13 

Std deviation 4.82e-02 3.09e-02 2.09e-02 3.12e-12 

F5(100) 
Mean 2.28e+00 8.98e-01 1.77e-01 2.22e-11 

Std deviation 4.37e+00 2.57e+00 8.26e-02 8.87e-11 

F1(200) 
Mean 8.24e-04 5.62e-03 4.35e-02   1.79e-04 

Std deviation 2.41e-04 2.04e-03 1.04e-02 2.45e-04 

F5(200) 
Mean 1.54e-03 1.24e-02 3.41e-01 2.26e-04 

Std deviation 1.08e-03 1.17e-02 2.58e-01 5.15e-04 

TABLE IV.  COMPARISON RESULTS OF 7 ALGORITHMS ON TEST FUNCTIONS F1-F7 ACROSS DIMENSIONS 50 TO 20 

Fun Dim Metrics SA_COSO SHPSO ESAO SAMSO GSGA SAEO DRSAE 

F1 

50 
Mean 4.66e+01(+) 7.17e+00(+) 7.40e-01(+) 5.13e-01(+) 6.21e-01(+) 1.51e-26(≈) 1.21e-27 

Std devi 1.74e+01 2.42e+00 5.55e-01 2.85e-01 4.84e-01 2.46e-26 2.46e-22 

100 
Mean 1.03e+03(+) 7.61e+01(+) 1.28e+03(+) 7.21e+01(+) 1.23e+01(+) 8.99e-13(≈) 5.99e-12 

Std devi 3.17e+02 2.14e+01 1.34e+02 1.78e+01 9.39e+00 3.12e-12 6.22e-11 

200 
Mean 1.63e+04(+) 2.35e+03(+) 1.76e+04(+) 1.52e+03(+) 3.14e+03(+) 1.79e-04(+) 3.70e-05 

Std devi 2.98e+03 3.25e+03 1.17e+03 2.12e+02 6.14e+03 2.45e-04 1.23e-04 

F2 

50 
Mean 2.53e+02(+) 5.13e+01(+) 4.74e-02(-) 5.01e+01(+) 4.82e+01(+) 4.89e+01(+) 4.83e-02 

Std devi 5.67e+01 2.00e+00 1.71e+00 7.68e-01 7.66e-01 1.66e-02 4.16e+00 

100 
Mean 2.71e+03(+) 1.65e+02(+) 5.79e+02(+) 2.86e+02(+) 1.09e+02(+) 9.88e+01(≈) 7.62e+01 

Std devi 1.17e+02 2.63e+01 4.48e+01 5.25e+01 1.17e+01 2.83e-02 2.41e-02 

200 
Mean 1.64e+04(+) 2.48e+03(+) 4.31e+03(+) 1.15e+03(+) 4.58e+02(+) 1.98e+02(+) 1.02e+02 

Std devi 4.09e+03 1.96e+02 2.84e+02 1.16e+02 1.16e+02 5.43e-02 1.36e-02 

F3 

50 
Mean 8.86e+00(+) 2.60e+00(+) 1.43e+00(+) 1.53e+00(+) 2.16e-02(+) 8.55e-14(≈) 2.56e-15 

Std devi 1.10e+00 2.48e-01 2.49e-01 4.36e-01 2.37e-02 4.42e-13 3.51e-13 

100 
Mean 1.57e+01(+) 4.11e+00(+) 1.04e+01(+) 6.12e+00(+) 1.31e+00(+) 6.96e-07(≈) 5.12e-07 

Std devi 5.02e-01 5.92e-01 2.11e-01 4.09e-01 9.68e-01 1.05e-06 3.25e-06 

200 
Mean 1.78e+01(+) 2.13e+01(+) 1.46e+01(+) 1.20e+01(+) 2.20e+01(+) 1.86e-03(+) 2.14e-04 

Std devi 2.23e-02 1.02e-01 2.19e-01 4.00e-01 6.20e-01 1.22e-03 1.94e-03 

F4 

50 
Mean 5.63e+00(+) 9.45e-01(+) 9.40e-01(+) 6.66e-01(+) 3.46e-01(+) 6.92e-15(≈) 8.65e-15 

Std devi 8.92e-01 5.39e-02 4.21e-02 1.07e-01 7.15e-02 8.85e-14 6.11e-14 

100 
Mean 6.33e+01(+) 1.07e+00(+) 5.73e+01(+) 1.06e+00(+) 7.06e-01(+) 1.39e-07(-) 8.65e-06 

Std devi 1.90e+01 2.04e-02 5.84e+00 2.64e-02 7.06e-02 8.79e-06 1.25e-05 

200 
Mean 5.77e+02(+) 3.14e+02(+) 5.72e+02(+) 9.03e+00(+) 1.03e+01(+) 3.79e-02(+) 2.85e-03 

Std devi 1.01e+02 6.58e+01 3.60e+01 1.33e+00 1.69e+00 3.16e-06 6.32e-03 

F5 

50 
Mean 3.22e+02(+) 3.89e+02(+) 4.21e+02(+) 3.77e+01(+) 1.53e+00(+) 0.00e-00(-) 15.99e-12 

Std devi 3.83e+01 6.27e+01 1.24e+01 7.82e+00 4.36e-01 0.00e-00 6.22e-11 

100 
Mean 8.81e+02(+) 8.78e+02(+) 4.15e+02(+) 4.29e+02(+) 6.55e+02(+) 2.22e-11(≈) 6.15e-12 

Std devi 7.01e+01 8.93e+01 6.73e+01 5.72e+01 6.31e+01 8.87e-11 6.24e-11 

200 
Mean 5.77e+02(+) 5.72e+02(+) 3.14e+02(+) 9.03e+00(+) 1.03e+01(+) 3.79e-02(+) 2.85e-03 

Std devi 1.01e+02 3.60e+01 6.58e+01 1.33e+00 1.69e+00 3.16e-06 6.32e-03 

F6 

50 
Mean 2.35e+02(−) 1.22e+02(−) 1.99e+02(−) 8.69e+02(+) 7.58+01(−) 7.71e+02(+) 6.66e+02 

Std devi 4.09e+01 2.59e+01 4.58e+01 3.17e+01 4.99e+01 5.89e+01 6.70e+01 

100 
Mean 1.27e+03(+) 8.01e+02(−) 7.13e+02(−) 7.37e+02(−) 6.72e+02(−) 2.02e+03(+) 1.85e+03 

Std devi 1.17e+02 7.22e+01 2.65e+01 4.20e+01 2.97e+01 1.34e+02 9.16e+01 

200 
Mean 3.92e+03(−) 4.15e+03(−) 5.38e+03(+) 4.96e+03(+) 2.56e+03(−) 4.80e+03(≈) 4.73e+03 

Std devi 2.72e+02 2.98e+02 1.56e+02 1.38e+02 2.68e+02 2.19e+02 2.89e+02 

F7 

50 
Mean 1.08e+03(+) 1.00e+03(+) 9.75e+02(+) 9.70e+02(+) 9.70e+02(+) 9.10e+02(≈) 9.10e+02 

Std devi 3.66e+01 2.12e+01 3.71e+01 2.92e+01 1.81e+01 4.71e-03 0.00e+00 

100 
Mean 1.36e+03(+) 1.41e+03(+) 1.37e+03(+) 1.29e+03(+) 1.25e+03(+) 9.10e+02(≈) 9.10e+02 

Std devi 3.08e+01 3.82e+01 2.75e+01 3.34e+01 2.45e+01 1.39e-02 1.65e-09 

200 
Mean 1.34e+03(+) 6.27e+02(+) 1.45e+03(+) 1.34e+03(+) 5.25e+03(+) 9.10e+02(+) 4.16e+01 

Std devi 2.46e+01 1.15e+01 2.04e+01 2.43e+01 1.87e+01 5.72e-04 2.79e-04 
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Table Ⅳ demonstrates that DRSAE surpasses most compa-
rable algorithms in efficiently identifying the vicinity of the op-
timal solution within a limited number of evaluations, while 
many others fall short of reaching the optimum. Notably, 
DRSAE exhibits strong performance on F5 with a minimum 
value characteristic indicative of a regular distribution. Among 
these, SAEO [7] shows relatively superior performance due to 
its utilization of dimensionality reduction. Furthermore, the 
ELM-AE dimensionality reduction network employed by 
DRSAE accurately restores high-dimensional space without in-
formation loss, resulting in overall better performance compared 
to SAEO. ESAO showcases commendable exploration ability 
owing to differential evolution, leading to superior performance 
on F2 with 50 dimensions compared to DRSAE. 

Plot convergence curves for the 100D and 200D problems, 
as illustrated in Fig. 6 and Fig. 7, respectively. Analysis of fig-
ures indicates that DRSAE demonstrates faster convergence to 
the optimal solution compared to other surrogate-assisted algo-
rithms such as SAEO. With increasing dimensionality, DRSAE 
exhibits superior optimization speed relative to other algorithms 
due to its enhanced capability in identifying promising regions 
within low-dimensional space. GSGA [13] performs exception-
ally well on F6, a complex multimodal function, by iteratively 
employing alternative functions at the cost of computational 
burden to enhance opportunities for finding the optimal solution. 
The suboptimal performance of DRSAE on F6 is primarily at-
tributed to the inability of dimensionality reduction in simplify-
ing the complexity of F6's landscape. Overall, DRSAE ranks 

first in average for both optimization speed and convergence 
performance, thus fully demonstrating its superiority. Upon ac-
tivation of the surrogate model, fitness value sharply decreases 
within the same range of function evaluations. 

E. Effectiveness Analysis of Dimensionality Reduction Strate-

gies 

To assess the efficacy of incorporating a low-dimensional 
search space, this study selects the F1 and F5 functions with di-
mensions ranging from 50 to 200 for evaluating both DRSAE 
and its non-low-dimensional version, DRSAE*. The optimiza-
tion results for DRSAE and DRSAE* are presented in Table Ⅴ. 

Drawing upon the findings presented in Table Ⅴ, it is evident 
that ELM-AE has significantly augmented the search efficiency 
of DRSAE* while maintaining an equivalent number of FEs. 
The results signify a noteworthy reduction in the average opti-
mal values, leading to expedited optimization speed for DRSAE. 
ELM-AE effectively steers the exploration of low-dimensional 
search space, integrates high-dimensional information, and ex-
tracts latent features, thereby facilitating rapid identification of 
promising regions and substantial reduction in unnecessary FE 
consumption, particularly for problems with potential conver-
gence issues. For problems up to 200 dimensions, leveraging the 
low-dimensional search space in ELM-AE has widened the gap 
between optimal values, demonstrating its advantage in precise 
and efficient dimensionality reduction. 

 

Fig. 6. Convergence curves of different algorithms on 100D benchmark problems. 
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Fig. 7. Convergence curves of different algorithms on 200D benchmark problems. 

TABLE V.  OPTIMIZATION RESULTS OF DRSAE* AND DRSAE 

Fun & Dimension Metrics DRSAE* DRSAE 

F1(50) 
Mean 4.18e-03 1.51e-26 

Std deviation 1.49e-03 2.46e-26 

F5(50) 
Mean 8.06e-02 0.00e+00 

Std deviation 7.11e-02 0.00e+00 

F1(100) 
Mean 1.55e-02 8.99e-13 

Std deviation 7.42e-03 3.12e-12 

F5(100) 
Mean 8.51e-02 2.22e-11 

Std deviation 4.53e+00 8.87e-11 

F1(200) 
Mean 1.75e+01 1.79e-04 

Std deviation 1.52e+01 2.45e-04 

F5(200) 
Mean 8.81e+02 2.26e-04 

Std deviation 5.14e+02 5.15e-04 

V. CONCLUSION  

This paper introduces an effective dimensionality reduction 
assisted evolutionary framework (DRSAE) for addressing high-
dimensional expensive evaluation function problems (HEPs). 
The primary challenge in HEPs lies in the high cost of evaluating 
the function, necessitating the rapid identification of optimal so-
lutions within a limited number of function evaluations. The al-
gorithm makes two key contributions: 1) Incorporating an effi-
cient and accurate low-dimensional search space into the 
traditional agent-based algorithm, enabling precise reduction 
and reconstruction of high-dimensional space to minimize posi-
tion information errors resulting from switching between spaces 

and expedite the discovery of a more promising solution space; 
2) Implementing hierarchical learning of particles in high-di-
mensional space, allowing lower-level particles to learn from su-
perior ones to enhance population diversity. Furthermore, spe-
cific activation conditions for the agent model are established 
for different dimensional problems. 

In order to assess the performance of DRSAE, it was com-
pared with other established algorithms across seven commonly 
utilized functions. The experimental results indicate that in most 
cases, DRSAE performs admirably, with SAEO demonstrating 
relatively superior performance. This can be attributed to the fact 
that SAEO also operates within a low-dimensional search space; 
however, its low-dimensional model is based on AE. In contrast 
to DRSAE, where ELM-AE produces a smaller reconstruction 
error from the low-dimensional space to the high-dimensional 
space. As a result, DRSAE is able to more accurately reconstruct 
features in the high-dimensional space and achieve improved 
performance. In addition, better results may be achieved by im-
proving the ELM network structure to stack ELM hidden layers. 

VI. FUTURE WORK 

We endeavor to integrate state-of-the-art Evolutionary Algo-
rithms (EAs) [19-23] into the DRSAE in order to tackle High-
dimensional Expensive Problems (HEPs), while exploring the 
underlying theory in future research. It is worth noting that this 
framework has the potential for extension to address multi-ob-
jective optimization problems, dynamic optimization problems, 
and constrained optimization problems, thereby validating the 
effectiveness of DRSAE in relevant real-world scenarios and ex-
panding its applicability in high-dimensional expensive optimi-
zation domains. 
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