
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

737 | P a g e

www.ijacsa.thesai.org

Increasing the Performance of Iceberg Query Through

Summary Tables

Gohar Rahman1, Wajid Ali2, Mehmood Ahmed3, Hassan Jamil Sayed4, Mohammad A. Saleh5*

Faculty of Computing and Informatics, University Malaysia Sabah (UMS), 88400 Kota Kinabalu, Sabah Malaysia1, 5

School of Computer Science and Technology, Jilin University, Changchun, Republic of China, China2

Department of Information Technology, The University of Haripur, Haripur, KP, Pakistan3

Asia Pacific University of Technology & Innovation (APU) Bukit Jalil, Kuala Lumpur, Malaysia4

Abstract—One of the key challenging problems in data mining

is data retrieval from large data repositories, as the sizes of data

are growing very fast, to deal with this situation, there is a need

for efficient data mining techniques. For efficient mining tasks

number of queries have been emerged. Iceberg query is one of

them, in which the output is much smaller like the tip of the iceberg

as compared to the large input dataset, these queries take very

long processing time and require a huge amount of main memory.

However the processing devices have limited memories, so the

efficient processing of iceberg queries is a challenging problem for

most of the researchers. In this paper we present a novel

technique, namely a summary table, to address this problem.

Specifically, we adopt the summary table technique to acquire the

required results at summary levels. The experimental results

demonstrate that the summary table technique is highly effective

for large datasets. Compared to bitmap indexing and cubed

techniques, the summary table offers faster retrieval capabilities.

Furthermore, the proposed technique achieved state-of-the-art

performance.

Keywords—Threshold (TH); bitmap index; aggregate function;

Iceberg Query (IB); anti-monotone; non-anti-monotone

aggregation

I. INTRODUCTION

Data retrieval and storage play a very important role in
databases. The effectiveness of data retrieving techniques
depends on specific. Since few years many queries have
emerged, one of them is the iceberg query (IBQ) in which the
output is significantly small as compared to the input, such query
is called IBQ, where the number of above-threshold outcome is
usually very small like the tip of an iceberg as compared to large
amount of input data [1]. This is a unique class of aggregation
queries connecting HAVING () and GROUP BY () clauses,
which computes aggregated values below or above a given
threshold (TH). This query is first introduced in data mining
(DM) [2]. Most of the data DM queries are IB queries. Several
applications use aggregate functions such as, Min (), Avg (),
Max (), Sum (), and Count () over an attribute or set of attributes
to find aggregate values greater than a particular threshold, these
aggregate values above the threshold values give more
importance. The RDBMS, e.g., MySQL, Postgre SQL, SQL
Server, Oracle, DB6, Sybase, and column-oriented databases
e.g., Lucid DB, Vertica, and Monet DB all use common
aggregation algorithms that first aggregate all rows and then
calculate the Having () clause to select the iceberg result [3].

An iceberg query has the following characteristics: (a)
Computing aggregate functions on one or more attributes (b)
Dealing with large data sets, containing large unique attributes
combination (domain size), and (c) Returning results below or
above a given TH. These queries face some problems during
executions, like 1) It needs to execute within a limited memory,
which means memory size is lesser than domain size 2)
Computation of aggregation values takes a large amount of time.

The global objective of this work is to reduce the execution
time of the iceberg queries within a limited memory. Today’s
world is rich in data; every organization and social media
generates and stores huge amounts of data which need an
efficient way to deal with. For this purpose, IB query is an ideal
choice. These queries are used in many applications. Including
market basket analysis [4] means finding item pairs (or triplets
etc.) that are bought together by many customers in large data
warehouses. In other words, market basket analysis means a
collection of items purchased by a customer in a single
transaction. It is based on two key attributes considered for the
threshold value used for finding item pairs; these attributes
comprise support and confidence. If support and confidence
values are above or below some specified threshold then it
identifies products and their content that go well together.
Similarly, clustering [5] is a process of partitioning a set of
records into groups (clusters), such that all records in a group are
related to each other and records that belong to two different
groups are different [6]. This helps users to recognize the natural
grouping or structure in a data set and this natural grouping is
done in clustering based on some specific threshold values in
each IB query [7].

A. Properties of Aggregation Function

Aggregation function is one the key part of iceberg queries,
such as Sum (), Count (), Min (), Max (), and Avg (). Aggregate
function is divided into two types (1) Anti-Monotone, and (2)
Non-Anti-Monotone aggregation function [8]. An anti-
monotone uses apriori [4] property, but non-anti-monotone are
not able to use apriori property, examples of anti-monotone are
Count (), Sum (), Max (), and Min (), whereas non-anti-
monotone are Avg () and Div (). The main benefit of using IB
with anti-monotone function is the pruning of computing
aggregation functions reduces the time to produce the required
query result [9]. On the other hand, non-anti-monotone
aggregation IB queries don't take advantage of threshold on Avg
() values as anti-monotone aggregation takes on Min (), Sum (),
Max (), and Count (). Average IB queries compute average for

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

738 | P a g e

www.ijacsa.thesai.org

all unique grouped attributes, and then apply threshold
constraint on those average values [10]. To deal with
aggregation functions there is a high gape between the
researcher’s contribution toward these two types with a ratio of
22 to 78 percent [11] as shown in Fig 1.

Fig. 1. Aggregation functions.

The rest of the paper is structured as follows, section II
presents a review of related research. Section III describes the
proposed technique, proposed architecture, and implementation.
Section IV describes the results and analysis, and in Section V
conclusion and future direction are presented.

II. REVIEW OF RELATED RESEARCH

Since a few decades iceberg query has always been an active
area of research. Researchers have provided different guidelines
and suggestions to improve its performance. We are going to
discuss some works in literature based on different specific
categories.

A. Bitmap Index Techniques

To accelerate the IB queries, bitmap indices are one of the
well-organized and well-known choices in column stores and
data warehousing applications. Spiegler et al. [12] first
introduced the concept of bitmap index (BI). Basically, a matrix
of 0 and 1 bit’s makes a bitmap. Its size depends on the number
of matchless attributes that exist in vector upon which bitmap is
created. Basically, a bitmap index is used to index values of a
single column in a table. For illustration Table I indicates a
bitmap index with nine rows, and column Y, where column Y is
indexed with integer values from 0 to 3 and its cardinality
becomes four because it has four different values. Columns X0,
X1, X2 and X3 with subscripts signify bitmap index for Y
contains four bitmaps. The second bit X1 in Table I is 1 because
the second row of Y contains value 1, while corresponding bits
of X0, X2 and X3 are all 0 Vuppuand Rao [13] has presented a
new evaluation scheme for processing IB queries using bitmap
index position. They developed an algorithm based on retrieving
index positions of all 1's from each bitmap. Further, these
indices positions are processed by using commonality condition

which selects whether the pair of directions is iceberg result or
not. To retain for future reference, an XOR operation is
conducted for bitmaps, which is the iceberg query result. Their
experiments show that algorithms which is based on index
positions takes less processing time to answer IBQ.

TABLE I. BITMAPS INDEX FOR COLUMN NAMED Y

RID Y X0 X1 X2 X3

0 2 0 0 1 0

1 1 0 1 0 0

2 3 0 0 0 1

3 0 1 0 0 0

4 3 0 0 0 1

5 1 0 1 0 0

6 0 1 0 0 0

7 0 1 0 0 0

8 2 0 0 1 0

Padmapriya and Shanmugapriya [1] introduced an index
based IBQ assessment method. The key aim of using the index
is to convert the bit value into an integer value which speeds up
the query evaluation process and takes less memory. This
technique performed well on the state-of-the-techniques. O'Neil
[14] Model 204 was the first model used bitmap index for wide-
spread commercial product making. This was a combination of
row identifiers (RID list) and basic bitmap index without
compression. In general B+ tree index technique is like the
performance of Model 204. Prakash et al. [15] presented a
bitmap index as a better choice for querying huge and
multidimensional scientific datasets. They have developed a
well-organized algorithm based on retrieving index positions of
all 1’s from each bitmap. These index positions are further
processed on common features which decide whether the pair of
vectors is IB result or not. Generation of the decision algorithm
which involves pre-processing of data sets through bitmap
indexing approach is the global objective of [16]. The key
benefits of this index strategy are load balancing, identifying
frequent patterns of the data sets, kind of data types available in
the databases, slowly changing dimension scenarios handling
and usage of aggregation in the form of IB querying.

Shankar et al. [17] introduced a cache-based evaluation
technique for IBQ by taking threshold value equal to 1 using a
compressed bitmap index, and for future situation the required
results are saved in cache memory. In future it just picks up the
required results from the cache memory as a substitute of
executing once again on the database table. Therefore, this
approach clearly states that, an execution time of IB query is
improved by avoiding duplication of evaluation process several
times. In this work testing was conducted by applying an IB
query stated on the database table which consists of one million
rows with two attributes X and Y, by using COUNT ()
aggregation function. IB query evaluation method was the first
function applied to accept all those tuples as an input and
produces the iceberg results with its count value fulfilled by
threshold greater than or equal to 1. Then these results are given
as an input to the second unit catching IB results in an ascending
order. For future position this unit saves the iceberg results in

0%

20%

40%

60%

80%

78%

22%

Researchers Focus

Anti-monotone functions

Non-Antimonotone functions

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

739 | P a g e

www.ijacsa.thesai.org

cache memory. The last unit which takes results from cache unit
is responsible to answer an IB query for thresholds greater than
1, is just selected from the cache memory and send to output.
This cache-based technique enhanced the overall processing
time of IBQ for an efficient data retrieval task.

Laxmaiah, Govardhan and Kumar [18] have presented an
efficient Database Priority Queue (DPQ) algorithm for
processing IBQ using compressed bitmap Index; the impact of
this method was to speed up the query evolution method by
emptying the compression queue. In this technique, first the
iceberg query is responsible to select the similar words with
aggregate attributes Y and X from the relation R in which the
TH value is taking between 1000 and 9000. By taking a database
table which has two attributes Y and X which contain millions
of rows and using count () aggregate function. Then the
experiment is conducted by applying an IBQ on the first
function that generates bitmaps accepts all those rows as an
input. The key achievement of this technique is keeping the
comparable number of rows in a relational database table and at
the same time keeps the results with density queues;
consequently, further this experiment is repetitive for different
iceberg threshold as well.

Zianget al. [19] suggested a well-organized algorithm for
IBQ processing by using compact bitmap indices. The given
algorithm does not depend on any testing compression process
and demonstrates better performance over presented schemes.
Bitmap index has three attractive benefits based on observation
such as: first, conducting bitwise operations that reduce
computation time. Second, saving disk space by avoiding rows
scan on a relation by using attributes group. Third, by leveraging
the anti-monotone property of IB therefore this algorithm is not
affected by the number of diverse values, and length of attributes
in the relation. Rao et al. [20] presented a well-organized
technique, known as dynamic pruning technique or vector
alignment algorithm to answer IBQ by using compressed bitmap
indices, this algorithm guarantees that no empty result is
generate by using any bitwise-AND operation. Bitmap indices
are presented to get more improved results as compared to tree
based index method such as alternatives of R-tree or B-tree [21],
explicitly, this work is motivated to compute IBQ using bitmap
indices as an index pruning based approach.

Otoo and Shoshani [22] introduced bitmap indexing pattern
algorithms for little cardinality attributes to analyze the time and
space complexities of Byte Aligned Code (BBC) and Word
Aligned Hybrid (WAH) compressed bitmap indices. To
demonstrate their success for using high cardinality attributes,
for high cardinality attributes, c << N, here c represent
compressed bitmap index and N represent the number of words,
the WAH algorithm compressed indices uses define 2N words,
this 2N words is about half the size of a representative B-tree
index. On the other side BBC compressed indices are even
smaller but it also represents an in-place algorithm that is linear
to the total size of the bitmaps involved to OR many bitmaps in
time complexity. The whole size of the bitmaps used is
proportional to the number of hits in the worst-case situation.
By using compressed bitmap, it shows to search one attribute is
optimal and this optimality is established with timing results
from a set of real application and random data. In these sets of
examinations, WAH compressed bitmap indices were nearly

twice as fast as BBC code compressed indices. Both indices
could achieve search operations faster than the projection index
by using worst cases, on average. By using the WAH
compressed indices, time is not more than the projection index.
Bitmap indices in study [14] using bitmap vectors for vertical
organization of a columns. Every vector characterized the
presence of a distinctive value in the column across all rows in
the table.

In study [23] an effective bitmap pruning strategy was
introduced, which is grounded in order of high cardinality in
Priority Queue (PQ) by using compressed bitmap indices for
processing an IBQ. By using this method, it allowed the
movement of vectors to enter PQs on the high count 1’ to get
additional benefit for large pruning of bitmaps. The pruned
vector essentially improved the response time. Processing huge
quantities of data in predetermined time factor is a key challenge
faced by data warehousing. By using [24] bitmap indexing
which is extra meaningful in quicker data processing generated
a strategic decision technique for data warehousing
environment. For managing ‘Boolean’ kind of data, like gender,
the bitmap indexing is best suited, such as false and true group
of values. Bitmap indexing mainly depends on 1’s and 0’s kind
of data. The data is openly processed by using CPU, which does
not support any alteration of the data items into a new format,
and greatly decreases the processing time of the records. This
work shows the integration of IB querying; within the identified
amount of time factors while processing huge amounts of data
in data warehousing environments and achieved efficient
results. Most of the previous research work mainly centered
about identifying “well behaved “constraints with respect to
constraint pushing [25, 26], this work proposed a novel pushing
technique known Divid-and-Approximate (DnA), which
combine two ideas, “Approximate Push” and “Divide-and-
Conquer” to generate a strongest constraint for pruning with
non-anti-monotone aggregation constraints in IB cubing. The
key idea of DnA was to divide a partition of tuples into two
subspaces of positive and negative degree values, so that a given
constraint could be rewritten using monotone or ant monotone
constraints in subspaces. These works mainly focused on (a)
SQL like tuple-based aggregates, rather than item-based
aggregates (b) General aggregate constraints, rather than only
“well behaved”, and (c) Constraint independent methods, rather
than constraint specific methods. The idea of DnA contributed a
new share to constrain data mining techniques.

Laxmaiah et al. [27] presented an efficient Density Priority
Queue (DPQ) procedure for an IBQ by using compacted bitmap
index based on two stages (1) Using an algorithm for pruning
the vectors dynamically by computing newest counts for
reinsertion and certifies the proposal using a sample database.
By dropping the bitmap vectors dynamically using a high-count
attribute to calculate an IB query, and (2) Using a validation of
DPQ approach on RDBMS section to show the validity of the
proposed DPQ and evaluates an IB query having COUNT ()
aggregate function. As compared to previous strategies PQ is a
more sophisticated technique. Based on large data sets the
experimental results indicate significant progress which proves
the effect of IBQ computation.

In study [28], the distributed Iceberg Semi-Join operator is
proposed, which is used in most of the real-life applications.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

740 | P a g e

www.ijacsa.thesai.org

This technique is used to get information from two different
independent data marts or from a remote digital library and use
an efficient technique, which insert the execution of the IBQ and
join in the two servers by using Mul-FIS; to prune the non-
qualifying groups it uses. This work provides important
advantages over its competitors. By using multidimensional
databases each dimension is nothing, but one subject oriented
table with attributes of related metrics [29], writing queries on
multidimensional databases are difficult and include join
operations due to which the reply time of query is increased on
a massive database. By using queries with aggregation function,
and summarization is followed by using ‘having’ clause. This
type of query is very complex and requires extra time. This work
focused on two different bitmap indexes search implementations
techniques, such as RIDB and Fast Bit. The key improvements
in Fast Bit are the Word-Aligned Hybrid (WAH) compression
for bitmaps and multilevel bitmap encoding approaches. Fast Bit
index is typically greater than RID Bit index, in fewer intervals
of time it can answer several queries, as it accesses the required
bitmaps in fewer I/O operations [30]. RID Bit normally costs
less CPU time in answering queries than that of Fast Bit, though,
the CPU time differences are minor matched with I/O time. A
brief comparison between “Fast Bit” and “RID Bit” is discussed
in [31]. At the end this section Table II categorizes some basic
characteristics of bitmap Indexing.

B. Based on Compound or Hybrid Algorithms

In study [31], four algorithms namely Partitioned Tree (PT),
Breadth-first writing Partitioned Parallel BUC (BPP),
Replicated Parallel BUC (RP), and Affinity Skip List (ASL) are
introduced, these algorithms are calculated experimentally over
a range of parameters to get the necessary condition in which the
algorithms could outperform. The Key features of the proposed
algorithms are mentioned in Table 2, which described all four
algorithms with respect to their writing strategy, Data
decomposition, Load Balance, and Relationship of cuboids.

Matias and Segaly [32] presented two effective algorithms
based on hash partitioning technique to compute estimated IB
queries. Using a hash function to divide a data set into specific
values that was independent from a subset resulting with
properly smaller independent sub problems that can be handled
efficiently with certain performance. In [33] two algorithms
which use a concise sample and basic component have been
presented. The first algorithm is used to sort the sequence into
the necessary number of partitions and the second algorithm is
used for computation. Though acting only one pass over the
sequence these algorithms are used to compute the
approximation query, without accessing a database and without
materializing data sets which are stated implicitly, therefore it
can be applied online for streaming data. In [34] the author has
emphasized two problems; (1) Efficiently classify passing
stories from rapid streaming social content and (2) To execute
IB queries to form the structural background between stories. To
give attention to the solution of the first problem, the social
stream is converted into a time gap of tube network, and model
passing stories as (k, d) cores in the tube network.

Two polynomial time algorithms were proposed to extract
maximal (k, d) cores. The second problem, deterministic context
searches and randomized context search is applied to maintain

the IBQ efficiently and carefully, which permits performing
context search without pair wise relationship.

TABLE II. KEY FEATURES OF FOUR ALGORITHMS

Algorithms
Writing

Strategy

Data

Decomposition

Load

Balance

Relationship

of cuboids

RP
Depth-

First
Replicated Weak Bottom-up

BPP
Breadth-

First
Partitioned Weak Bottom-up

ASL
Breadth-

First
Replicated Strong Top-down

PT
Breadth-

First
Replicated Strong Hybrid

By spreading the probabilistic techniques and suggested
hybrid and multi buckets algorithms for processing of IB queries
was first considered by study [35]. The sample and multiple hash
function are used as an important building chunk of probabilistic
events such as scaled-sampling course and count algorithms. It
projected the sizes of a query results in order to expect the valid
IB results, which decreases memory requirements and raises
aggregate query performance. Though, these techniques
incorrectly resulted in false negatives and positives. To
overcome these bugs, an efficient approach is planned by
hybridizing the sampling and coarse count techniques, such as
hashing technique that allocated a bitmap of size ‘M’ in the
memory is constructed on linear counting algorithm (LCA). In
this method, all entries are initialized with ‘0’s. The linear
counting algorithm applies a column interest and then scans the
relation. On the other hand, the hash function produces a bitmap
address, and the algorithm sets this addressed bit to ‘1’. This
algorithm first counts the number of empty bitmap entries. Then
it guesses the column cardinality by distributing the count by the
bitmap size ‘m’ and plugging the given result which increases
the overall performance of hybrid technique.

III. PROPOSED TECHNIQUE

In the previous section we discussed in detail IB query
processing techniques and algorithms. Researchers have
introduced different algorithms and techniques for increasing
the performance of iceberg query. Some of the existing
techniques focus on the SUM (), MIN (), MAX (), AVERAGE
(), and COUNT () aggregate functions, such as, bitmap indexing
techniques, cubed techniques, AND operation techniques, POP
operation techniques, attribute-based techniques, and hybrid
algorithm techniques. All these techniques have some
limitations, such as, some techniques have the deficiency to
occupy more space in memory, some techniques slow down the
system performance, some require complex algorithms which
are difficult to maintain, and some take more time to produce the
required result in a required time. To overcome the limitations
of existing techniques to improve the performance of IBQ, an
enhanced technique based on, summary table is proposed to
improve the IB query performance. This technique improves the
running time of the query for searching a specific record and
reduces the elapse time. This section aims to discuss the details
of the proposed work using summary table’s technique for IB
query processing to finds out the required result greater than the
given TH.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

741 | P a g e

www.ijacsa.thesai.org

The proposed technique is applied on sample customer
tables of different sizes with the same attributes, such as
customer identity (Cus_Id), Expense per day (Cus_Exp-per-
day), and job (Job). The values of Cus_Id, Cus_Exp-per-day,
and Job attributes classify each group, while Cus_Exp-per-day
refers to the field on which the aggregate operator Count () is
being computed based on a specific TH value. The focus of this
work is Count () aggregate function which is applied on
(Cus_Exp-per-day) field, the scope of the proposed work is to
find expenses of all those customers whose expense is greater
than some specified threshold values. The proposed work is
better than the existing work in different perspectives. Different
summary tables are created in the proposed work and IBQs are
used to extract the required results from these summary tables
by ignoring scanning whole data sets one by one. As compared
to the proposed technique, the state-of-the-art technique was
used to scan all the tables for the required data results which
slowed down the query processing time. The advantage of our
proposed technique is to improve the running time of the query
for searching a specific record and reduces the elapse time.

A. Proposed Architecure

The proposed architecture is a robust and efficient summary
table creation system based on different threshold values for
identifying how summary tables are created from the original
tables. Fig. 2 draws our novel architecture, which consists of
three phases: an Execute1 phase for processing simple IB
queries, that is directly applied on original source table for
extracting the required dataset, it scan the whole table for the
required data set based on a specific threshold value, the
drawback of this technique was the requirement of huge amount

of processing time which effect the performance efficiency of
this technique, in contrast the Execute phase in the mentioned
architecture was used to automatically creating summary tables
from original table, and then on those summary tables the
required query are executed based on a specific threshold value
for the required result instead of scanning the whole table. In the
proposed architecture only eight summary tables are mentioned
for the sake of simplicity these summary tables are used as a
source of IB queries, instead of scanning the whole original data
set, and the third phase displays the required output of the
processed IB query.

B. Implemetation

This section describes different techniques that were planned
in the preceding section. The first step toward implementation
was by taking different target customers tables ranging from
50K to 500k data set, which store customers’ related records. In
the second step the existing technique is applied to fetch
customer’s records by using twenty different threshold values
ranging from 1k to 20k on each customer’s table. Based on the
mentioned threshold values, the times taken by the existing
technique are recorded and then the average time is calculated
for ten run cycle on a given table. The same experiment is
repeated ten times for each data set in total. Similarly, the
proposed technique is represented in the same way on the same
data accordingly and twenty summary tables are created for each
target table, that store pre-calculated aggregate results of the
COUNT () aggregate function. The proposed technique then
considers the threshold values given in the HAVING clause of
the IB query and fetches results from the respective summary
tables as per the given threshold values.

Fig. 2. Proposed architecture.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

742 | P a g e

www.ijacsa.thesai.org

IV. RESULT AND ANALYSIS

In this section, results obtained during experiments are
analyzed. Table III and Fig. 4 represent comparison among
existing and proposed techniques based on query performance
for different dataset ranging from 50k to 500k. The first column
in Table III indicates different data sets, the second and third
column correspond to average processing time of both
techniques by using ten cycle of run count testing condition on
each specific data set accordingly. The “Existing technique
time” and “Proposed technique time” represent the average
processing time of the existing and proposed IB query by
retrieving the required result. The recorded values show high
differences in execution times. e.g. when the dataset was 50k,
then the corresponding average values of ten count cycle of
existing and proposed techniques was about 6.2ms and 1.02ms,
similarly for 100k the corresponding values is 6.8ms and 1.1ms,
and the same is recorded for the other data sets till to 500k
respectively. The above tabulated values are shown in the
following Fig. 3 to understand well to the reader, the x-axis
represents different datasets and y-axis represents execution
time. Then how the execution times of existing and proposed
techniques are gradually varying with different datasets.

A. Comparison between Simple and Proposed Techniques

In Table IV, we drawn the comparison between simple and
proposed techniques only for one dataset of size 50k, there are
nine others different tables is used to store the same comparison
used in Table III with different data set (100k, 150k, 200k, 250k,
300k, 350k, 400k, 450k, and 500k) during the whole experiment
to record the processing time of both techniques, which is not
mentioned in this section due to a large number of comparison.
Table IV represents the comparison of “Average of ten run
cycle” among simple and proposed query processing. In the
Table IV “RECORDS” field represent the number of records in
given table, “Cycle of Run Count” represents ten counts of query
processing of each proposed and simple technique, “Simple
Query Technique” field represent the state-of-the-art technique,
“Proposed Query Technique” field represents the proposed
technique and “AVERAGE OF ALL” field represent the
average time of ten cycle processing of each proposed and
simple query technique. To comprehend well to readers, we
draw the above tabulated data in graph form which are shown in
the following Fig. 4. The x-axis represents the number of
processing run count ranging from 1 to 10 cycles, and as well as
average of all run count cycles for both simple and proposed
techniques, and y-axis represents the execution time in
microsecond.

TABLE III. EXISTING AND PROPOSED TECHNIQUE TIME INTERVAL

Dataset Existing technique time Proposed technique time

50K 6.2ms (average time of ten run cycle) 1.02 ms (average time of ten run cycle)

100K 6.8ms 1.1 ms

150K 8.7ms 1.3ms

200K 10.5 ms 1.6 ms

250K 12.5 ms 1.9 ms

300k 14.7 ms 2.1 ms

350K 16.5 ms 2.3 ms

400k 18.3 ms 2.7 ms

450k 20.1 ms 2.9 ms

500k 22.4 ms 3.1 ms

Fig. 3. Performance comparison of existing and proposed techniques.

6.2 6.8

8.7

10.5

12.5

14.7

16.5

18.3

20.1

22.4

1.02 1.1 1.3 1.6 1.9 2.1 2.3 2.7 2.9 3.1

0

5

10

15

20

25

50K 100K 150K 200K 250K 300k 350K 400k 450k 500k

Performance Comparison
graph

EXISTING TECHNIQUE

PROPOSED TECHNIQUE

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

743 | P a g e

www.ijacsa.thesai.org

TABLE IV. COMPARISON OF CYCLE OF RUN COUNT BETWEEN PROPOSED AND EXISTING TECHNIQUE

Table 4 50k Records

Cycle of Run Count 1 2 3 4 5 6 7 8 9 10
AVERAGE OF

ALL

Simple query processing time 6 6.01 6.05 6.07 6.08 6.1 6.3 6.6 6.7 6.9 6.28

Proposed query processing

time
1 1.02 1.03 1.05 1.05 1.06 1.08 1.09 1.1 1.4 1.08

Fig. 4. Comparison of cycle of run Count between existing and proposed technique.

V. CONCLUSION

In this paper, we proposed a summary table technique for
processing iceberg queries efficiently. According to IBM 2.5
quintillion bytes of data are generated by different electronic
devices on a daily basis. Extraction of useful information from
those huge data sets is a well-known challenging problem. From
the last few decades most of works have focused to increase the
performance of IB queries with respect to time constraint,
computing memory, data repositories, computing memories,
and data scanning. In this paper our technique is highly simple
and different as compared to the previous works based on
bitmap indexing and cubed technique. The summary table
technique leverages the IB queries at the summary tables; these
summary tables are created dynamically from the base table
based on different threshold values ranging from 1k to 20k
before the execution of queries. At the time of issuing the query,
the proposed technique considers the threshold given in the
query and fetches the calculated COUNT () aggregation from
that specified summary tables as opposed to recalculating the
aggregate function from the base table to produce the required
results. Our method has improved the main metrics
significantly. However, to increase the performance of IB
queries in a large dataset is still a big challenge, in the future,
this research work focused on the COUNT () aggregate function.
In future we would like to extend our work to other aggregate
functions such as MAX (), MIN (), SUM (), and AVG (). In this
work we only considered the high-level IB queries. Similarly,
we would like to continue working on low-level queries as well.

ACKNOWLEDGMENT

The authors would like to thank the University Malaysia
Sabah for supporting this research Under the Grant NALS/
SLB2451NALS.

REFERENCES

[1] Ramírez-Gallego, S., García, S., Bergmeir, C., Triguero, I., Mendoza, C.,
& Herrera, F. (2018). Fast distributed big data preprocessing using Spark.
IEEE Access, 6, 21216-21231

[2] Glavic, B., & Alonso, G. (2021). Verifying data-centric programs: Are
databases the new bell-bottoms? Communications of the ACM, 64(7), 93-
101.

[3] Godfrey, P., & Shipley, R. (2020). Iceberg queries revisited: A multi-
dimensional perspective. Proceedings of the VLDB Endowment, 13(11),
2627-2639

[4] Müller, R., & Bach, F. (2023). Optimizing iceberg queries in modern
database systems: A comprehensive survey. ACM Computing Surveys,
56(4), 1-36.

[5] Jinuk Bae and Sukho Lee. 2000. Partitioning algorithms for the
computation of average iceberg queries. In Data Warehousing and
Knowledge Discovery, Springer BerLin Heidelberg, pp. 276-286.

[6] Kevin Beyer and Raghu Ramakrishnan. 1999. Bottom-up computation of
sparse and iceberg cube, In ACM SIGMOD Record, vol. 28, no.2, pp.
359-370.

[7] Raghu Ramakrishnan and Gehrke Johannes. 2000. Database management
systems, McGraw-Hill New York, vol. 3, pp. 1-1104.

[8] WP Yan and P Larson. 1994. Data reduction through early grouping. In
Proceedings of thconference of the Centre for Advanced Studies on
Collaborative research, pp .1-74.

[9] Khaled AlSabti. 2006. Efficient Computing of Iceberg Queries Using
Quantiling. Journal of King Saud University-Computer and Information
Sciences, vol. 18, pp. 53-75.

[10] Ricardo Baeza-Yates.1992. Information retrieval: data structures &
algorithms, Prentice Hall.

[11] Usama Fayyad, Gregory Piatetsky-Shapiro and Padhraic Smyth. 1996.
From data mining to knowledge discovery in databases, AI magazine, vol.
17, no.3, pp. 1-37.

[12] Israel Spiegler and Rafi Maayan. 1985. Storage and retrieval
considerations of binary databases, Information processing and
management: an international journal, vol.21, no. 3, pp. 233-254.

6 6.01 6.05 6.07 6.08 6.1 6.3 6.6 6.7 6.9
6.28

1 1.02 1.03 1.05 1.05 1.06 1.08 1.09 1.1 1.4 1.08

0
1
2
3
4
5
6
7
8

Simple Query Technique Proposed Query Technique

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

744 | P a g e

www.ijacsa.thesai.org

[13] Vuppu Shankar, and CV Guru Rao. 2013. Computing iceberg queries
efficiently using bitmap index positions. In Human Computer Interactions
(ICHCI), IEEE International Conference on, pp. 1-6.

[14] PE O'Neil. 1989. Model 204 architecture and performance. In High
Performance Transaction Systems. Springer Berlin Heidelberg, vol. 359,
pp. 39-59.

[15] Prakash, Kale Sarika, and PM Joe Prathap. 2015. Bitmap Indexing a
Suitable Approach for Data Warehouse Design. International Journal on
Recent and Innovation Trends in Computing and Communication, vol.3,
no. 2, pp.680-683.

[16] Uma Pavan Kumar Kethavarapu and B. Lakshma Reddy. 2014. Data
Warehousing Security Encapsulation with Bitmap Indexing Mechanisms.
International Journal of Emerging Technology in Computer Science &
Electronics, vol.1, no. 11, pp.10-13.

[17] Vuppu Shankar and CV Guru Rao. 2014. Cache based evaluation of
iceberg queries. In International Conference on Computer and
Communications Technologies (ICCCT), IEEE, pp. 1-5.

[18] M. Laxmaiah, K.Sunil Kumar, A. Govardhan, and C.Sunil Kumar. 2013.
A Priority Queue Approach to Evaluate Aggregate Queries Efficiently.
WAIMS (World Academy of Informatics and Management Sciences),
vol. 2, no. 3, pp. 2278-1315.

[19] He B, Hsiao HI, Liu Z, L. Huang Y, and Chen Y. 2012. Efficient Iceberg
Query Evaluation Using Compressed Bitmap Index. Knowledge and
Data Engineering, IEEE Transactions on, vol. 24, no.9, pp. 1570-1583.

[20] V Chandra Shekhar Rao, and P. Sammulal. 2014. Efficient iceberg query
evaluation using set representation. India Conference (Annual IEEE (
2014), pp.1-5.

[21] Marcus Jurgerns, Hans-J. Lenz. 2001. Tree based indexes versus bitmap
indexes: A performance study. International Journal of Coopertive
Information Systems, vol. 10, no. 3, pp.355-376.

[22] Kesheng Wu, Ekow Otoo and Arie Shoshani. 2004. On the Performance
of Bitmap Indices For High Cardinality Attributes. VLDB, pp. 24–35.

[23] Vuppu Shankar and CV Guru Rao. 2013. A Density based Priority Queue
Strategy to Evaluate Iceberg Queries Efficiently using Compressed
Bitmap Indices. International Journal of Computer Applications, vol. 67,
no. 21, pp. 39-44.

[24] Uma Pavan Kumar Kethavarapu, Dr.Lakshma Rddy Bhavanam, and
Sreedevi.S. Erady. 2015. Improvement of query processing speed in Data
warehousing with the usage of components-Bitmap Indexing, Iceberg and

Uncertain data. International Conference on Current Trends in Advanced
Computing (ICCTAC-), pp. 1-5.

[25] Ke Wang, Yuelong Jiang, Jeffrey Xu Yu, Guozhu Dong, and Jiawei
Han.2003. Pushing aggregate constraints by divide-and-approximate. In
Data Engineering, Proceedings. 19 th, IEEE, International Conference,
pp. 291-302.

[26] Ke Wang, Yuelong Jiang, Jeffrey Xu Yu, Guozhu Dong, and Jiawei Han.
2005. Divide-and-approximate: A novel constraint push strategy for
iceberg cube mining. IEEE Transactions on Knowledge and Data
Engineering, vol.17, no.3, pp.354-368.

[27] M. Laxmaiah, K. Sunil Kumar, Dr. A. Govardhan, and Dr. C. Sunil
Kumar. 2013. An Approach to Evaluate Aggregate Queries efficiently
using Priority Queue. International Journal of Emerging Trends &
Technology in Computer Science (IJETTCS), vol. 2, no. 3, pp.341-344.

[28] Every Day Big Data Statistics [online] Available:
www.vcloudnews.com/every-day-big-data-statistics.

[29] Ying Mei, Kaifan Ji, and Feng Wang. 2013. A Survey on Bitmap Index
Technologies for Large-Scale Data Retrieval. In 2013 6th International
Conference on Intelligent Networks and Intelligent Systems (ICINIS), pp.
316-319.

[30] Elizabeth O'Neil, Patrick O'Neil, and Kesheng Wu. 2007. Bitmap index
design choices and their performance implications. In Database
Engineering and Applications Symposium, 11th International, pp. 72-84.

[31] Raymond T. Ng, Alan Wagner, and Yu Yin. 2001. Iceberg-cube
computation with PC clusters. In ACM SIGMOD Record, vol.30, no.2,
pp. 25-36.

[32] Yossi Matias and Eran Segaly. 1998. Partitioning based algorithms for
approximate and exact Iceberg Queries, pp. 1-30.

[33] Pgukkuo B. Gibbons and Yossi Matias. 1998. New sampling-based
summary statistics for improving approximate query answers. In ACM
(1998), vol. 27, no. 2, pp. 331-342.

[34] Pei Lee, Lajs V.S. Lakshmanan, and Evangelos Milios. 2014. CAST: A
Context-Aware Story-Teller for Streaming Social Content. In
Proceedings of the 23rd ACM International Conference on Conference on
Information and Knowledge Management, pp. 789-798.

[35] Kyu-Yyu Whang, Brad T. Vander-Zanden, and Howard M. Taylor. 1990.
A linear-time probabilistic counting algorithm for database applications.
ACM Transactions on Database Systems (TODS), vol. 15, no.2, pp. 208-
229.

http://www.vcloudnews.com/every-day-big-data-statistics

