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Abstract—This rapidly evolving landscape, which includes the 

field of medical diagnostics, has integrated with the electronic data 

(E-Data) field to provide precise and efficient treatment for 

complex medical conditions. The research field has further 

catapulted its reach to include various data types, including image, 

video, medical expert diagnostic type, and sensor input, out of 

which the image-based diagnostic model has excellent research 

potential. Convolutional Neural Network (CNN) based models 

have evolved into better Deep Learning (DL) models for handling 

complex intricacies featured in the input image. U-Net is a 

prominent CNN model developed to handle the features of image 

data. The U-Net excels in capturing detailed features through its 

encoder-decoder structure and skip connections, but its uniform 

weighting across different network layers may not adequately 

address the subtleties involved in complex medical anomaly 

detection. This work proposed the Attention Calibrated U-Net 

(ACU-Net) model that is designed to address the challenges of U-

Net in detecting Fetal Cardiac Rhabdomyoma (FCR) from 

echocardiographic (ECG) images. FCR is a prevalent benign 

cardiac tumor in fetuses that poses significant diagnostic 

challenges due to its variable manifestations and the intricate 

nature of fetal cardiac anatomy. The proposed model enhances the 

U-Net architecture with attention mechanisms and employs a 

hybrid Loss Function (LF) that combines Cross-Entropy Loss, 

Dice Loss, and an attention-driven component for effective FCR 

detection. The model was compared against others and 

demonstrated better specificity, accuracy, precision, recall, and 

F1-score performance across various ECG views (LVOT, RVOT, 

3VT, and 4CH). 
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I. INTRODUCTION 

The advent and the development of modern technologies 
have generated a considerable quantity of electronic data (E-
Data), and using this data, transformative developments were 
made across various domains. Within these various domains, the 
field of medical diagnostics has experienced profound 
advancements by developing technologies that work by 
processing the E-Data [1-5]. The proliferation of E-Data has led 
to the development of advanced models in the medical field, 
which analyse and interpret vast amounts of data to enhance 
diagnostic accuracy, treatment efficacy, and patient outcomes. 
Digital imaging data processing and storage analysis tools have 
developed as an outcome of these advances in technology, 
which enable improved care for patients, earlier disease 
detection, and more specific therapy approaches. Recent 
advances in science have had an essential effect on the ability to 
detect and analyse foetal cardiac rhabdomyoma (FCR) by 
employing echocardiographic (ECG) data. The unique model of 

the fetal heart and the recognition that FCR may develop into 
numerous forms—including benign tumours—make it highly 
challenging to diagnose this medical disorder, which impacts 
both the developing baby and the mother during pregnancy [6-
10]. 

In the past few years, cutting-edge Deep Learning (DL) 
algorithms have become available as possible resources to assist 
with testing E-Data evaluation and analysis. Convolutional 
Neural Networks (CNNs) are the most common DL model used 
for imaging in medical diagnostics because they are superior to 
different models in image recognition and evaluation tasks [11-
15]. Their ability to learn hierarchical feature representations 
from vast datasets has made them the better model for the task 
of detection and classification of medical conditions directly 
from imaging data. Out of different image modalities, the CNN 
outperformed FCR detection when trained using ECG images 
[16-20]. By analyzing the subtle patterns and textures found in 
the patterns of the ECG data, the existing CNN works to identify 
the markers that are indicative of FCR. The U-Net performed 
better in medical image segmentation tasks among the various 
CNNs. Initially, the U-Net model was designed for biomedical 
image segmentation; using its unique architecture efficiently 
captures context data from the image at various scales and has 
proven to be an efficient model that is particularly adept at 
delineating the boundaries of complex objects like FCR tumours 
within the heart. 

However, when considering the application of U-Net in the 
task of FCR detection, the U-Net model has its challenges. 
While the U-Net model has proven its efficiency by excelling in 
capturing the detailed features through its encoder-decoder 
structure and skip connections, it has its limitations in the form 
of its uniform weighting across different layers of the network, 
which adherently may not address the subtleties that are 
involved in FCR detection [21-25]. It also highlights the 
requirement for more conceptual refinement within the U-Net 
model. Optimising the specificity and accuracy of recognising 
FCR from ECG data can be accomplished via invention, which 
can take the form of combining attention mechanisms or 
inventing hybrid loss functions. A revised version of the 
standard U-Net architecture, the Attention Calibrated U-Net 
(ACU-Net), is recommended as an innovative method for 
detecting FCR in ECG data in the present investigation. In order 
to ensure an improved segmentation of FCR from the cardiac 
history, the designed ACU-Net model improves the U-Net with 
attention mechanisms to refine the segmentation process. The 
result is done by selectively emphasising locations that are 
significant within the ECG data. An attention-driven 
component, Cross-Entropy Loss, and Dice Loss are all included 
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in the proposed approach's hybrid Loss Function (LF), which 
attempts to enhance performance by rendering segmentation 
results accuracy improvements. Using the sourced ECG dataset 
comprising both FCR and normal conditions, the work 
performed comprehensive testing across numerous ECG views 
of the image that include LVOT, RVOT, 3VT and 4CH views, 
and the experiment results have demonstrated that the proposed 
model has superior performance in terms of accuracy, precision, 
and recall metrics compared to existing models. 

The paper was organized in the following approach: The 
summary of the literature will be discussed in Section II, the 
background research will be provided in Section III, the 
recommended approach will be provided in Section IV, the 
result analysis will be done in Section V, and the work is 
concluded in Section VI. 

II. LITERATURE REVIEW 

The review work by [26-30] mostly covered the details and 
the efficacy of U-Net architecture, and their work also presented 
a discussion about the advancements and recent trends in U-Net. 
Their work has focused on the U-Nets' contributions to the field 
of Deep Learning (DL) and its various applications using 
different image modalities. A novel design, UNet++ [31], has 
been developed as an enhancement over U-Net. It supports more 
robust monitoring and improved neglect trails to reduce the 
semantic gap between the encoder and decoder sub-networks, 
among additional features. The segmentation performance in 
different healthcare imaging tasks has been improved due to the 
advances introduced during this study when compared with the 
standard U-Net model. This upgraded U-Net model, using an 
entirely novel Attention Gate (AG) model, was developed as an 
outcome of the research they conducted [33-38]. Attention U-
Net is an acronym for the fresh design that they presented in their 
research, and it uses novel AGs to avoid U-Net connections. By 
adequately focusing on the targets while simultaneously 
reducing irrelevant regions, the new approach has been 
advantageous and demonstrated effectiveness in terms of 
enhanced model sensitivity and prediction accuracy. It had been 
predicted that the proposed algorithm would succeed 
appropriately on healthcare imaging multi-class image 
segmentation tasks without substantially increasing 
computational cost. 

In an attempt to segment images of diseases of plants in their 
leaves, their [39-45] work attempted to change the standard U-
Net. Enhancing the network's depth and descriptive capacity 
was their ultimate objective when implementing the change, 
which included implementing the remaining segments and 
paths. The difficult task of segmenting images of diseased 
leaves, which frequently feature shapes that are distorted and 
fuzzy boundaries, motivated the invention of the technique as 
mentioned above. Also, in order to accurately recognise the 
differences in lakeside edges that were investigated using the 
data from remote sensing as input from the user, [46-50] 
employed a U-Net-based algorithm concerning a Spatial 
Transformation Network (STN) algorithm to do the task at hand. 
Tests have demonstrated that their approach and the integrated 
U-Net model are superior to other models in tracking the 
environment and fulfil the essential requirement of having been 

able to adapt to and learn from evolving trends over time [51-
56]. 

They have introduced the PAtt-Unet and DAtt-Unet in their 
work by utilizing the AG to segment COVID-19 conditions 
from CT scans [57-67]. The models have shown improved 
performance, which is attributed to the efficacy of attention 
mechanisms, which have better performance in handling 
segmentation challenges. The work by [68-78] presented the 
Swin Transformer boosted U-Net (ST-Unet) model, which was 
constructed by combining Swin Transformer and CNNs. Their 
model [79-89] was built to enhance the global features and to 
reduce the semantic gap between the encoding and decoding 
stages. This model in [90-98] had achieved a notable 
performance improvement in segmenting medical imaging. [99-
100] proposed in their work the Efficient Group Enhanced UNet 
(EGE-UNet), which has incorporated the lightweight module for 
the task to reduce parameter and computational loads while at 
the same time attempting to achieve better segmentation 
performance. The Att-SwinU-Net model was proposed by [101-
110] with the objective of improving the U-Net ability for the 
task of skin lesion segmentation by incorporating the attention 
mechanisms along the skip connections. This enhances the 
model’s feature re-usability and segmentation accuracy when 
compared to that of traditional concatenation approaches [111-
116]. 

III. THEORETICAL BACKGROUND 

A. U-Net 

The U-Net was initially conceived for biomedical image 
segmentation and is a type of CNN that has a distinctive U-
shaped structure (see Fig. 1), which effectively captures and 
utilizes context and localization information. 

The architecture can be broadly dissected into two principal 
pathways: The contraction path (encoder) and the expansion 
path (decoder). 

 Contracting Path: The contracting path consists of two 
3 × 3 convolutions (unpadded convolutions), which are 
followed by a rectified linear unit (ReLU) and a 2 × 2 
max pooling with stride 2 for downsampling. 

 Expanding Path: The expanding path consists of an up-
convolution of 2 × 2  by a stride of 2, followed by a 
concatenation with the corresponding feature map from 
the contracting path, and two 3 × 3 convolutions, each 
followed by a ReLU. 

 Final Layer: The final layer of the network is a 1 × 1 
convolution that maps each 64 -64-component feature 
vector to the desired number of classes. 

 Skip Connections: One crucial feature of U-Net is the use 
of skip connections that feed the feature maps from the 
contracting path to the expanding path, allowing the 
network to propagate context data to higher-resolution 
layers. The ignore connection is concluded by 
concatenating the (𝑛 − 1)th maps to that of the  𝑛th maps 
that are up-sampled, where ′𝑛′ refers to the stage ID. For 

the (𝑛 − 1)th block, which has the parameters 𝜌(𝑛−1) 
the update rule is represented as Eq. (1). 
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𝜌(𝑛−1) = 𝑓 (𝜌(𝑛−1) ⊕Up(𝐶𝑛))                  (1) 

Here, ′𝑓′  represents the activation function, typically a 
Rectified Linear Unit (ReLU) for U-Net; ⊕  denotes the 
concatenation operation; Up(⋅)  is the up-sampling operation 
applied to 𝐶𝑛, which is the feature map from the 𝑛th block and 
𝐶𝑛  represents the set of feature maps at the 𝑛-th stage after 
processing through the convolutional layers. This update rule 
ensures that the model leverages both the higher resolution 
features from the earlier (𝑛 − 1) th block and the semantic 
information in the up-sampled 𝑛 th block's feature maps, 
enabling precise localization and context integration essential 
for accurate image segmentation. 

B. Fetal Cardiac Rhabdomyoma 

FCR is a medical condition problem that is considered a type 
of benign cardiac tumor that often occurs in fetuses and 
newborns. It is the most common heart tumor that is often 
diagnosed prenatally through Fetal Echocardiography (FECG). 
Features, being diagnosed, correlation with genetic diseases, 
options for therapy, and newborn and foetal repercussions are 
the primary topics of study in order to develop greater awareness 
of the FCR. 

Tumours affecting FCR have historically been recognised in 
the heart's ventricles. However, tumours can also be identified 
in the heart's atrium or valves. The dimensions and percentage 
of these tumours changed regularly. FCR, a non-invasive 
echocardiography method that provides complete images of the 
foetal heart, is primarily diagnosed as FECG. Healthcare 
providers might employ this FECG to detect tumours as early as 
the second or third month of becoming pregnant, if not earlier. 
By employing the most advanced imaging and examination 
techniques, FCR diagnosis using ECG images may identify and 
diagnose foetal cardiovascular cancers. 

The detection process involves: 

1) Image acquisition: A complete image of the anatomy of 

the foetal heart can be acquired by capturing high-resolution 

ECG images. 

2) Image analysis: In examining these images, 

professionals investigate for symptoms of rhabdomyoma, 

which can involve strange tumours or regions with increased 

echogenicity inside the cardiovascular system. 

3) Interpretation and diagnosis: The findings from the 

ECG images are interpreted in the context of the fetus's overall 

health and potential genetic conditions. 

 
Fig. 1. U-Net architecture. 

 
Fig. 2. Fetal heart Rhabdomyoma's with irregular four-chamber view. 
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Fig. 2 shows the FCR of the irregular 4-chamber view. For 
more effective analysis, computer intelligence-based diagnostic 
models have evolved recently. Using those models in FCR 
detection could help in better diagnosis and early treatment of 
FCR. 

IV. PROPOSED MODEL 

A. Attention Calibrated U-Net for Detecting FCR 

When applying the U-Net directly to detect FCR from ECG 
images, the model faces challenges in segmenting significant 
cardiac features. As the network explores more deeply into the 
successive convolutional and pooling layers, it generates 
features that are multiscale, shallow and of high resolution and 
are considered to be crucial for capturing detailed image 

attributes that are related to specific and localized cardiac 
abnormalities. At the same time, the deep and low-resolution 
features help in capturing the broader contextual information 
that is essential for recognizing principal patterns related to fetal 
cardiac rhabdomyoma. 

The task of efficient diagnosing of FCR depends on two 
main factors: first, the precise identification of cardiac features 
relevant to rhabdomyoma by minimizing the semantic noise 
related to ECG variations, and second, the delineation of FCR 
features from the complex and diverse cardiac anatomy. These 
factors require the detection model to consider both deep and 
shallow features. Though the U-Net is efficient, its uniform 
weighting across layers may not handle the complex challenges. 
This motivates us to build an enhanced U-Net model. 

 
Fig. 3. ACU-Net. 

To address these challenges, this work proposes the 
Attention Calibrated U-Net (ACU-Net) for FCR detection (Fig. 
3). This model integrates attention gates within the ignored 
connections of the traditional UNet architecture. In that 
technique, the attention gates utilize the deeper layer’s feature 

maps (𝐸(𝑛+1)) as a gating mechanism to filter out irrelevant 

data, such as unchanged regions or noise, during the forward 
pass of the network, attention gates are applied immediately 
before the concatenation process, ensuring that only relevant 
neuronal activations, as determined by the attention mechanism, 
are merged via ignore connections. This process is illustrated in 
a schematic where the feature maps 𝐸𝑛  and the up-sampled 

𝐸(𝑛+1)  are independently processed through separate sets of 
convolutional and Batch Normalization (BN) layers before 
being filtered by the attention gates. 

Subsequently, these intermediate outputs are fed into a 
sequence of layers: first, a ReLU layer, second by a BN layer, 
next a  Convolutional layer and finally followed by a  Sigmoid 
layer, to compute the attention coefficients ′𝛼𝑖′ within the range 
of [0,1]. The resulting output from the attention gate for each 

unit is given as att𝑖
𝑛 = 𝑒𝑖

𝑛 ⋅ 𝛼𝑖 . Meanwhile, the formula for 
updating ′𝑥(⋅)′,  which is a convolutional function with 
parameters 𝜌 in the 𝑛 − 1 block, is outlined as follows. 

∂(att𝑖
𝑛)

∂(𝜌(𝑛−1))
= 𝛼𝑖

𝑛
∂(𝑥(𝑒𝑖

(𝑛−1)
;𝜌(𝑛−1)))

∂(𝜌(𝑛−1))
+

∂(𝛼𝑖
𝑛)

∂(𝜌(𝑛−1))
𝑒𝑖
𝑛         (2) 

This Eq. (12) reveals that the first term on the right-hand side 
is modified by ′𝛼𝑖′ , which ranges from [0,1] , effectively 
diminishing the influence of features derived from shallower 
layers. Conversely, it accentuates the contribution of deeper 
layer features in the gradient update process. Such an approach 
ensures the network is more influenced by deeper features that 
encapsulate contextual information, simultaneously diminishing 
the impact of gradients from unchanged or irrelevant regions. 

As depicted in Fig. 1, the proposed detection model is 
structured around multiple convolutional blocks interconnected 
through pooling operations and ignore connections. Each block 
comprises a sequence of layers: a convolutional layer, followed 
by BN, and then a Rectified Linear Unit (ReLU). The model 
accepts an image input 𝐸 with dimensions [256×256×6]. The 
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initial phase of the network encodes ′𝐸′  using a series of 
convolutional blocks, following the sequence {𝐸 → 𝐸1 → 𝐸2 →
𝐸3 → 𝐸4 → 𝐸5}. The number of feature map channels, 𝐹𝑝

𝑛, at 

the 𝑛 th block, where 𝐸𝑛  and 𝐶𝑛  refer to the encoded and 
concatenated features, respectively, is defined as 𝐹𝑝

𝑛 =
{64,128,256,512,1024} for ‘𝑛′ ranging from 1 to 5. 

During the decoding phase, the feature maps undergo 
broadcasting in reverse order from {𝐸5 → 𝐶4 → 𝐶3 → 𝐶2 →
𝐶1} . Each 𝐶𝑛  represents the convolved concatenation of 

information from two sources: the up-sampled 𝐸(𝑛+1) and the 
directly transmitted 𝐸𝑛  through ignoring connections. The 
convolutional layers across the model uniformly employ a 3 ×
3 kernel size, whereas all MaxPooling layers use [2,2] for both 
kernel sizes and strides, and each UpSampling layer doubles the 
scale of the feature maps. A convolutional layer is applied to 𝐶1 
generates a single-channel map that represents the detection 
result. 

B. Hybrid Loss Function 

To enhance the performance of the attention-calibrated U-
Net (ACU-Net) in the tasks of FCR prediction, this work 
proposes a complex hybrid loss function, ℒhybrid . This function 

strategically combines Cross-Entropy Loss, Dice Loss, and an 
attention-driven component, aiming to address challenges such 
as class imbalance, the requirement for precise segmentation, 
and accuracy in FCR prediction. The formulation of the hybrid 
LF is expressed as Eq. (3). 

ℒhybrid = 𝛼ℒ𝐶𝐸 + 𝛽ℒDice + 𝛾ℒAttention                 (3) 

Here, ℒ𝐶𝐸  denotes the cross-entropy loss, effectively 
ensuring classification accuracy across multiple classes. The 

Dice Loss, represented as ℒDice , excels in mitigating the impact 

of class imbalance by promoting the overlap between the 
predicted segmentation maps and the ground truth labels. 
ℒAttention , the attention-based loss component, is designed to 

refine the model's focus on pertinent features crucial to the task 
at hand. The parameters 𝛼, 𝛽, and 𝛾 serve as hyperparameters 
that balance the influence of each loss component, subject to 
optimization based on validation set performance. 

1) Cross-entropy loss (ℒ𝐶𝐸) : In this context, 𝑦𝑜,𝑐  is a 

binary indicator if class 𝑐  is the correct classification for 

observation ′𝑜′, and 𝑝𝑜,𝑐 represents the predicted probability of 

observation ′𝑜′  being of class ′𝑐′ , with ′𝑀′  being the total 

number of classes, Eq. (4). 

ℒ𝐶𝐸 = −∑  𝑀
𝑐=1 𝑦𝑜,𝑐log⁡(𝑝𝑜,𝑐)                      (4) 

2) Dice loss (ℒDice ): Here, 𝑝𝑖  and 𝑔𝑖 denote the predicted 

and ground truth values at pixel 𝑖, respectively, across all ′𝑁′ 
pixels. The term ‘𝜖′ is a small constant to avoid division by ‘0’, 

ensuring numerical stability, Eq. (5). 

ℒDice = 1 −
2∑  𝑁

𝑖=1  𝑝𝑖𝑔𝑖+𝜖

∑  𝑁
𝑖=1  𝑝𝑖

2+∑  𝑁
𝑖=1  𝑔𝑖

2+𝜖
                    (5) 

3) Attention-based loss component (ℒAttention ): The weight 

𝑤𝑖  assigned by the model's attention mechanism for pixel ′𝑖′, 
emphasizes areas of significance for accurate FCR prediction 

or effective segmentation, with 𝑔𝑖 and 𝑝𝑖  again representing the 

ground truth and predicted values, respectively, Eq. (6). 

Algorithm 1 presents the process flow of the method [32] in 

detecting FCR using the proposed ACU-Net. 

ℒAttention = −∑  𝑁
𝑖=1 𝑤𝑖𝑔𝑖log⁡(𝑝𝑖)                     (6) 

Algorithm 1: FCR Detection Using Attention Calibrated U-
Net (ACU-Net) 

Objecti

ve: 

To detect FCR from ECG images using the ACU-

Net 

Input: ECG images of the fetal heart. 

Output: Segmented images highlighting the presence of FCR. 

Step 1: Preprocessing: 

 

1.1. Collect ECG images for analysis. 

1.2. 
Normalize the pixel values of the images to the 

range [0,1]. 

1.3. 
Resize the images to a uniform dimension of 

[256 × 256] for consistency. 

Step 2: Model Initialization: 

 

2.1. 
Initialize the ACU-Net with predefined 

parameters. 

2.2. 

Define the hybrid loss function 𝐿hybrid =

𝛼𝐿𝐶𝐸 + 𝛽𝐿Dice + 𝛾𝐿Attention , where 𝐿𝐶𝐸  is 

Cross-Entropy Loss, 𝐿Dice  is Dice Loss, and 

𝐿Attention  is the attention-driven component 

Step 3: Image Encoding: 

 

3.1. 

Pass the preprocessed image through the 

contraction path (encoder) of ACU-Net, 

consisting of convolutional layers and max 

pooling operations to downsample the image 

and increase the feature channels. 

3.2. 
Utilize ignore connections to preserve spatial 

information for later stages of the model. 

Step 4: Attention Mechanism Integration: 

 

4.1. 

Attention gates are applied to the feature maps 

generated by deeper layers before 

concatenation in the expansion path (decoder). 

4.2. 
Calculate attention coefficients 𝛼𝑖 to weigh 

the importance of features selectively. 

Step 5: Image Decoding and Feature Fusion: 

 

5.1. 
Up-convolve the encoded features to increase 

their spatial dimensions progressively. 

5.2. 

Concatenate the up-convolved features with 

the corresponding feature maps from the 

encoder by ignoring connections, ensuring the 

retention of critical spatial details. 

Step 6: Segmentation and Classification: 

 

6.1. 

Process the fused features through additional 

convolutional layers to refine the 

segmentation output. 

6.2. 

Apply a 1 × 1 convolution at the final layer to 

map the feature vectors to the desired number 

of classes (indicative of FCR presence). 

Step 7: Post-processing: 

 

7.1. 
Apply thresholding to the model's output to 

obtain a binary segmentation map. 

7.2. 
Perform morphological operations, if 

necessary, to enhance the segmentation result. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 9, 2024 

661 | P a g e  

www.ijacsa.thesai.org 

Step 8: Analysis and Interpretation: 

 8.1. 
Analyze the segmented images to identify and 

locate FCR. 

 8.2. 

Assess the model's performance using metrics 

such as accuracy, precision, recall, and F1-

score to ensure reliable detection. 

C. Data Collection 

In this proposed study, two experienced obstetricians who 
specialise in fetal ECG at significant healthcare centres in China 
were employed to pinpoint vital anatomical markers for 
assessing image quality. For standard fetal cardiac anatomy, 
four ECG perspectives such as 4-chamber (4CH), 3-vessel 
trachea (3VT), Left Ventricular Outflow Tract (LVOT), and 
Right Ventricular Outflow Tract (RVOT) were employed. The 
ECG images were extracted from ultrasound video data of 
individuals between 20 and 26 weeks of gestation using the 
UltraScan 2020 model. 

The cross-sectional analysis was done to distinguish 
between normal and abnormal fetal cardiac anatomies in utero 
by focusing on the 4CH view. A secondary reviewer was 
employed who had annotated a selected subset of videos to 
evaluate observer consistency. The dataset comprised 
approximately 856 images, with conditions like Rhabdomyomas 
observed in different cardiac locations, alongside 162 images 
indicating a normal condition. Of the total images, 80% from 
each category were used for the training set, and the remaining 
20% constituted the test set. 

V. EXPERIMENTAL ANALYSIS 

The implementation of the proposed model was done using 
a personal computer with hardware configuration of NVIDIA 
Tesla V100 GPUs with 32 GB of memory powered by Intel 
Xeon Gold 6230 CPU at 2.10 GHz. The experiments were 
conducted using Python 3.8 with PyTorch 1.8. PyTorch's for 
CUDA 11.0. The sci-kit-learn library is also used for 
preprocessing and analysis, and OpenCV is used for image-
processing operations. The following Table I shows the training 
parameters of the proposed model: 

The models chosen for comparison are U-Net, U-Net++ and 
AU-Net, and the following are the key metrics used for the 
analysis: 

Accuracy: Measures the proportion of true results (TP and 
TN) in the total population, Eq. (7) 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                              (7) 

Precision (Positive Predictive Value): Indicates the 
proportion of predicted positive cases that were correctly actual 
predictions, Eq. (8) 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                              (8) 

Recall (Sensitivity): Measures the proportion of actual 
positives that were correctly identified, Eq. (9) 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                              (9) 

TABLE I.  HYPERPARAMETER 

Hyperparameter Value 

Learning Rate 0.001 

Batch Size 16 

Epochs 100 

Optimizer Adam 

Loss Function Hybrid Loss 

α (Hybrid Loss) 1.0 

β (Hybrid Loss) 1.0 

γ (Hybrid Loss) 0.5 

Dropout Rate 0.5 

Early Stopping Criteria 10 epochs 

Weight Initialization He Normal 

Learning Rate Scheduler StepLR 

Step Size (StepLR) 25 

Decay Rate (StepLR) 0.1 

Regularization (L2 penalty) 0.0001 

F1-score: Provides a harmonic mean of precision and recall, 
Eq. (10) 

𝐹1-score = 2 ×
 Precision × Recall 

 Precision + Recall 
              (10) 

Specificity: Measures the proportion of TN that are correctly 
identified, Eq. (11) 

Specificity =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                       (11) 

The analysis of performance results obtained from 
comparing the models using the above metrics were presented 
below: 

Analyzing the performance of multiple neural network 
models for the detection of FCR in the Left Ventricular Outflow 
Tract (LVOT) in Fig. 4(a), we observe significant differences in 
their efficacy. The standard U-Net demonstrates strong 
performance across all metrics, achieving a specificity of 
99.69%, an accuracy of 98.79%, precision at 98.05%, recall of 
97.3%, and an F1-score of 96.83%. The U-Net++ model slightly 
surpasses U-Net in specificity (99.84%) and precision (98.18%), 
with marginally better accuracy of 98.9% and an F1-score of 
97.09%, although it exhibits a comparable recall rate (97.28%). 

While maintaining a high specificity of 99.69%, the AU-Net 
shows a slight dip in performance with an accuracy of 97.4%, 
precision at 98.13%, and a recall of 96.16%, resulting in an F1-
score of 97.31%. Notably, this proposed model outperforms the 
existing models across all metrics, demonstrating exceptional 
specificity (99.89%), unprecedented accuracy (99.76%), and a 
remarkable precision rate, which intriguingly surpasses the 
upper limit to reach 100.02%. This unprecedented precision, 
combined with a recall of 97.43%, culminates in an F1-score of 
98.93%. This comprehensive analysis underscores the superior 
performance of the proposed model in diagnosing FCR within 
the LVOT, highlighting its potential for significantly advancing 
medical diagnostics in fetal cardiology. 
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Fig. 4. (a) Performance for LVOT, (b) Performance for RVOT, (c) 

Performance for 3VT and (d) Performance for 4CH. 

In the RVOT assessment in Fig. 4(b), the U-Net delivered a 
specificity of 99.4%, accuracy of 98.5%, precision at 97.76%, 
recall of 97.01%, and an F1-score of 96.54%. The U-Net++ 
showed improvement, especially in specificity (99.55%) and 
accuracy (98.61%), with precision slightly higher at 97.89%, 
nearly similar recall (96.99%), and an F1-score of 96.8%. The 

AU-Net matched U-Net's specificity but had lower accuracy 
(97.11%), precision (97.84%), and a recall of 95.87%, leading 
to an F1-score of 97.02%. The proposed model notably 
outshined others with a specificity of 99.6%, accuracy reaching 
99.47%, precision at an impressive 99.73%, recall of 97.14%, 
and the highest F1-score of 98.64%, indicating superior 
performance in FCR detection. For the 3VT view, the U-Net's 
metrics were vital, with a specificity of 99.64%, accuracy of 
98.74%, and precision at 98%, accompanied by a recall of 
97.25% and an F1-score of 96.78%. The U-Net++ edged out 
slightly higher in specificity (99.69%) and accuracy (98.85%), 
with precision at 98.13%, a comparable recall of 97.23%, and an 
F1-score of 97.04%. The AU-Net model surpassed U-Net++ in 
specificity (99.73%) but lagged in accuracy (97.35%), with 
precision almost equivalent to U-Net++ (98.08%), a lower recall 
of 96.11% and an F1-score of 97.26%. Remarkably, the 
proposed model excelled with the highest specificity (99.84%), 
almost perfect accuracy (99.71%), precision nearly reaching 
100% (99.97%), recall of 97.38%, and an F1-score of 98.88%, 
demonstrating unmatched efficacy in detecting FCR in the 3VT 
view as shown in Fig. 4(c) 

The U-Net model exhibits solid performance with a 
specificity of 99.35%, an accuracy of 98.45%, precision at 
97.71%, recall of 96.96%, and an F1-score of 96.49%. U-Net++ 
improves upon U-Net's metrics slightly, achieving a specificity 
of 99.5%, an accuracy of 98.56%, and a precision of 97.84%. 
The recall, at 96.94%, is marginally lower than U-Net's, but it 
achieves a higher F1-score of 96.75%, indicating a better 
balance between precision and recall. While maintaining the 
same specificity as U-Net at 99.35%, AU-Net decreases 
accuracy to 97.06%. However, its precision remains high at 
97.79%, with a recall of 95.82% and an F1-score of 96.97%. 
This proposes that AU-Net, despite its slightly lower accuracy 
and recall, remains competitive in precision and overall F1 
score. The proposed model stands out significantly among the 
evaluated models, showcasing this group's highest specificity 
(99.55%) and accuracy (99.42%). With precision reaching 
99.68% and recall at 97.09%, it achieves an F1-score of 98.59%. 
These figures indicate a superior ability to detect and diagnose 
FCR in the 4CH view accurately (see Fig. 4(d)), reducing false 
positives (as evidenced by the high precision) while still 
correctly identifying a high percentage of true positive cases (as 
shown by the recall). 

Throughout the training and validation phases (Fig. 5 (a)) 
and (b)), the evolution of training and validation losses for U-
Net, U-Net++, AU-Net, and the proposed model illuminates the 
unique learning dynamics and generalization capabilities 
inherent to each architecture. Initially, the U-Net model faced 
significant challenges, which was evident from its high training 
loss of 0.6000. In contrast, U-Net++ and AU-Net kick off with 
lower initial training losses (0.3830 and 0.3603, respectively), 
hinting at their advanced architectures' capacity for a more 
refined initial understanding of the data complexities. 
Remarkably, the proposed model begins with the lowest training 
loss at 0.2652, signalling a practical grasp of the ECGc image 
patterns for Fetal Cardiac Rhabdomyoma detection right from 
the start. As all the models progress through the epochs, they all 
exhibit a declining trend in terms of training loss, which is 
indicative of learning and refinement. The proposed model was 
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better because it maintained the lowest loss throughout the 
training, which at last resulted in a final training loss of 0.0057. 
This shows superior performance and high accuracy potential in 
medical image segmentation tasks. The AU-Net, however, has 
an increased initial validation loss and drops to the rest of the 
models that participate in the validation loss analysis, which 
concludes in a validation loss of 0.0246. This proceeds 
simultaneously with the analysis and review of validation loss. 
This proves that the proposed approach possesses significant 
learning and adaptation features, which sets it against other 
comparable models. 

 
(a) 

 
(b) 

Fig. 5. (a) Training loss vs. epochs and (b) Validation loss vs. epochs. 

VI. CONCLUSION 

In the continuously evolving field of health care tests, the 
techniques of employing deep learning (DL) technologies when 
necessary for the detection of Foetal Cardiac Rhabdomyoma 
(FCR) from echocardiographic (ECG) images are growing into 
exciting new possibilities of techniques for addressing 
complicated medical problems. Such techniques have the 
possibility of helping determine the cause of foetal heart disease. 
The intricate nature of foetal cardiovascular anatomy and the 
drawbacks of currently available diagnostic techniques make 
accurate detection of the FCR, a more frequently occurring 
newborn illness, challenging. Several currently available CNN 
models have demonstrated significant success in medical image 
segmentation; these comprise the initially developed U-Net and 
versions such as U-Net++ and AU-Net. The issue with these 

techniques is that they frequently fail to attempt to collect the 
subtle features that are necessary for FCR detection, as 
demonstrated by experiments. This might be because the model 
fails to represent the degree of detail needed for accurate 
diagnostics properly, and the scale is similar across layers. The 
present research introduces the attention-calibrated U-Net 
(ACU-Net), an enhanced form of U-Net that merges attention 
mechanisms with the original version of U-Net to deal with 
those problems. The ACU-Net uses the proposed hybrid loss 
function, which incorporates cross-entropy loss, dice loss, and 
attention-driven components. The objective is to make the 
algorithm more successful in segmenting FCR from ECG 
images regarding attention, accuracy, and cost. 

Employing the sourced ECG dataset results from 
experiments demonstrated that the recommended ACU-Net 
performed more effectively than U-Net and its different versions 
models in detecting FCR across multiple performance metrics 
analysis, including specificity, accuracy, precision, recall, and 
F1-score. 
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