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Abstract—Oral Squamous Cell Carcinoma (OSCC) is one 

main kind of oral cancer; early diagnosis is rather important to 

increase patient survival chances. This study investigates the 

application of advanced deep learning techniques including 

transfer learning and ensemble learning to increase the accuracy 

of oral squamous cell cancer (OSCC) diagnosis using 

histopathological image analysis. Two transfer learning models, 

EfficientNetB3 and ResNet50, support the suggested method to 

extract suitable features from the histopathological images. Both 

models permit fine-tuning to improve their classification accuracy. 

On tests taken after the initial training, the EfficientNetB3 model 

scored 96.15%. Later on, training ResNet50 yielded a test 

accuracy of 91.40%. Weighted voting merged several models into 

an ensemble model designed to maximize the strengths of each 

network. With a test accuracy of 98.59% and a training accuracy 

of 99.34%, the ensemble model showed notably higher 

performance than the values obtained by the individual models. 

Divided into OSCC and standard categories, the collection has 

5,192 extremely well-resolved images. The images were used to 

create training, validation, and testing sets. We used this method 

to consistently evaluate the model's performance and reduce 

overfitting. Furthermore, the ensemble model proved to be quite 

accurate with recall and F1 scoring, thereby proving its capacity 

to routinely identify OSCC images. Both groups produced ROC 

curves, and the area under the curve (AUC) demonstrated 

excellent model performance. Transfer learning and ensemble 

learning are used together in this study to show that OSCC can be 

found early and consistently in histopathology images. The 

findings reveal that the recommended strategy could be a 

consistent tool to assist pathologists in the precise and timely 

detection of OSCC, thereby improving patient treatment and 

outcomes. 
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I. INTRODUCTION  

Oral Squamous Cell Carcinoma (OSCC) [1] is one of the 
most prevalent forms of cancer worldwide, accounting for over 
90% of oral cancers. Usually affecting the squamous cells 
guarding the oral cavity, the disorder arises in malignant tumors 

that, if not found and treated quickly, can spread to other parts 
of the body. According to the World Health Organization 
(WHO), OSCC ranks in the top ten most common malignancies 
globally, with especially high prevalence in South Asia, 
Southeast Asia, and parts of Europe. OSCC has a significant 
global influence considering an estimated 300,000 new cases 
and around 145,000 deaths annually. The OSCC diagnosis 
primarily dictates its prognosis; early-stage diagnosis 
considerably increases the chances of successful therapy and 
survival [2].  Among the most often occurring risk factors of 
OSCC, a multifactorial etiopathogenesis including tobacco 
usage, alcohol intake, betel quid chewing, and human 
papillomavirus (HPV) infection stands. Growing emphasis on 
the importance of molecular changes and genetic predispositions 
in the evolution of OSCC has been observed in recent years. 
Although OSCC's molecular biology is now well known, the 
main diagnostic tool that remains is histopathological 
investigation of tissue biopsies. This method is formed by a 
pathologist's microscopic examination of tissue samples in 
search of malignant cells. Nevertheless, this standard diagnostic 
approach has important disadvantages including inter-observer 
variability, the time-consuming character of the operation, and 
the likelihood of misinterpretation coming from the subjective 
interpretation of histological features [3]. Early and correct 
OSCC detection is highly significant, thus the scientific and 
medical industries have worked hard to develop automated 
diagnostic tools that can help pathologists and minimize 
diagnosis mistakes. In this sense, applying machine learning 
(ML) and artificial intelligence (AI) in medical imaging has 
become an interesting road for innovation. The development of 
digital pathology and advances in image analysis methods have 
presented opportunities for the design of AI-driven diagnostic 
systems capable of very accurate and fast histological image 
interpretation [4]. OSCC presents varied clinical signs based on 
tumor sizes and location, such as erythroplakia, leukoplakia, 
non-healing ulcers, lumps, or persistent sores. Other symptoms 
include voice changes, dysphagia, pain, numbness, bleeding, 
loose teeth, and, in advanced stages, neck swelling due to lymph 
node metastasis. The etiology of OSCC is unclear, though major 
risk factors include tobacco use and alcohol consumption, which 
together significantly increase cancer risk [5]. High-risk human 
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papillomavirus (HPV), particularly HPV-16, is also a major 
factor, especially for oropharyngeal cancers [6]. Additional risks 
include poor oral hygiene, environmental toxins, chronic 
trauma, a weakened immune system, and genetic 
predispositions. Understanding these factors is critical for early 
detection and prevention programs aimed at reducing OSCC 
incidence and mortality [7]. Treatments for OSCC combine a 
multimodal approach tailored to the tumor's stage, location, and 
patient health. Major treatments include surgery, radiation, and 
chemotherapy, often used together for optimal results [8]. 
Surgery, the primary treatment for localized OSCC, aims to 
remove the tumor with clear margins to minimize recurrence. 
Reconstructive surgery may follow to restore function and 
appearance after partial or full removal of affected parts, such as 
the tongue or jawbone. Radiation therapy, typically external 
beam, is used as a supplement to surgery or as a main treatment 
when surgery isn’t viable [9]. Chemotherapy, often paired with 
radiation (chemoradiation), is reserved for advanced or 
metastatic cases and patients with recurrent OSCC. Targeted 
therapies and immunotherapies offer appealing adjunct 
treatments by focusing on molecules linked to tumor growth 
[10]. Supportive care, including nutrition, pain management, 
and speech therapy, helps maintain quality of life. 
Multidisciplinary tumor boards optimize treatment by balancing 
patient-specific factors with evidence-based guidelines and 
chosen treatment methods. In oncology, where early detection 
significantly influences patient prognosis, the diagnosis of Oral 
Squamous Cell Carcinoma (OSCC) provides a huge challenge. 
Sometimes subjectivity, variability in interpretation, and the 
need for specialist knowledge limit conventional diagnosis 
approaches such as histological study and clinical examination, 
therefore causing inconsistent and delayed diagnosis [11]. 
Although machine learning has advanced, present models for 
OSCC detection from histopathology images often depend on 
single-model architectures, which might not adequately reflect 
the complex and heterogeneous character of OSCC. 
Furthermore, confusing accurate detection results in variations 
in image quality and staining methods. More strong, accurate, 
and dependable diagnostics tools that can combine several 
models to improve detection possibilities are desperately 
needed. This work fills in this need by looking at the application 
of transfer learning and ensemble learning approaches to create 
a better, ensemble-based model for early and accurate OSCC 
identification [12]. The main goal of this work is to provide a 
strong and accurate strategy based on advanced deep learning 
[13] approaches more especially, transfer learning [14] and 
ensemble learning [15] for the detection of Oral Squamous Cell 
Carcinoma (OSCC). The work intends to extract discriminative 
characteristics from histopathology images using the strengths 
of two state-of-the-art pre-trained models, EfficientNetB3 and 
ResNet50. The study aims to raise the general classification 
accuracy and dependability of OSCC detection by optimizing 
these models and combining their outputs using an ensemble 
learning method. With an eye on measurements including 
accuracy, precision, recall, F1 score, and AUC-ROC, the study 
also seeks to evaluate the ensemble model against individual 
models. The ultimate aim is to develop an ensemble model 
significantly above present methods, thus providing a more 
consistent diagnostic tool for early OSCC diagnosis and aiding 
in improving patient outcomes. 

The primary contributions of this research are: 

 This work presents a new ensemble learning method 
based on two state-of-the-art pre-trained models, 
EfficientNetB3 and ResNet50, for Oral Squamous Cell 
Carcinoma (OSCC) identification from histopathology 
images. 

 Specifically, with OSCC identification, the work shows 
medical image analysis transfer learning performance. 
The work uses transfer learning to overcome the 
difficulties provided by insufficient labeled data thus 
improving the generalizing power of the model by fine-
tuning pre-trained models on histomorphology images. 

 The study evaluates the proposed ensemble model 
exhaustively using significant performance measures 
including accuracy, precision, recall, F1 score, and 
AUC-ROC. Since the ensemble model trumps individual 
models, the results demonstrate that it offers a more 
consistent diagnosis tool for early OSCC identification. 
Development of the field of medical image analysis and 
improvement of oncology clinical results depend on this 
study. 

II. LITERATURE REVIEW 

The detection of OSCC has become even more critical 
considering the substantial fatality rate connected with late-stage 
diagnosis. Deep learning, notably in CNNs and Transfer 
Learning, has lately shown promise in boosting the accuracy of 
OSCC detection from histopathological images. 

Fanizzi et al. (2024) [16] used an explainable CNN model to 
examine oropharyngeal squamous cell cancer, training on CT 
images of 499 OPSCC patients with an independent test set of 
92. Using an Inception-V3 architecture, they achieved a 73.50% 
AUC, highlighting tumor locations via Grad-CAM and 
emphasizing CNN relevance in therapy. 

Paramasivam et al. (2024) [17] used deep learning with three 
modified CNN architectures, including DENSENET-121 
variants, to diagnose OSCC in 5,492 histopathological images, 
achieving 97.03% accuracy. The study highlighted AI’s 
potential to reduce human errors and improve diagnostic 
accuracy, addressing the limitations of traditional mouth cancer 
diagnosis methods. 

Weber et al. (2024) [18] studied Stimulated Raman 
Histology (SRH) with deep learning for Oral Squamous Cell 
Carcinoma categorization. Using a VGG19 CNN, the model 
achieved balanced accuracies of 0.90 (SRS) and 0.87 (SRH) 
from SRH images transformed to resemble H&E sections, 
highlighting AI's efficiency in intraoperative OSCC detection. 

Albalowitz et al. (2024) [19] developed a deep learning 
model using EfficientNetB3 for OSCC diagnosis, achieving 
99% accuracy, precision, recall, and F1-score. The study utilized 
1,224 histograms from 230 individuals, leveraging data 
augmentation, regularization, and optimization. This work 
demonstrates the potential of deep learning in improving OSCC 
diagnostic accuracy. 

Kumar et al. (2024) [20] examined deep learning for early 
OSCC identification from histopathology images. Using an 
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enhanced Inception-Resnet-V2 CNN model, the study achieved 
91.78% accuracy in distinguishing benign from malignant 
biopsy images. The paper highlights deep learning's potential in 
automating OSCC diagnosis and improving early clinical 
interventions. 

Mishra et al. (2024) [21] explored CNNs for early OSCC 
identification, achieving 98.49% training accuracy, 86.89% 
validation accuracy, and 89.37% testing accuracy. The model's 
F1-score of 0.89 for both classes highlights CNNs' potential for 
improving OSCC screening protocols and patient outcomes, 
thus reducing fatality rates linked to late diagnosis. 

Siddique et al. (2024) [22] used biopsy-derived histological 
images to explore oral cancer detection techniques, emphasizing 
image pre-processing's role in enhancing CNN model 
performance. Models including VGG16, VGG19, InceptionV3, 
AlexNet, and ResNet50 achieved respective accuracies of 84%, 
82%, 67%, 76%, and 42%, showcasing deep learning's potential 
in cancer diagnosis. 

SMira et al. (2024) [23] investigated early oral cancer 
detection using deep learning and smartphone-based imagery. 
They developed a resampling method and "center positioning" 
image-capturing technique to manage variability. The deep 
learning network achieved 83.0% sensitivity, 96.6% specificity, 
84.3% accuracy, and 83.6% F1 score on 455 test images. 

Deo et al. (2024) [24] studied the categorization of Oral 
Squamous Cell Carcinoma (OSCC) using a Vision Transformer 
(ViT) framework. The updated ViT model outperformed eight 
pre-trained deep learning models on a dataset of 4,946 images, 
achieving 97.78% accuracy, 96.72% specificity, and 98.80% 
sensitivity, proving ViT's efficacy on smaller datasets. 

Soni et al. (2024) [25] studied early OSCC diagnosis using 
an improved EfficientNetB0 model and Dual Attention Network 
(DAN). Achieving 91.1% accuracy, 92.2% sensitivity, 91.0% 
specificity, and a 92.3% F1 score, EfficientNetB0 outperformed 
17 pre-trained models, highlighting deep learning's clinical 
potential for early OSCC identification and therapy 
enhancement. 

Deo et al. (2024) [26] developed a DL model for OSCC 
detection from histopathological images. Using 2D empirical 
wavelet transform and a ResNet50-DenseNet201 ensemble, 
binary classification achieved 92% accuracy. The method 
enhances diagnostic accuracy, reduces human error, and 
accelerates classification, demonstrating deep learning's 
potential to aid clinical decision-making. 

Saraswathi et al. (2023) [27] examined AlexNet's 
classification of Oral Squamous Cell Cancer (OSCC) using 
5,192 histopathological images. AlexNet outperformed ResNet, 
achieving 89% accuracy and 60% loss compared to ResNet's 
78% accuracy and 82% loss. The study suggested future 
improvements through larger datasets, software applications, 
and modified AlexNet models. 

Ahmad et al. (2024) [28] studied AI approaches for OSCC 
detection via histopathological images. Three methods were 
compared: Gabor+CatBoost, ResNet50+CatBoost, and a hybrid 
Gabor+ResNet50+CatBoost. The hybrid achieved 94.92% 
accuracy, 95.51% precision, and 94.9% F1 score. PCA reduced 

feature dimensionality, improving performance for accurate 
OSCC diagnosis. 

Nagarajan et al. (2023) [29] developed a deep learning 
system to diagnose Oral Squamous Cell Carcinoma from 
histopathology images, using a Modified Gorilla Troops 
Optimizer. MobileNetV3 achieved the highest accuracy (0.89), 
which increased to 0.95 after optimization. This method 
demonstrates swarm intelligence's potential to improve OSCC 
detection accuracy. 

Begum et al. (2023) [30] use deep learning models to 
automatically detect OSCC from histological images, 
employing transfer learning and layer modification. Among four 
pre-trained CNN models (NASNet Large, InceptionNet, 
Xception, DenseNet 201), DenseNet 201 achieved the highest 
accuracy of 91.25%, showcasing DL-based advancements in 
OSCC diagnosis and treatment. 

III. METHODOLOGY 

A. Dataset Distribution 

This work uses a dataset [31] consisting of 5,192 
histopathology images, carefully selected to identify Normal 
tissues and Oral Squamous Cell Carcinoma (OSCC). As Fig. 1 
shows, the dataset is almost balanced with 2,698 OSCC images 
(52%) and 2,494 Normal images (48%). The right pie chart 
shows the percentage distribution and the left bar chart shows 
the image count in every class. This balanced set guarantees a 
fair training approach, therefore reducing possible 
categorization bias. Three subsets comprising 3,634 images for 
training, 779 images for validation, and 779 images for testing 
comprise the dataset. Using a strong and well-organized dataset, 
this section helps deep learning models to be developed, refined, 
and evaluated for effective OSCC detection. 

 

Fig. 1. Dataset distribution. 

B. Input Dataset 

The normal tissue samples in Fig. 2 show a well-organized 
structure typical of healthy oral epithelium. The cells have 
exactly defined borders and firmly packed layers that match 
their consistent size and form. The way the compartments are 
arranged is logical there are no obvious anomalies or deviations. 
There is no hyperchromatism, which would indicate non-
malignant tissue; the nuclei are constant in size. Conversely, the 
Oral Squamous Cell Carcinoma (OSCC) samples in Fig. 
3 reveal a disturbance in cellular architecture. OSCC sample 
cells are irregular, bigger, and show pleomorphism that is, a 
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great range in size and form. Commonly an indication of cancer, 
the hyperchromatic nature of the nuclei results from the higher 
DNA content, which seems darker. Furthermore, the OSCC 
images show abnormal keratinization and uneven stratification 
of the epithelium with layers that are no longer clearly defined 
or ordered. These pathological abnormalities are important in 
histopathological diagnosis since they mirror the aggressive 
character of OSCC, in which disorganized, malignant cells 
replace the normal, ordered tissue. 

 
Fig. 2. Dataset samples of normal images. 

 

Fig. 3. Dataset samples of OSCC images. 

C. Data Preprocessing and Augmentation 

Preprocessing is a crucial step that greatly influences the 
performance of a deep-learning model developed to classify 
OSCC from histopathological images. Essential for getting the 
dataset ready for efficient training, validation, and testing are 
image resizing, normalizing, and augmenting preprocessing 
techniques [32]. 

1) Image resizing: Every image is reduced to a consistent 

dimension suitable for input into the deep learning models 

thereby guaranteeing consistency over the dataset. This scaling 

method converts every image into such size since many CNN 

designs demand each image to be a specific size usually 

(224×224). This phase guarantees that the model manages 

images of the same resolution, therefore facilitating efficient 

training and reducing computer complexity. 

2) Normalization: Normalization is carried out to rescale 

the pixel values of the images to a standardized range, usually 

ranging from 0 to 1. The process of normalizing can be 

quantitatively expressed in (1): 

𝑋𝑛𝑜𝑟𝑚 =
𝑋−min(𝑋)

max(𝑋)−min(𝑋)


Where, X represents the original pixel values, min(X) is the 
minimum pixel value, and max(X) is the maximum pixel value. 

By normalizing the input values to a similar range, this step 
enhances the convergence speed and stability of the training 
process. 

3) Augmentation: Data augmentation provides artificial 

unpredictability and increases the training dataset size. Another 

uses horizontal flipping, rotation, zooming, and shifting among 

other techniques. Mathematically, augmentation can be stated 

in (2): 

𝑋′ = 𝑇(𝑋)

Where X' is the augmented image and T is the transformation 
carried out, say rotation by a certain angle θ or scaling by a factor 
s. Exposing the model to several image transformations during 
training, this stage is vital for improving its robustness and 
lowering overfitting. Using their integration into the model 
pipeline, these preprocessing actions guarantee the well-
preparedness of the dataset, so facilitating the deep learning 
model to achieve high accuracy in OSCC detection and 
generalization capability. 

IV. PROPOSED METHODOLOGY 

Fig. 4 demonstrates the proposed methodology for the 
detection of Oral Squamous Cell Carcinoma (OSCC). The 
present study is based on a combination of two pre-trained deep 
learning models: EfficientNetB3 and ResNet50. These models 
utilize transfer learning techniques and are fine-tuned to increase 
their performance on the OSCC dataset. The outputs of various 
models are then integrated using ensemble learning, leading to 
an enhanced classification performance. Below is a thorough 
description of the proposed methodology. 

A. EfficientNetB3 Architecture 

EfficientNetB3 is a deep learning model known for 
balancing accuracy and efficiency by scaling network depth, 
width, and resolution, as shown in Fig. 5. It uses a 3x3 
convolutional layer followed by MBConv layers, depthwise 
separable convolutions, and squeeze-and-excitation (SE) blocks 
for feature extraction. Larger kernel sizes (5x5) in deeper layers 
help capture contextual information for OSCC differentiation. 
After feature extraction, the model classifies Normal and OSCC 
tissues. Its computational efficiency and performance make it 
ideal for medical imaging, especially when combined with 
ResNet50 in an ensemble model for OSCC detection. 

EfficientNet-B3 is a scalable model that balances network 
depth, width, and resolution for optimal performance. The 
scaling is governed by a compound coefficient ϕ, with the 
scaling laws given in (3): 

𝑑 = 𝛼𝜙, 𝑤 = 𝛽𝜙 , 𝑟 = 𝛾𝜙

where d, w, and r represent the depth, width, and resolution 
of the network, respectively, and α, β, γ are constants determined 
through grid search. The output of EfficientNet-B3 is passed 
through a global average pooling layer, followed by a dense 
layer to produce the final classification output shown in (4): 

𝑍𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑛𝑒𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑛𝑒𝑡 . 𝑓𝑔𝑙𝑜𝑏𝑎𝑙 +

𝑏𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑛𝑒𝑡)
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Fig. 4. Proposed methodology. 

Where, 𝑍𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑛𝑒𝑡  represents the predicted probabilities, 

𝑓𝑔𝑙𝑜𝑏𝑎𝑙  is the feature vector after global pooling, and 

𝑊𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑛𝑒𝑡  and 𝑏𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑛𝑒𝑡  are the weights and biases of the 

final classification layer. 

 
Fig. 5. EfficientNetB3 architecture. 

B. Resnet50 Architecture 

Fig. 6 shows the ResNet50 architecture, a deep CNN 
designed to overcome challenges in deep network training with 
50 convolutional layers, batch normalization, and ReLU 
activations. Residual connections prevent vanishing gradients, 
allowing deeper networks. The architecture starts with a 7x7 
convolution and max-pooling, followed by four stages with 
residual blocks and filters ranging from 64 to 512. Spatial 
dimensions are reduced via stride-2 convolutions for efficiency. 
The final section includes global average pooling and a fully 
connected layer. For OSCC detection, the last layer classifies 
images into Normal and OSCC, helping detect subtle variations 
in oral cancer. 

ResNet50 is a residual network that employs skip 
connections to address the problem of vanishing gradients in 
deep networks. The fundamental building block of ResNet50 is 
the residual block, defined mathematically as in (5): 

𝑦 = 𝐹(𝑥, {𝑊𝑖}) + 𝑥
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Where, 𝑥  is the input, 𝐹(𝑥, {𝑊𝑖})  represents the 
convolutional operation with weight parameters {𝑊𝑖}, and y is 
the output of the residual block. The network consists of 50 
layers, including convolutional, batch normalization, and ReLU 
activation layers. The final output of the ResNet50 model, after 
passing through a global average pooling layer, is given by (6):  

𝑍𝑟𝑒𝑠𝑛𝑒𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑟𝑒𝑠𝑛𝑒𝑡 . 𝑌𝑔𝑙𝑜𝑏𝑎𝑙 + 𝑏𝑟𝑒𝑠𝑛𝑒𝑡)

Where, 𝑍𝑟𝑒𝑠𝑛𝑒𝑡  is the predicted class probabilities, 𝑊𝑟𝑒𝑠𝑛𝑒𝑡  
and 𝑏𝑟𝑒𝑠𝑛𝑒𝑡 are the weights and biases of the final dense layer, 
and 𝑌𝑔𝑙𝑜𝑏𝑎𝑙  is the output from the global pooling layer. 

 

Fig. 6. ResNet50 architecture. 

Transfer learning significantly enhanced OSCC detection 
accuracy by utilizing pre-trained models like EfficientNetB3 
and ResNet50, which were fine-tuned on the OSCC dataset. 
These models transfer learned features, such as texture and 
shape, from large datasets, reducing the need for extensive 
labeled data and improving feature generalization. Fine-tuning 
helps the models capture OSCC-specific patterns, preventing 
overfitting on small datasets and accelerating training 
convergence, allowing for efficient and precise differentiation 
between normal and malignant tissues. This technique proved 
essential for optimizing accuracy and training speed in medical 
image analysis. 

C. Ensemble Learning 

The ensemble model with the architecture seen in Fig. 7 
combines the predictions of ResNet50 and EfficientNet-B7 to 
leverage the strengths of both architectures, thereby enhancing 
overall classification accuracy. 

1) Ensemble model design: The ensemble approach is 

implemented using a weighted average method, where the final 

prediction is a weighted combination of the individual models' 

outputs. The output predictions from ResNet50 and 

EfficientNet-B7 are combined using a weighted average 

approach shown in (7): 

𝑍𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 = 𝑊𝑟𝑒𝑠𝑛𝑒𝑡 . 𝑍𝑟𝑒𝑠𝑛𝑒𝑡 +𝑊𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑛𝑒𝑡 . 𝑍𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑛𝑒𝑡 

where 𝑍𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒  is the final ensemble prediction, and 
𝑊𝑟𝑒𝑠𝑛𝑒𝑡 , 𝑊𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑛𝑒𝑡   are the weights assigned to the ResNet50 

and EfficientNet-B3 outputs, respectively. These weights are 
optimized based on the validation performance of each model. 

2) Ensemble model algorithm: This algorithm outlines the 

process of training individual models, obtaining their 

predictions, combining those using weighted averages or 

voting, and optionally training a meta-learner to refine the 

ensemble’s predictions. The Algorithm of the ensemble model 

is shown in Table I. 

TABLE I.  ALGORITHM OF ENSEMBLE MODEL 

Algorithm 1: Ensemble Model for Oral Squamous Cell Carcinoma 

Detection 

Input: Histopathological images Dtrain,Dval,Dtest , number of epochs E, 

batch size B, learning rate η. 

Output: Trained ensemble model for Oral Squamous Cell Carcinoma 

detection. 

Step 1: Model Initialization  

1.1 Initialize EfficientNetB3 and ResNet50 models with pre-trained 

ImageNet weights. 

1.2 Configure the final dense layers for detection of two classes (Normal 

and OSCC). 

Step 2: Model Training  

2.1 For each epoch e from 1 to E: 

2.2 For each batch b in Dtrain:  

2.2.1 Perform forward propagation through EfficientNetB3 to obtain 

Zefficientnet. 

2.2.2 Perform forward propagation through ResNet50 to obtain Zresnet.  

2.2.3 Combine the outputs using the weighted average: 

𝑍𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 = 𝑊𝑟𝑒𝑠𝑛𝑒𝑡 . 𝑍𝑟𝑒𝑠𝑛𝑒𝑡 +𝑊𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑛𝑒𝑡 . 𝑍𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑛𝑒𝑡 

2.2.4 Compute the cross-entropy loss ℒ (Zensemble, Y) where Y is the true 

label.  

2.2.5 Backpropagate the loss and update the weights using the Adamax 

optimizer with learning rate η. 

Step 3: Model Validation  

3.1 Evaluate the ensemble model on Dval after each epoch.  

3.2 Adjust the weights Wefficientnet and Wresnet  based on validation 

performance. 

Step 4: Model Evaluation  

4.1 After completing training, evaluate the model on Dtest.  

4.2 Compute the final accuracy, precision, recall, and F1-score. 

Step 5: Model Deployment  

5.1 Save the trained ensemble model for future use. 

 

Fig. 7. Ensemble learning architecture. 

V. RESULTS 

A. Model Evaluation 

The work aimed at the identification of Oral Squamous Cell 
Carcinoma (OSCC) using a deep learning approach combining 
the strengths of two strong models EfficientNetB3 and 
ResNet50 by constructing the Ensemble model for improved 
results. Divided into training, validation, and testing, the models 
were developed using a set including 5,192 histopathology 
images. The results reveal the degree of increase in OSCC 
detection classification accuracy resulting from the combined 
approach. The Confusion Matrix, Performance criteria, and 
State of the art Comparison are fully described below. 
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1) EfficientNet-B3’s accuracy and loss analysis: The 

examination of the EfficientNetB3 model's training and 

validation accuracy, along with its loss metrics across 

numerous epochs, is shown in Fig. 8 and Table II. The model 

demonstrates strong generalization and learning capacity, with 

an early drop in training loss and gradual reduction in both 

training and validation loss, ultimately converging to low 

values. The model quickly reaches 90% accuracy early in 

training, with validation accuracy following suit. Both accuracy 

measures level off in later stages, indicating the model's peak 

performance and suitability for reliable predictions, without 

overfitting. 

 
Fig. 8. Loss and accuracy analysis of EfficientNetB3 architecture. 

The precise performance per epoch is shown in Table II. It 
shows that with every epoch the model reduces loss and steadily 
gains accuracy. The strong learning capacity and adaptability of 
the EfficientNetB3 model to fresh data are shown by this 
constant improvement and convergence in both accuracy and 
loss values [33-36]. 

TABLE II.  EFFICIENTNETB3 MODELS PERFORMANCE PER EPOCH 

Epoch Time(sec) Loss Accuracy 
Validation 

Loss 

Validation 

Accuracy 

1 131 6.1664 0.7768 4.5153 0.9076 

2 54 3.7852 0.8963 3.1570 0.9204 

3 54 2.6791 0.9246 2.2538 0.9384 

4 53 1.9470 0.9375 1.6400 0.9474 

5 54 1.4193 0.9573 1.2048 0.9602 

6 54 1.0688 0.9648 0.9303 0.9615 

7 54 0.8223 0.9725 0.7222 0.9730 

8 54 0.6560 0.9733 0.6015 0.9628 

9 54 0.5315 0.9747 0.5054 0.9615 

10 54 0.4487 0.9733 0.4286 0.9641 

2) ResNet-50’s accuracy and loss analysis: The ResNet50 

model was trained for 10 epochs, with performance metrics in 

Table III and accuracy and loss curves in Fig. 9. The training 

and validation losses steadily decreased, showing effective 

learning, with a slight generalization gap around the 7th epoch. 

Training loss stabilized after the 4th epoch, while training 

accuracy approached 95% by the 10th epoch. Validation 

accuracy improved gradually, staying slightly below training 

accuracy. The close alignment of both accuracy curves 

indicates minimal overfitting and strong generalization. This 

demonstrates the ResNet50 model's suitability for the current 

classification task. 

 
Fig. 9. Loss and accuracy analysis of ResNet50 architecture. 

Table III, which illustrates the performance measures for 
each epoch, shows a constant increase in both training and 
validation accuracy together with related declines in loss. This 
development implies that in every epoch the parameters of the 
model are being tuned somewhat successfully. 

TABLE III.  RESNET50 MODELS PERFORMANCE PER EPOCH 

Epoch Time(sec) Loss Accuracy 
Validation 

Loss 

Validation 

Accuracy 

1 43 0.6721 0.7534 0.3674 0.8472 

2 36 0.3891 0.8451 0.2965 0.8883 

3 36 0.2806 0.8880 0.2562 0.9050 

4 36 0.2365 0.9018 0.2457 0.9050 

5 37 0.2000 0.9202 0.2214 0.9191 

6 41 0.1747 0.9340 0.2120 0.9294 

7 36 0.1509 0.9441 0.2225 0.9153 

8 37 0.1518 0.9364 0.2146 0.9230 

9 35 0.1213 0.9521 0.2020 0.9268 

10 36 0.1115 0.9571 0.1994 0.9281 

3) Ensemble model’s performance analysis: Table IV 

summarizes the Ensemble model's performance over ten 

epochs, with corresponding accuracy and loss graphs shown in 

Fig. 10. The model effectively aggregates multiple classifiers 

to boost prediction accuracy and reduce generalization error. 

Training and validation losses consistently decrease, though 

validation loss shows minor swings, suggesting potential 

overfitting. Accuracy reaches 99% for training, but validation 

accuracy varies slightly, indicating room for improvement. 

Precision and recall graphs in Fig. 11 reveal high precision and 

steadily improving recall, with validation trends reflecting 

minor fluctuations. The F1-score and ROC curve in Fig. 12 

offer a comprehensive performance view, showing the model's 

balance between precision and recall and strong discriminative 

ability. The ROC curve achieves near-perfect AUC scores of 

1.00 for both Normal and OSCC classes, highlighting the 

model's effectiveness in classification with minimal errors, and 

demonstrating strong reliability. 
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Fig. 10. Loss and accuracy analysis of ensemble model. 

 
Fig. 11. Precision and recall analysis of ensemble model. 

 
Fig. 12. F1-score and ROC analysis of ensemble model. 

Table IV shows the performance measures per epoch, 
demonstrating constant loss and accuracy improvement. The 
Ensemble model's efficiency in this classification problem is 
shown by its ability to preserve great accuracy while reducing 
loss over epochs. 

TABLE IV.  ENSEMBLE MODELS PERFORMANCE PER EPOCH 

Epoch Time(sec) Loss Accuracy 
Validation 

Loss 

Validation 

Accuracy 

1 138 0.1015 0.9854 0.1266 0.9718 

2 62 0.0768 0.9907 0.1210 0.9769 

3 62 0.0721 0.9923 0.1068 0.9807 

4 62 0.0664 0.9934 0.1081 0.9820 

5 62 0.0646 0.9951 0.1081 0.9820 

6 62 0.0634 0.9942 0.1085 0.9820 

7 62 0.0592 0.9940 0.1113 0.9795 

8 62 0.0620 0.9926 0.1086 0.9782 

9 62 0.0620 0.9926 0.1086 0.9782 

10 62 0.0545 0.9934 0.0936 0.9835 

B. Confusion Matrix 

The three models' performance EfficientNetB3, ResNet50, 
and the Ensemble Model is evaluated here based on the 
confusion matrices in Fig. 13, 14, and 15. In Fig. 13 the 
EfficientNetB3 model displays excellent detection performance, 
properly classifying 385 Normal instances and 384 OSCC cases. 
However, it misclassifies 9 Normal cases as OSCC and 21 
OSCC cases as Normal, demonstrating a minor bias 
toward misidentifying OSCC as Normal. Despite these flaws, 
the model exhibits a high level of accuracy overall. 

In Fig. 14, the ResNet50 model accurately detects 349 
Normal cases and 363 OSCC cases. With 25 Normal instances 
mistakenly categorized as OSCC and 42 OSCC cases incorrectly 
identified as Normal, it reveals a higher number of 
misclassifications than EfficientNetB3. This suggests that 
although ResNet50 performs well, it finds greater difficulty 
differentiating the two groups than EfficientNetB3. 

Among the three, the Ensemble model in Fig. 15, which 
integrates the capabilities of EfficientNetB3 and ResNet50 
showcases the best performance. With only three Normal cases 
misclassified as OSCC and eight OSCC cases misclassified as 
Normal, it correctly classifies 307 Normal cases and 369 Normal 
cases. The much smaller number of misclassifications implies 
that the Ensemble model efficiently lowers the mistakes 
observed in the individual models, hence producing better 
general accuracy. 

 

Fig. 13. Confusion matrix of EfficientNetB3. 

 

Fig. 14. Confusion matrix of ResNet50. 
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Fig. 15. Confusion matrix of ensemble model. 

C. Performance Parameters 

Table V presents an extensive three-model performance 
parameter comparison- precision, recall, F1-score, support, and 
accuracy across EfficientNetB3, ResNet50, and the Ensemble 
Model. EfficientNetB3 shows great precision and recall 
reflecting its great capacity to properly identify positive 
instances with low false positives and missed real positives. 

ResNet50 struggles more in differentiating between classes and 
demonstrates somewhat lower precision and recall even if it is 
still efficient. Though ResNet50 trails somewhat behind 
EfficientNetB3, the F1-scores for both models show a 
reasonable mix of precision and recall. Reflecting its better 
capacity to balance precision and recall while minimizing 
classification mistakes, the Ensemble model beats both 
individual models by obtaining the highest precision, recall, and 
F1 score. Furthermore, the Ensemble model has the best 
accuracy, which emphasizes the fact that it can appropriately 
classify most of the cases. All models show consistent support 
that guarantees these measures fairly represent performance 
over a balanced dataset. Combining the strengths of 
EfficientNetB3 and ResNet50 to provide excellent classification 
performance, the Ensemble model shows overall to be the most 
dependable and efficient classifier. 

D. State-of-the-Art Comparison 

Table VI presents a state-of-the-art comparison of the 
proposed Ensemble model with EfficientNetB3, ResNet50, and 
other top approaches in OSCC detection. The Ensemble model 
outperforms in F1 scores and general accuracy by aggregating 
model strengths, setting a new benchmark in medical imaging 
classification tasks. 

TABLE V.  PERFORMANCE PARAMETERS OF EFFICIENTNETB3, RESNET50 AND ENSEMBLE MODEL 

Model Classes Precision Recall F1-Score Support Accuracy 

EfficientNetB3 
Normal 0.95% 0.98% 0.96% 374 

0.96% 
OSCC 0.98% 0.95% 0.96% 405 

ResNet 50 
Normal 0.89% 0.93% 0.91% 374 

0.91% 
OSCC 0.94% 0.90% 0.92% 405 

Ensemble Model 
Normal 0.98% 0.99% 0.99% 374 

0.99% 
OSCC 0.99% 0.98% 0.99% 405 

TABLE VI.  STATE-OF-THE-ART COMPARISON 

Reference No. Image Type Technique Images Count Accuracy 

(2024) [16] CT images Inception-V3 499 73.50% 

(2024) [17] Histopathology images DenseNet121 5192 97.02% 

(2024) [18] Raman Histology VGG-19 21,703 0.90% 

(2024) [19] Histopathological images EfficientNetB3 1224 99% 

(2024) [20] Histological images InceptionV3,Xception,InceptionResNetV2, NASAnet 5685 89.3%,89.5%,91.78%,90.8% 

(2024) [21] Histological images Convolutional Neural Network 5192 98.49%, 86.89%, 89.37% 

(2024) [22] histopathological images VGG16,VGG19,InceptionV3, AlexNet, ResNet50 1224 84%,82%,67%,76%,42% 

(2024) [23] Smartphone based images Deep Learning 760 84.3% 

(2024) [24] Histological images Deep Learning Models 4946 97.78% 

(2024) [25] histopathological images DL-CNN 1224 91.1% 

(2024) [26] histopathological images Deep Learning Models 696 0.92% 

(2023) [27] Histological images AlexNet 5192 89% 

(2024) [28] Histological images AI based approaches 5192 94.92% 

(2023) [29] histopathological images MobileNetV3, InceptionV2, EfficientNetB3 5192 0.89%,0.88%,0.52% 

(2023) [30] Histopathological images DL-CNN models 1224 91.25% 

Proposed Model Histopathological images Ensemble Learning 5192 99.34% 
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VI. CONCLUSION 

This work efficiently applied ensemble learning and transfer 
learning approaches for the identification of Oral Squamous Cell 
Carcinoma (OSCC) from histopathology photos. By combining 
the best features of pre-trained models such as EfficientNetB3 
and ResNet50 via ensemble learning, the proposed approach 
shows astonishing accuracy and robustness. Outliving 
individual models, the last ensemble model unequivocally 
displayed increasing generality and accuracy. The detailed study 
of the performance of the deep learning models in medical 
image processing highlights its promise since it reveals how to 
routinely raise accuracy and reduce loss during training and 
validation datasets. Especially the EfficientNetB3 model has 
shown remarkable performance measures, thereby addressing 
the problems of early OSCC detection as a required need for 
timely and effective treatment. The requirement of incorporating 
modern deep-learning architectures with ensemble learning 
techniques to provide reliable and efficient diagnostic tools is 
underlined in this work. Apart from improving detection 
accuracy, the proposed method provides a structure suitable for 
other kinds of cancer and medical image analysis uses. Using 
more varied datasets and investigating other deep-learning 
approaches will help to improve the performance of the model, 
hence producing strong, real-time diagnostic systems for clinical 
use. 

VII. LIMITATIONS AND FUTURE SCOPE 

Although the suggested transfer learning and ensemble 
learning method greatly increased the accuracy of 
OSCC detection, some constraints have to be mentioned. First 
of all, compared to larger-scale medical imaging datasets, the 
dataset size is somewhat tiny even if it is enough for the present 
work. This may restrict the model's generalizability to 
unprocessed data from many populations. Second, depending on 
pre-trained models such as EfficientNetB3 and ResNet50 
implies that more specific medical datasets for OSCC could help 
to improve the model's performance even further. Including a 
bigger, more varied dataset in the next projects could help the 
model to be more resilient. A deeper understanding of model 
predictions may also come from investigating more 
sophisticated ensemble methodologies and including 
explainable artificial intelligence approaches. Another 
important development of this work would be implementing the 
model in actual clinical environments and verifying its efficacy 
among several institutions. 
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