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Abstract—Natural disasters tend to ruin people’s lives and 

infrastructure, which requires comprehensive analysis and 

understanding to inform effective disaster management and 

response planning. This research addresses the lack of in-depth 

analysis of federally declared disasters in the United States using 

a dataset sourced from FEMA. Through the application of 

unsupervised learning techniques, including K-means clustering, 

DBSCAN, self-organizing maps (SOM), and the Gaussian mixture 

model (GMM), similar types of disasters are clustered based on 

their frequency. The relationship between disaster type and 

disaster frequency is analyzed to gain insight into patterns and 

correlations, facilitating targeted mitigation and adaptation 

strategies. By using the techniques of clustering, we can accurately 

group similar disaster types, duration time, occurring time and 

location of disaster. By implementing these approaches, our study 

aims to improve the understanding of disaster occurrences and 

inform decision-making processes in disaster mitigation strategies 

and adaptation strategies. 
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I. INTRODUCTION 

The United States (USA) faces a wide range of natural 
disasters annually, including hurricanes, tornadoes, wildfires, 
floods, heat waves, thunderstorms, and flash floods, all of which 
pose significant threats to lives and cause extensive damage. For 
example, $ 182.5 billion was lost in Hurricane Katrina 2005 [1]. 
In 2022, there are a total of 119 natural disasters occurred in the 
United States, 52% (62 cases) of severe thunderstorms, 21.8% 
(26 cases) of wildfires, heat waves, and drought, and 12.6% (15 
cases) of floods and flash floods [2]. In the same year 2022, 1143 
tornadoes were reported with an inconsistent pattern of 
occurrence throughout 1995-2022, as shown in Fig. 1 [3]. A total 
of 466 deaths were reported in 2022 due to natural disasters, 
among which 33.7% (157 fatalities) were due to a tropical 
cyclone [4]. With these occurrences of disasters and their 
impacts on humans and property, disaster management comes 
into the picture to alleviate the suffering caused by disasters. The 
four main components in disaster management include 
mitigation, preparedness, response, and recovery. If a country 
could reduce the risk of loss by predicting the occurrence of 

disasters, it could significantly avoid unnecessary and severe 
consequences. Though there is research done in predicting 
rainfall, streamflow, etc. less research uses the real world big 
data set to predict the disaster using machine learning analytics 
algorithms [5], [6], [7], [8], [9]. Therefore, much research is 
necessary to predict disaster occurrence, especially using big 
data analytics. 

 

Fig. 1. Number of tornadoes reported in the USA from 1995-2022 [3]. 

This study uses a dataset, sourced from the Federal 
Emergency Management Agency (FEMA), and is regularly 
updated, offering a comprehensive overview of federally 
declared disasters since 1953 [10]. It includes data on biological 
disasters, notably declarations related to the ongoing Covid-19 
pandemic. The data set has undergone basic cleaning and 
formatting measures. Additionally, a subset tailored to 
parameters relevant to the M5 forecast competition is provided, 
allowing for specific analysis and forecasting tasks related to 
disaster occurrences. We need to analyze these disasters more 
deeply, including how often they happen, what types occur, and 
how they affect people and places. This will help us plan better 
responses and ways to prevent disasters. 

The remaining paper is constructed with the first overview 
of existing research done using different algorithms (K-Means 
clustering, density-based spatial clustering of Noise 
Applications, Self-Organising Maps, and Gaussian mixture 
model). This is followed by research methodologies that 
describe the steps to process the data set and construct 
forecasting models. The results and discussion are presented 
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with the content of preprocessing techniques, exploratory data 
analysis, robust scaler and descriptive analysis, clustering 
modeling, K-Means clustering, Gaussian mixture clustering, 
self-organizing maps, density-based spatial clustering of noise 
applications, and mean shift clustering. Lastly, the conclusion is 
presented based on the research result and discussion. 

II. LITERATURE REVIEW 

A. K-Means Clustering 

Clustering techniques, particularly K-Means Clustering, 
play a crucial role in various domains such as customer 
segmentation, fraud detection, and targeted marketing. In 
customer segmentation, K-Means clustering enables businesses 
to group customers according to preferences, demographics, and 
purchasing behavior, facilitating the development of customized 
marketing strategies to meet diverse customer needs [11]. In 
fraud detection, clustering algorithms identify patterns in 
consumption habits, helping to detect potentially fraudulent 
activities by detecting anomalies in customer behavior and 
transactions [12]. Furthermore, clustering techniques are also 
valuable in targeting client incentives, as they allow businesses 
to segment customers with similar behaviors and preferences, 
enabling the offering of targeted incentives to encourage specific 
actions and increase sales or customer engagement [13]. In 
general, clustering techniques offer versatile solutions for 
understanding customer behavior, detecting fraud, and 
optimizing marketing strategies to improve business 
performance. 

Chakraborty & Nagwani (2014) conducted a project that 
employs K-means clustering for weather forecasting, leveraging 
incremental K-means to enhance the model's adaptability to new 
data. According to the PDF, this methodology uses historical air 
pollution data from West Bengal, collected in 2009 and 2010, to 
predict weather patterns. The process involves initially applying 
K-means clustering to group data based on air pollutant levels 
such as CO2, RPM, SO2, and NOx. Each cluster represents a 
specific weather category defined by the maximum mean values 
of the pollutants within that cluster. Once the initial clusters are 
established, the incremental K-means algorithm is used to 
integrate new data into the existing clusters without re-running 
the entire algorithm. This approach allows for real-time updating 
and forecasting. For example, new pollution data for a given day 
is assigned to the existing cluster that it most closely matches, 
based on the previously computed means. This assignment helps 
predict the weather category for the coming days, enhancing the 
model’s responsiveness to changing environmental conditions 
[14]. 

Wang et al. (2018) discusses a similar application of 
clustering techniques, specifically for wind power prediction. 
Here, K-means clustering is used to categorize wind power data 
to improve the accuracy of forecasting. The process involves 
grouping historical wind power data into groups that represent 
different wind power levels or conditions of wind power. This 
clustering helps to understand the distribution and variability of 
wind power, helping to provide more accurate and reliable 
forecasting [15]. 

In conclusion, for both research, by grouping similar data 
points, these methods improve the accuracy of predictions and 

allow real-time updates. In the context of the weather disaster 
project, robust scaling ensures that the data are normalized, 
mitigating the influence of outliers and enhancing the 
performance of the K-means algorithm. This approach is crucial 
for accurate weather forecasting and effective disaster 
management, as it allows for accurate and timely predictions 
based on continuously updated data. 

B. Density-Based Spatial Clustering of Noise Applications 

(DBSCAN) 

Density-Based Spatial Clustering of Noise Applications 
(DBSCAN), a density-based clustering algorithm, has 
demonstrated notable effectiveness in diverse fields, with 
relevance in geographic data analysis and customer 
segmentation. DBSCAN's proficiency in analyzing 
geographical data, showcasing its ability to estimate population 
density within specific metropolitan statistical areas (MSAs) 
based on location data [16]. This capability has significant 
implications for urban planning, resource allocation, and 
demographic studies. Moreover, in the realm of e-Commerce 
and marketing, Hshan (2022) highlights DBSCAN's utility in 
customer segmentation, where it can group customers based on 
their purchasing behaviors or preferences. By leveraging 
DBSCAN, businesses can devise targeted marketing strategies 
and offer personalized recommendations, ultimately improving 
customer engagement and satisfaction [17]. 

Dey & Chakraborty (2015) conducted a project of the 
weather forecasting using DBSCAN that utilizes the admissions 
of this algorithm in finding dense clusters and the detection of 
outliers in spatial data, thus efficient over the normally complex 
data sets of weather. In weather forecasting, DBSCAN clusters 
data points based on their density. For example, grouping 
together closely packed points and marking isolated points as 
noise. This approach has paramount suitability for weather data, 
mainly consisting of dense clusters, such as high rainfall areas, 
and sparse outliers, such as extreme weather events. These 
clusters could be used by meteorologists to identify key weather 
patterns with the aim of establishing future weather forecasts. 
For instance, clusters of high humidity, combined with low 
pressure, could indicate the approaching of a storm, hence 
issuing early warnings to be better prepared in case of disasters. 
In connection with this, the spatial capabilities of DBSCAN 
allow it to deal with irregularly shaped clusters; therefore, it is 
very essential for weather forecasting [18]. 

C. Self-Organising Maps (SOM) 

Self-Organizing Maps (SOM) have emerged as a valuable 
tool in both image clustering and customer segmentation 
applications. GeoSense (2023) highlights the ability of SOM to 
effectively group similar regions or objects within images, 
enabling the creation of clusters that represent distinct visual 
elements based on their similarities. This capability has wide-
ranging applications in image analysis, from object recognition 
to scene understanding [19]. Similarly, in the realm of e-
Commerce and marketing, Kaushik (2020) underscores the 
utility of SOM in customer segmentation tasks. By grouping 
customers according to their purchasing behaviors or 
preferences, SOM enables businesses to develop targeted 
marketing strategies and deliver personalized recommendations, 
thus improving customer satisfaction and engagement. The 
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versatility of SOM in the image and customer-centric domains 
makes it an asset to uncover patterns and insights from complex 
datasets [20]. 

Mohan & Patil (2018) presented the deep learning-based 
weighted SOM to enhance the accuracy of weather and crop 
prediction. The SOM algorithm has been performed by the 
dimension of the present study so that complicated weather data 
can be transformed into interpretable clusters. The algorithm 
maps high-dimensional input data on a lower-dimensional grid 
while preserving the topological relationships of the data points. 
This provides the means to identify patterns and similarities 
within weather data, in order to facilitate more accurate 
forecasting. In the methodology, latent Dirichlet Allocation is 
combined with the deep neural network classifier examining, 
raising the modification prediction precision by up to 23% 
compared to existing methods [21]. 

For example, SOM is applied to organize weather into 
meaningful clusters that represent various conditions of the 
weather. This clustering may allow better visualization and 
interpretation of data for meteorologists to detect and predict 
weather patterns more effectively. Integration with LDA refines 
the data, hence improving efficiency and accuracy of the DNN 
classifier in predicting weather. Advanced approaches to 
weather prediction, such as the one mentioned earlier, which is 
supported by deep neural networks, enhance decision making in 
agriculture by allowing farmers to plan activities based on 
accurate weather forecasts [21]. 

D. Gaussian Mixture Model (GMM) 

The Gaussian mixture model (GMM), as highlighted by 
Amy (2022), offers an effective approach to anomaly detection 
by identifying outliers within low-density regions of the data 
distribution. This capability makes GMM particularly suitable 
for detecting anomalies in datasets with complex or multimodal 
distributions [22]. On the other hand, identifying restaurant 
hotspots involves uncovering subgroups within the data set that 
can improve predictive models or improve understanding. 
O’Sullivan (2020) emphasizes the importance of this task in the 
context of restaurant analytics, where identifying hotspots can 
provide insight into customer preferences, demand patterns, and 
potential areas for business expansion or optimization [23]. 

Jouan et al. (2023) applied GMM to the calibration of 
weather forecasts contributes much to showing how the 
technique is utilized in clustering ensemble weather forecasts. 
GMM represents the distribution of the weather variables, which 
includes weather regimes as different kinds of distribution errors 
occurring in ensemble forecasts. GMM identifies clusters that 
reproduce weather patterns and error types in the ensemble data 
by fitting a mixture model. These clusters help correct for biases 
and increasing the accuracy of weather forecasts. There are a 
few steps using GMM. This GMM algorithm models the 
ensemble data distribution, which is variable and uncertain by 
nature, just as it is with any weather-related prediction by its 
very nature. It then identifies clusters within these data, which 
can be considered to be different weather regimes or error types. 

A separate calibration model, such as nonhomogeneous 
Gaussian Regression, is applied to each of the identified clusters 
for correcting distribution errors. In that respect, cluster-specific 
calibrations will ensure that accurate adjustments have been 
made to the forecast distribution for different weather. In this 
project, GMM to medium-range forecasts of temperature and 
wind in several locations within France. It significantly 
improves the interpretability and flexibility of forecasts by 
identifying and calibrating different kinds of errors related to 
each cluster [24]. 

Recent disaster prediction studies point to the use of cutting-
edge machine learning models for surge forecasting, aiming to 
enhance accuracy around natural disaster prediction centers. The 
application of clustering techniques such as K-means, 
DBSCAN, Self-Organizing Maps (SOM), and Gaussian 
Mixture Models (GMM) on diversified disaster datasets has 
been emphasized in recent research. K-means effectively groups 
different types of disaster, making it easier to identify and 
analyze trends or distributions, which aids in emergency 
preparedness [5]. DBSCAN is a powerful tool for identifying 
dense regions and outliers within geographical data, enhancing 
the analysis of spatial disaster distributions and source 
identification [6]. SOMs provide accurate topological mapping 
and clustering of disaster-related data, optimizing visualization 
and interpretation despite some limitations [7]. GMM is efficient 
for modelling complex multimodal distributions in disaster 
datasets, particularly useful for anomaly detection. These 
advanced clustering techniques improve the understanding of 
disaster events, support better disaster management strategies, 
and ensure a faster response. The established literature on 
clustering and predictive modelling further underscores their 
effectiveness in various domains [7]. 

III. RESEARCH METHODOLOGY 

Fig. 2 summarizes the steps used in this study to clean and 
transform the FEMA dataset (64092 cases, 24 variables): data 
preprocessing, exploratory data analysis, scaling using robust 
scaler, descriptive analysis, clustering modelling, visualization, 
analysis and conclusion. First, the data set is cleaned and 
transformed by dealing with missing values, empty cases, data 
type conversion, and parentheses removal. Once cleansed, the 
data set is explored using bar chart analysis, time series plot, 
network visualization, heatmap, frequency visualization, 
boxplots, violin plot, horizontal bar plot, kernel density 
estimation (KDE) plot and 2x2 grid of subplots. Data 
exploration is important to gain insight into the quality and 
information available. Scaling using a robust scaler is used to 
improve the performance of clustering models. Meanwhile, 
descriptive analysis is used to examine the mean, standard 
deviation, minimum and maximum values, 25%, 50%, 75% 
quartile of data, to ensure the quality of dataset before 
continuing cluster modelling. Five machine learning algorithms 
are used in clustering modelling, which are K-means, DBSCAN, 
self-organizing maps, Gaussian mixture model, and mean shift 
model. These models are visualized in 2D and 3D graphics with 
means as a performance indicator. Finally, silhouette scores are 
generated to compare five clustering models. 
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Fig. 2. Steps to process the data set and construct forecasting models. 

IV. RESULTS AND DISCUSSION 

A. Preprocessing Techniques 

In this section a detailed description of the step-by-step data 
preprocessing with the techniques used is presented. First, as 
shown in Fig. 3, the unique key, the missing values of the 
variables, and the summary statistics are displayed to facilitate 
understanding of the quality of the data set. This is to prepare the 
dataset for the next cleaning process to accurately target the 
preprocessing techniques. It was found that there are 77.14% 
blanks in the "last_ia_filing_date" column, which makes it less 
reliable for research. For accuracy's sake, we suggest getting rid 
of rows where this column is missing values. With this method, 
the integrity of the data is maintained and assumptions about 
missing numbers are avoided. This lets us make decisions based 
on accurate data. We remove the columns 'last_refresh', 'hash', 
and 'id' from the dataset as they contain redundant or irrelevant 
information that does not contribute to our analysis. Then, 
unique keys of the data set are displayed. Examining the unique 
values of the 'declaration_title' column in the dataset serves to 
understand the variety and specific types of disaster declarations 

recorded. This step is to gain insight into the composition of the 
data, ensure consistency, and identify any anomalies or 
duplicates. Fig. 4 illustrates the distribution of the data points 
and highlights any outliers present in the data set. Outliers are 
data points that significantly deviate from the rest of the data and 
may indicate errors, anomalies, or rare events. These outliers 
will be removed from the data set. The violin plot illustrates the 
distribution of disaster numbers across different fiscal years (FY 
declared), the number of flips, and place codes. Provides 
information on the density and variability of these attributes, 
highlighting where most disaster occurrences are concentrated 
and how they vary between different categories. 

      
        (a) Unique value for variable.           (b) Missing value of the variable. 

 
(c) Summary statistics. 

Fig. 3. Unique key, missing data, and summary statistics of FEMA data set. 

 
Fig. 4. Distribution of data points to analyse outliers of the data set.
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Fig. 5 shows a graph of the Z scores for certain groups of 
numbers in a dataset. This will find out how far away a data point 
is from the dataset's mean by its Z-score. Using standard 
deviations from the mean to figure out Z scores for numerical 
fields lets us find outliers and see how the data are spread out. 
Next, rows (cases) where the incident's start date is after the end 
date are filtered out. This ensures logical consistency, since an 
incident cannot start after it ends. Filtering ensures valid data for 
accurate analysis and interpretation. After filtering, 59016 cases 
remain in the dataset. Several data transformation steps are 
carried out on the variables which include: 1) Convert the date 
columns in the data set to datetime format. 2) Convert specific 
columns in the data set to lowercase to mitigate potential 
inconsistencies due to variations in capitalization. 3) Remove 
the paratheses (Fig. 6) from the columns 'declaration_title' and 

‘designated_area’. After removal, the unique values in these 
columns are retrieved to observe the changes. Finally, it assigns 
the modified data set back to itself, although this step is optional. 
This process helps to clean and standardise the data, removing 
unnecessary information contained within parentheses. 
4) Remove duplicates, which after checking the dataset, no 
duplicates are found. 

The last step in data preprocessing is to convert the 
categorical values in the 'declaration_type' column to numerical 
representations for better analysis and modelling (Fig. 7). This 
is achieved by mapping specific declaration types ('dr', 'em', 'fm') 
to corresponding numerical values (1, 2, 3) using a predefined 
dictionary (declaration_type_map). After conversion, the 
modified data set is displayed to show the changes. 

 
Fig. 5. Z scores of the FEMA dataset. 

   
Fig. 6. Pre-processing of data in parentheses. 

 
Fig. 7. Data conversion from categorical values to numerical values.
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B. Exploratory Data Analysis (EDA) 

Several data visualization techniques are deployed to better 
understand the FEMA data set, including bar chart, time series 
plot, network visualization, heatmap, frequency visualization, 
boxplots, violin plot, horizontal bar plot, kernel density 
estimation (KDE) plot, and 2x2 grid of subplots. First, a bar 
chart is created using Seaborn and matplotlib to display the 
count of different incident types per state, as shown in Fig. 8. Set 
the figure size, rotate the x-axis labels for better readability, and 
then show the plot. In addition, the high-volume variable states 
with high-specific incident types are removed. This will make 
the graph more visible on it. This is because high volume values 
will make the EDA less accurate and visible, as the bar shown 
will not be clear and the bars will be covered by high values. 
Fig. 9 shows a time series graph generated using matplotlib to 
visualize the count of natural disaster declarations over time, 
categorized by incident type. It first converts the 

“declaration_date” column to a date-time format. Then, it 
groups the data by month and incident type, calculates the count 
of each type, and creates a time series plot. The plot is 
customized with a title, labels for the x- and y-axes, a legend 
showing the incident types, and an adjusted layout for better 
visualization. Fig. 10 shows a network visualization graph 
where each node represents a type of disaster (for example, 
flood, and tornado) and adds edges between pairs of disaster 
types. The lines indicate relationships or connections between 
different types of disasters. Finally, it draws the network graph, 
customizing node and edge properties such as color, size, and 
labels, and displays the plot with a title. The network diagram is 
split into four parts: this will enhance the visibility and 
understanding of the graph with its relations. Each of the figures 
into 5, 5, 6, 6 types of disasters for better visibility on the relation 
lines. To conclude, this shows that all types of disaster will relate 
to each other, in other words, one disaster might trigger another 
incident to happen. 

 

Fig. 8. Bar chart analysis using seaborn and matplotlib. 

 
(a) Natural disaster plot over time by incident type. 

 
(b) Natural disaster plot over time by incident type excluding “biological” and “hurricane”. 

Fig. 9. Time series plot using Matplotlib to visualise natural disaster over time, categorised by type. 
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Fig. 10. Visualisation of network of different types using the network library in python.

A random relationship matrix where each cell represents the 
strength of the relationship between two types of disaster. The 
heatmap displays these values, with annotations showing the 
exact values, and uses a color scale (YlGnBu) to represent the 
strength of the relationships. The x and y axis labels represent 
the different types of natural disasters. In Fig. 11, it displays the 
heat map with a title and adjusts the layout for better 
visualization; each cell shows the actual values of the 
relationships between the corresponding pair of disasters. These 
values range from 0 to 1, where 0 indicates that there is no 
relationship and 1 indicates a perfect relationship. In Fig. 12, it 
first filters the data set to include only instances where the IH 

program was declared. Then, it creates two separate counts 
plots: one displaying the frequency of IH program declarations 
by incident type and the other showing the frequency by state. 
Each count plot is custom-made with appropriate titles, labels, 
and rotation of x-axis labels for better readability. In Fig. 13, two 
separate boxplots are created by calculating the duration of each 
incident by subtracting the incident end date from the incident 
start date. In Fig. 14, the variables “biological” and “fire” are 
removed from the outlier diagram. This is because fires and 
biological disasters are the outliers that will contribute the most 
to the outliers’ diagram. The outliers in these appear the most. 

 
Fig. 11. Heat map revealing the relationships between types of natural disasters. 
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Fig. 12. Visualise the frequency of IH (Individuals and Households) programme declarations. 

 
Fig. 13. Visualisation of the duration of incidents. 
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Fig. 14. The variables “biological” and “fire” are removed from the outlier 

diagram. 

The next visualization technique as shown in Fig. 15 reveals 
the duration of the incident in different types and states, 
excluding several variables accordingly. The duration in days of 
each disaster reveals that the average duration is between the 
range of 50 and 100 days. Different states will have a duration 
for the incident, and it indicates that the average days for the 
state are around 30 to 40 days in each state. 

Next, we group the data by declaration_date and count the 
number of disasters declared for each date. A line graph is 
generated to visualize the trend of the number of disasters 
declared over time (Fig. 16). The x-axis represents the 

declaration date, while the y-axis shows the corresponding count 
of disasters. The plot is customized with a title, axis labels, and 
grid lines for better interpretation. The second plot is where 
several years 2020 and 2008 are removed from the graph in 
order to make it more visible. This will make the number of 
disasters more clearly indicated. This is continued in Fig. 17 
which is a generated violin plot where each violin represents the 
distribution of incident durations for a specific type of incident. 
Incident of ‘fire’, ‘human cause’, ‘tsunami’, ‘chemical’, 
‘biological’, ‘tropical storm’ up to 3000 days, to ensure that the 
violet plot is more accurate in its presentation. A horizontal bar 
plot first calculates the frequency of each incident type using the 
value_counts() function. Then it creates a horizontal bar graph 
(kind = barh) where each type of incident is represented on the 
y-axis and its frequency on the x axis (Fig. 18). The time taken 
to close the disaster after declaration is calculated by subtracting 
the declaration dates from the closing dates. The resulting time 
differences are then converted into days. The kernel density 
estimation (KDE) plot is generated using seaborn to visualize 
the distribution of time taken for closeout. The KDE plot 
represents the estimated probability density function of the data. 
It provides information on the density of observations in 
different time intervals (Fig. 19). Lastly, a snippet of the 2x2 grid 
of subplots generated using Seaborn and Matplotlib is 
represented in Fig. 20. Each subplot represents the count of 
occurrences of Boolean values (True/False) in specific columns 
of a dataset. 

 
(a) Duration of incidents in different types excluding “fire” and “biological”. 

 
(b) Duration of incidents in different states (excluding fl, ok, va, la, pa, ks, vi, md, nh, ma, pr, as, nj). 

Fig. 15. Duration of incidents in different types and states.  
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Fig. 16. Trend in the number of disasters declared over time. 

 
Fig. 17. Violin plot – distribution of incident types based on incident duration. 

 
Fig. 18. Horizontal bar plot to visualise the distribution of incident types within a data set. 
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Fig. 19. Time-to-closeout analysis (Kernel density estimation). 

 

Fig. 20. 2x2 Grid of subplots for several variables.

C. Robust Scaler and Descriptive Analysis 

The weather disaster data set is preprocessed using robust 
scaling to improve the performance of these clustering 
algorithms: K-means, DBSCAN, SOM, and GMM. This step is 
important because weather-related datasets often contain unique 
values, a nature that is heavily influenced by disasters. Robust 
scaling uses the median and interquartile range, mitigating the 
influence of these outliers on the central tendency of data. 
Moreover, normalization ensures that distances between points 
indicate the actual similarities of the data entries more closely 
and, therefore, enhance accuracy in clustering. Furthermore, it is 
easier to visualize and interpret normalized data for effective 
dissemination of results to interested parties, such as agencies 
concerned with disaster management. 

Descriptive analysis is used to gain an initial understanding 
of the weather disaster dataset as shown in Table I: count, mean, 
standard deviation, min and max. This also involves 
summarizing the main characteristics of the data through 
statistical measures and visualizations. By performing 
descriptive analysis, it can identify key patterns, trends, and 
anomalies within the data, such as the frequency of different 

types of disasters, the distribution of disaster occurrences over 
time, and the geographical locations most affected. 

TABLE I.  DESCRIPTIVE ANALYSIS OF THE WEATHER DATA SET 

Descriptive 

Statistics 

Variables 

declaration_ 

type 

incident_ 

duration 

state_label_ 

encoded 

Count 

Mean 
SD 

Min 

25% 
50% 

75% 

Max 

58944 

1.3666 
0.5321 

1.0000 

1.0000 
1.0000 

2.0000 

3.0000 

58944 

45.2700 
132.3896 

0.0000 

3.0000 
13.0000 

33.0000 

5117.0000 

58944 

30.6819 
16.1234 

0.0000 

18.0000 
31.0000 

44.0000 

58.0000 

It helps in preprocessing the weather disaster dataset by 
providing a clear picture of the data structure and quality in this 
project. For example, it highlights issues such as missing values, 
outliers, and inconsistencies, which can then be addressed 
through appropriate preprocessing techniques. This 
foundational step ensures that the subsequent machine learning 
models are built on a clean dataset, enhancing their accuracy and 
reliability. 
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D. Clustering Modelling 

The first step involves clustering similar types of disasters 
based on their frequency. Each clustering method, including K-
Means Clustering, DBSCAN, Self-Organizing Maps (SOM), 
and Gaussian Mixture Model (GMM), employs distinct 
algorithms and criteria for grouping data points. K-Means 
partitions data into K clusters by minimizing the within-cluster 
sum of squares within the cluster. DBSCAN identifies dense 
regions of points separated by sparser areas, while SOM 
organizes data onto a low-dimensional grid based on similarity. 
GMM models data distribution using a mixture of Gaussian 
distributions. 

After clustering, it is crucial to analyze the relationship 
between the type of disaster and its frequency. Unsupervised 
learning techniques provide a means to explore this relationship 
without labelled data. By examining the distribution of disaster 
types within each cluster and the corresponding frequencies, we 
can gain insight into patterns and correlations. For example, 
certain clusters may predominantly contain hurricanes or floods 
with high frequencies, while others may include less frequent 
events such as earthquakes or biological disasters. 
Understanding these relationships can inform disaster 
preparedness and response strategies tailored to specific risk 
profiles. 

To assess the effectiveness of each clustering method in 
accurately grouping similar disaster types, various evaluation 
metrics can be used. For example, the silhouette score, Davies-
Bouldin index, or Calinski-Harabasz index can gauge the 
compactness and separation of clusters generated by K-Means 
and GMM. DBSCAN's performance can be evaluated on the 
number and coherence of resulting clusters. Quality can be 
assessed by quantization error and topographic error. By 
comparing these metrics across different clustering methods, we 
can identify the most suitable approach for our dataset and 
analysis objectives. By employing these unsupervised learning 
techniques and evaluation methods, we can gain valuable 
insights into the relationships between disaster types and their 
frequency, facilitating more informed decision making in 
disaster management and response planning. 

E. K-Means Clustering 

In K-means clustering, the silhouette_score method was 
used to calculate the suitable number of clusters used for the 
modelling, as shown in Fig. 21 (Principle Component Analysis 
(PCA)). PCA1 represents incident_type while PCA2 represents 
area. Each cluster represents the frequency of occurrence of each 
state and each type of incident. A total number of 10 clusters are 
displayed in two and three dimensional visuals. Furthermore, the 
means for all groups are calculated for evaluation to decide 
which model is better (Fig. 22). 

   
                         (a) 2D K-means clustering (PCA visualization).         (b) 3D K-means clustering (PCA visualization) 

Fig. 21. K-means clustering with 10 clusters displayed in 2D and 3D. 

 
Fig. 22. Mean of clusters. 

F. Gaussian Mixture Clustering 

For Gaussian mixture clusters, 10 clusters are displayed in 
2D and 3D images as the silhouette_score method is used. 
Fig. 23 displayed the mean; as a result, the mean is relatively 

lower than the K-means for the state and similar for incident type 
(Fig. 24). 

  
a. Clustering of the Gaussian mixture model using PCA. 
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b. Clustering of Gaussian mixture models using PCA (3D visualisation). 

Fig. 23. Clustering of Gaussian mixture models. 

 

Fig. 24. Mean value of the clustering of the Gaussian mixture model. 

G. Self-Organizing Maps (SOM) 

In self-organizing map (SOM) clustering, the topology-
preserving characteristics of SOM are used to organize the data 
into a grid of nodes, where each node represents a cluster. Unlike 
K-means, where cluster centers are calculated iteratively, SOM 
assigns data points to the nearest node in the grid, creating a 
topological map of the data space. The SOM clusters are 
visualized in 2D and mean value for each cluster is calculated to 
gain insight into the data distribution and cluster formations 
(Fig. 25). 

 
a. SOM visualisation clusters. 

 
b. Mean value of SOM clusters 

Fig. 25. Self-organising map visualisation and means value. 

H. Density-Based Spatial Clustering of Noise Applications 

(DBSCAN) 

For DBSCAN, 104 clusters are implemented as shown in 
Fig. 26 with their performance. Since there are too many clusters 
generated, the 3D visualization is too complicated to analyze due 
to overlapping clusters with unidentified clusters for each state 
and each incident_type. 

 
     a. DBSCAN clustering with PCA visualisation. 

 
b. Means of DBSCAN clustering 

Fig. 26. DBSCAN clustering and its performance (means). 

I. Mean Shift Clustering 

As shown in Fig. 27, a total of 10 clusters are displayed and 
these clusters are separated compared to DBSCAN which 
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produces a clearer vision. The means of this model are on 
average negative values (Fig. 27). A cluster with a negative 
mean value indicates that the data points within that cluster have 
on average, negative values for the particular variable or feature 
analyzed (Fig. 28). 

 
(a) Clustering of mean shifts in 2D. 

 
(b) Clustering of mean shifts in 3D. 

Fig. 27. Clustering of mean shifts with PCA visualisation in 2D and 3D. 

 
Fig. 28. Mean value of mean shift clustering. 

Based on Table II, DBSCAN has the highest silhouette 
score. It is the best clustering algorithm, followed by the 
Gaussian mixture. This is because it not only displays the firm 
clusters in the diagram, but also has a relatively higher silhouette 
score compared to other clustering algorithms. However, they 
are imperfect when applied in the FEMA dataset. There are 
some inaccuracies in the result with the clustering algorithm due 
to outliers in the mean calculation for state and incident. To 
conclude, having a definite and firm clean dataset is crucial in 
the clustering process, as it will provide the most accurate and 
identical result for analysis. 

TABLE II.  COMPARISON OF FIVE CLUSTERING MODELS USING THE 

SILHOUETTE SCORE 

Model Silhouette Score 

K-Means 0.4546 

Gaussian Mixture Model 0.8161 

Self-Organizing Maps 0.6003 

DBSCAN 0.9883 

Mean Shift Model 0.4715 

V. CONCLUSION 

In view of the information provided on natural disaster data 
and after running different clustering techniques, this paper 
concludes that modern machine learning algorithms such as K-
means, DBSCAN, SOM, and GMM have been very efficient in 
classifying and understanding patterns in disaster incidences. K-
means identifies trends/distributions of disaster incidents and 
thus improves preparedness and response strategies. Spatial 
distribution studies, such as those related to the location of 
disaster sources and eventual mitigation of their impacts, are 
based on attributes central to DBSCAN. SOMs are a robust 
method for topological mapping and clustering, which can be 
used effectively for the visualization and better interpretation of 
data. GMMs are efficient ways of modelling even very complex 
multimodal distributions and are therefore suitable for anomaly 
detection in disaster datasets. 

However, several limitations with this study. The accuracy 
of clustering results greatly depends on the dataset quality and 
completeness of the data set. The existence of missing values 
and inconsistencies within the data will greatly decrease the 
reliability of the result. Moreover, computational complexity 
and time for some clustering algorithms are highly needed 
mainly with the large datasets, which becomes a problem in the 
application. 

Future work has to be directed towards enhancing data 
preprocessing techniques so that it can answer missing and 
inconsistent data more efficiently. In addition, other data 
sources, such as real-time satellite imagery, sensor data, etc., 
will add comprehensiveness and accuracy to the analysis. 
Computational efficiency in clustering algorithms can be 
achieved by parallel processing or any other advanced 
computing technique, which requires further research. 
Moreover, the development of hybrid models involving multiple 
clustering techniques would tie the different strengths of each 
technique and therefore further enhance disaster predictions. 
There will be a need to continue at this higher level of 
collaboration with disaster management agencies to ensure that 
the findings of such studies translate to actionable strategies that 
reduce the impacts of natural disasters. 
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