
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

812 | P a g e

www.ijacsa.thesai.org

AI-Driven Prioritization Techniques of Requirements

in Agile Methodologies: A Systematic Literature

Review

Aya M. Radwan, Manal A. Abdel-Fattah, Wael Mohamed

Information System Department, Faculty of Computers and Artificial Intelligence, Cairo, Egypt

Abstract—Software requirements are the foundation of a

successful software development project, outlining the customer's

expectations for the software's functionality. Conventional

techniques of requirement prioritization present several

challenges, such as scalability, customer satisfaction, efficiency,

and dependency management. These challenges make the process

difficult to manage effectively. Prioritizing requirements by

setting criteria in order of importance is essential to addressing

these issues and ensuring the efficient use of resources, especially

as software becomes more complex. Artificial intelligence (AI)

offers promising solutions to these challenges through algorithms

like Machine Learning, Fuzzy Logic, Optimization, and Natural

Language Processing. Despite the availability of reviews on

conventional prioritization techniques, there is a notable gap in

comprehensive reviews of AI-based methods. This paper offers a

systematic literature review (SLR) of AI-driven requirements

prioritization techniques within Agile methodologies, covering 32

papers published between 2010 and 2024. We conducted a

parametric analysis of these techniques, identifying key

parameters related to both the prioritization process and specific

AI methods. Our findings clarify the application domains of

various AI-based techniques, offering crucial insights for

researchers, requirement analysts, and stakeholders to choose the

most effective prioritization methods. These insights consider

dependencies and emphasize the importance of collaboration

between stakeholders and the development team for optimal

results.

Keywords—Requirement analysis; requirement prioritization;

agile; fuzzy logic; machine learning; optimization

I. INTRODUCTION

Requirement Engineering (RE) is a crucial component of
software engineering. It involves identifying and understanding
client needs, the contexts in which the system will be developed,
modeling, analyzing, prioritizing, and documenting stakeholder
requirements. RE ensures that these documented requirements
align with agreed-upon specifications and manages the
evolution of changing requirements [1], [2], [3].

Requirement Engineering (RE) faces numerous challenges,
particularly in the areas of human communication and
collaboration, and understanding and clarifying requirements.
Effective communication and collaboration between project
teams and customers are critical, yet often fraught with
difficulties, including conflicts among stakeholders and the need
for active involvement from all parties. Understanding and
clarifying requirements present additional challenges, as

ensuring high-quality requirements and well-defined user stories
can be complex and time-consuming [4], [5].

Agile Software Development (ASD) introduces specific
challenges for requirements prioritization (RP) techniques, such
as stakeholder conflicts, changes in priority lists leading to
rework, and factors influencing requirement selection during the
RP process. Among the most significant challenges are
managing and coordinating distributed teams, prioritizing
requirements, maintaining proper documentation, adapting to
changing and over-scoping requirements, and effectively
organizing processes while monitoring progress and
incorporating feedback. Addressing these challenges requires
robust strategies and tools to enhance communication, clarify
requirements, and streamline prioritization and management
processes [6].

A key aspect of Requirement Engineering (RE) is
requirements prioritization (RP). As the name implies, RP
involves identifying the most critical requirements for
implementing a successful system. It is an iterative process
involving complex decision-making activities that support the
development of a high-quality system within defined
constraints. RP ensures the correct ordering of requirements
based on stakeholder perceptions, by rearranging them
according to various criteria such as importance, cost, penalty,
and risk. Active stakeholder involvement is crucial for achieving
accurate prioritization results [7].

While addressing the prioritization challenge, these
techniques have been applied without considering the
hierarchical dependencies among requirements, such as
stakeholder needs and their derived requirements. Derived
requirements are the detailed requirements extracted from
stakeholder needs, often in the form of use cases or non-
functional requirements [6] [8].

Most existing requirement prioritization techniques lack
scalability, dependability, continuous prioritization, rank
updating, feedback handling, and comprehensive
implementation of methods or algorithms. In Agile
development, where requirements change rapidly, a continuous
requirement prioritization process is essential [8] [9].

The objective of this paper is to systematically review and
analyze AI-driven techniques, such as Fuzzy Logic, Machine
Learning, NLP, and Optimization, for requirements
prioritization in Agile methodologies. It aims to compare these
techniques based on their strengths, weaknesses, and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

813 | P a g e

www.ijacsa.thesai.org

effectiveness in addressing challenges like scalability,
stakeholder collaboration, and requirement dependencies.
Additionally, the paper seeks to evaluate the impact of AI on
improving the prioritization process and provide
recommendations for future research.

This section presents the idea of the requirement
prioritization in Agile methodology and discusses the common
challenges. In the second section the background of the used
techniques to prioritize the requirements in Agile methodology
is presented. In the third section the research method is
described, and the requirements prioritization analysis is
illustrated at the taxonomy, the research questions are defined
and research strategy. The fourth section provides the surveyed
techniques and reviews the 32 papers that were sorted in
subsection by the type of technique. In section five the
Evaluation criteria are defined by clearing the strengths,
weakness and limitations of the research. Finally, a
comprehensive of the evaluation criteria is presented in the
tables for each technique.

II. BACKGROUND

Requirement prioritization in Agile methodology can be
improved using advanced techniques such as Fuzzy Logic,
Machine Learning, Unsupervised Learning, Optimization, and
Natural Language Processing (NLP). In this section, an
illustration of the four techniques is defined.

Fuzzy Logic has the unique ability to process numeric input
and linguistic information simultaneously. It applies a nonlinear
transformation to the input feature vector, resulting in a single
numeric output, thus transforming numeric values into other
numeric values [10]. Defining requirements into precise
numerical values is a significant challenge. Fuzzy Logic allows
for the accurate definition of concepts such as low cost, high
quality, and high progress, making it a powerful tool for
managing uncertainty. It does this by using human language and
allowing for interpretation of assertions that are not entirely
precise or incorrect [11].

Machine Learning (ML) provides a range of algorithms and
strategies to imitate the way of human think by acquiring
knowledge from data, it can be used to address software
engineering challenges using supervised, unsupervised, and
reinforcement learning approaches. Machine Learning
facilitates software development by utilizing predictive models
to make informed decisions on algorithms and features. The
process of applying Machine Learning requires understanding
the problem at hand, collecting relevant data, performing
preprocessing tasks, and conducting comprehensive evaluations
[12]. Software requirements engineering, and Machine Learning
are major areas of research, where Machine Learning is applied
in many software engineering procedures. Machine Learning
approaches, such as text feature extraction and algorithms, are
employed to categorize and prioritize software needs, utilizing
the large amount of data and domain expertise gathered
throughout the development process [12]. Natural Language
Processing is interconnected to Machine Learning (ML) as NLP
heavily relies on Machine Learning approaches, utilizing
algorithms and models derived from ML. The objective of
Natural Language Processing (NLP) or computational
linguistics is to devise algorithms and methodologies that

construct computational models with the ability to analyze
natural languages. These models are specifically built to carry
out important functions, such as enabling the exchange of
information between humans and machines, improving
communication among individuals, or simply analyzing and
interpreting text or speech [13].

Optimization is a strategy to select the most efficient solution
from a set of options, considering constraints and intended
results. By considering aspects such as minimizing costs or
maximizing efficiency. Optimization is a commonly employed
strategy in diverse fields such as mathematics, computer
science, engineering, economics, and operations research. It
improves decision-making processes and successfully solves
complex challenges [14].

In Agile methodologies, various AI techniques offer unique
solutions to key challenges in requirements prioritization. Fuzzy
Logic stands out in managing uncertainty and imprecise
requirements by allowing for flexible decision-making under
ambiguous conditions, thus improving the overall accuracy of
decisions [11]. Machine Learning (ML) techniques are
particularly effective in handling large datasets and automating
the prioritization process, which addresses scalability concerns
and significantly reduces manual effort [12]. Natural Language
Processing (NLP) plays a crucial role in automating the
interpretation of user stories and feedback, enhancing
communication and resolving issues related to unclear or
incomplete requirements. Finally, Optimization algorithms,
such as AHP and PSO, provide a structured approach to
balancing conflicting priorities, making them highly effective in
resolving stakeholder conflicts and managing competing
requirements efficiently [15][16]. By applying these techniques,
the prioritization of requirements becomes more efficient,
accurate, and adaptable to the dynamic nature of Agile software
development.

III. RESEARCH METHOD

A. Planning the Review (Preparation Stage)

This Systematic Literature Review aims to investigate,
analyze, and summarize Agile software requirements
prioritization techniques, including Fuzzy Logic, Machine
Learning, Natural Language Processing, and Optimization
within the framework of parametric benchmarks. The review
aims to define the key strengths and weaknesses and define how
artificial intelligence techniques can affect requirement
prioritization in Agile methodology, also explore the limitations
of applying these techniques in the Agile prioritization process.
Additionally, the study seeks to understand the significance of
these techniques in the software development process, the role
of stakeholders, and the challenges or limitations in Agile
practices, while providing future directions for further research.
The main objective of this Systematic Literature Review (SLR)
is to identify the various techniques employed to prioritize
requirements in Agile methodology.

The key of the SLR is illustrated through three phases at the
taxonomy depicted in Fig. 1, to illustrate the core ideas of the
paper. First, defining with requirements prioritization
techniques as Fuzzy Logic, Machine Learning, Natural
Language Processing and Optimization. Second, comparative

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

814 | P a g e

www.ijacsa.thesai.org

analysis presented in a table to show the strength, weakness and
limitations in requirements prioritization for the 32 papers.
Third, the evaluation criteria to determine the effectiveness of
each requirements prioritization technique.

Fig. 1. Requirements prioritization taxonomy.

B. Research Question

The following research questions have been defined:

RQ1: What requirement prioritization techniques used in
Agile Software Development in the research literature?

RQ2: How are the proposed techniques evaluated?

RQ3: What evaluation criteria can be used in requirement
prioritization in Agile Software Development?

RQ4: What are the limitations in the current Agile Software
Development technique?

RQ5: Does dependency play a role in prioritizing
requirements in Agile methodology?

RQ6: Is collaboration with stakeholders considered when
prioritizing requirements in Agile methodology?

RQ7: Is scalability considered when prioritizing
requirements in Agile methodology?

C. Search Strategy

A comprehensive search strategy is developed to collect all
research articles that are relevant to the domain of our study
from a variety of online resources. The most renowned online
databases and combined key terms was selected to produce
search strings. Subsequently, the search was implemented to
identify all relevant articles. 900 prospective studies were
identified during the initial search phase. 250 studies were
determined to be relevant to requirement engineering in general
after the titles and abstracts were reviewed. The selection criteria
focused on 32 papers specifically applying AI techniques, such
as Machine Learning, Fuzzy Logic, NLP, and Optimization, to
requirements prioritization in Agile software development.
Studies published between 2010 and 2024 were included to
ensure the review reflected the most current research. Papers
were chosen based on their application of AI techniques within
Agile methodologies like Scrum, Kanban, XP, and DevOps.
After a thorough quality assessment, these 32 papers were

selected to address the research questions, with no additional
recent studies identified.

IV. SURVEYED TECHNIQUES

In this section, all the surveyed techniques were reviewed.
Software organizations are addressing the limitations of
conventional techniques by implementing AI-based methods for
software requirements prioritization in Agile. These techniques
are divided into four categories: Optimization-based, Fuzzy
Logic-based, Machine Learning-based, and Natural Language
Processing-based ones. A detailed review is provided of each
technique within these groups individually.

A. Fuzzy Logic

Borhan in [15] introduces an innovative approach to
prioritizing user stories by collaborating with stakeholders in the
Agile-Scrum prioritization process. The approach implements
Fuzzy Logic operations to prioritize stakeholders according to
predetermined criteria, thereby facilitating a more
comprehensive comprehension of their contributions and
concerns. This methodology is applied to an ATM system’s
requirements and their related user stories. A group of software
experts who are experienced in Agile methodologies give
feedback within their organizations for this approach. The
findings suggest that including stakeholder analysis has a
positive influence on the prioritization process, demonstrating
the effectiveness of this method in achieving a balance between
functional and non-functional user stories. By carefully
considering stakeholder perspectives, this approach enhances
the accuracy and efficacy of user story prioritization in Agile-
Scrum projects. It guarantees a more equitable assessment of the
system's requirements and the diverse demands of users.

Abusaeed in [16] suggest a quantitative framework that
effectively prioritizes the identified cost factors based on the
following four categories: people, initiatives, processes, and
products. They conduct a systematic literature review and
empirical study within the ASD context to identify and validate
the cost overhead factors. Similarly, the validated factors are
classified and prioritized in the present study by employing a
multi-criterion decision-making Fuzzy-Analytic Hierarchy
Process technique. This method effectively mitigates the
subjectivity and ambiguity of the identified factors. The
implementation results provide a prioritized list of cost overhead
factors that would be beneficial to Agile practitioners in the
context of Agile Software Development.

Ottoli in [17] introduces a novel approach to requirement
prioritization that uses expert opinions presented by fuzzy
linguistic labels on multiple decision criteria. Fuzzy linguistic
labels are used to allocate weights to each expert and criterion,
and these opinions are aggregated using a majority-guided
linguistic IOWA (Induced Ordered Weighted Averaging)
operator. The method contrasts requirements by comparing the
aggregated expert opinions and their weighted importance. The
algorithm demands users to submit opinions. However,
additional empirical validation with actual users is required.
Allowing selective expert opinions, incorporating consensus
metrics, and investigating other (IOWA) Induced Ordered
Weighted Averaging operators and T-norms are all potential
future enhancements.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

815 | P a g e

www.ijacsa.thesai.org

B. Machine Learning

Anand in [18] used the apriori algorithm to prioritize
requirements. They addressed the limitations of the traditional
methods used such as MoSCoW, Validated Learning, Walking
Skeleton, and Business Value which frequently fail to
effectively resolve stakeholder conflicts. The apriori algorithm
is implemented to identify the most frequently requested
requirements, to reduce conflicts between stakeholders by
prioritizing requirements based on stakeholder input by
continually performing join and prune functions to identify
frequent items within a database of transactions.

Hudaib in [19] employs Self-organizing Maps (SOMs), a
type of Unsupervised Neural Network as a method to prioritize
requirements within Agile methodologies. This method is
designed to classify and prioritize requirements automatically by
applying patterns that are derived from historical data and
stakeholder feedback. The SOM technique prioritizes
requirements by grouping similar requirements based on their
historical significance and characteristics. This enables project
teams to identify which requirements should be addressed first.
They provide a visualization to understand the priority of
requirements.

Varsha in [20] improved the decision-making process of the
requirements by grouping stakeholders according to their
interests and perspectives. They aimed to improve the accuracy
and efficiency of requirements prioritization in complex project
environments. When requirements values are gathered from
many individual stakeholders, it is necessary to organize
stakeholders into groups to implement requirements
prioritization. They involve the use of a hierarchical clustering
analysis technique to create such groups from stakeholder
ratings. The group weights were determined using AHP.

Belsis in [21] introduces "PBURC", a Patterns-Based,
Unsupervised Requirements Clustering Framework. It utilizes
Machine Learning to effectively manage data inconsistencies
and validate requirements, ensuring that requirements are
clustered properly using K-means. This method defines the
optimal number of sprints by collaborating with stakeholders.
The framework seeks to simplify the development process by
prioritizing client requirements and protecting business value,
despite the complex nature of distributed development
environments.

Achimugu in [22] focuses on addressing the problem of
prioritizing many software requirements using the k-means
clustering technique. K-means is utilized to classify
requirements based on the weights of their attributes, provided
by project stakeholders. The effectiveness of this method was
validated with the RALIC dataset, revealing that different
stakeholder weights influence the clustering outcome. The
approach was further refined by employing a synthetic method
with scrambled centroids, proving effective in prioritizing
requirements. The results indicated that this technique enhances
the scalability and reliability of requirement prioritization,
successfully addressing previous limitations such as rank
reversals and disparity in weighted rankings.

Kumar in [23] designed an approach to enhance Agile
methodology by clustering user stories using the k-means

algorithm and cosine similarity. The process includes
preprocessing steps like tokenization, stop-word removal,
stemming, and lemmatization, followed by clustering based on
similarity measures, and validating cluster cohesion with
silhouette coefficient values. Experimental results show that
cluster quality is improved as the number of clusters (k)
increases and this reflects effectively reducing the time required
for requirement implementation.

C. Natural Language Processing

Sachdeva in [24] aims to propose an approach that
effectively balances both business value and process flow in the
prioritization process. This approach helps the Product Owner in
deciding which requirements to prioritize and how to organize
them in the Product Backlog. This approach models
requirements iteratively through user stories to align with the
rapidly changing business needs and with the continuous change
of requirements. The Product Owner (PO) typically prioritizes
based on Business Value without considering dependencies of
user stories. They used UML Activity Diagrams to visualize
process flows, then they converted user requirements into these
diagrams using NLP. This visualization helps prioritize stories
based on their process flow.

Shafiq in [25] introduces the NLP4IP approach, a
recommendation system to prioritize issues such as stories,
bugs, or tasks. It is a semi-automatic approach that uses Natural
Language Processing (NLP) to address prioritization challenges
to create a recommendation model. The rank of newly added or
modified issues is dynamically predicted by this model. The
JIRA issue tracking software was employed to evaluate the
approach across 19 projects from 6 repositories, resulting in a
total of 29,698 issues. Furthermore, they implemented a JIRA
plug-in that illustrates the predictions generated by the new
Machine Learning model.

Sami in [26] introduced a tool that integrates OpenAI, Flask,
and React to automatically generate and rank user stories based
on core requirements to improve the project management
workflows. The tool allows users to input the requirements then
it's used to generate and prioritize user stories and epics. The tool
converts responses into a user-friendly JSON format and
supports CSV downloads then the tool integrates with task
management platforms such as JIRA and Trello.

Sharma in [27], a proposed approach that employs Natural
Language Processing (NLP) algorithms to categorize user
experiences that are similar and organize them into project
releases. The goal of this approach is to enhance the release
planning process for intricate and substantial software initiatives
that can be simplified. The method entailed the initial
development of a word corpus for each project release, followed
by the conversion of user stories into vector representations
using Java utilities. Lastly, the RV coefficient NLP algorithm is
employed to organize them into distinct software releases.
Furthermore, these algorithms can be integrated into
commercial tools such as JIRA and Rally to facilitate enhanced
release planning in Agile environments.

Kifetew in [28] proposes ReFeed approach. It aims to
provide a more accurate and automated way to prioritize
requirements based on user feedback. The approach employs

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

816 | P a g e

www.ijacsa.thesai.org

Natural Language Processing (NLP) to prioritize requirements.
The approach extracts and propagates quantifiable properties
from related user feedback. They used domain knowledge to
bridge the vocabulary gap between users and developers. This
approach bridges the gap between end-users' words and
developers' words to formulate requirements.

D. Optimization

Asghar in [15] presents a methodology that integrates
traditional prioritization factors with contemporary metrics and
techniques, such as AHP and MOSCOW, as well as ISO
standards. The objective of this method is to enhance the quality
of both the process and the product by offering a more
comprehensive and consistent framework for prioritizing
requirements. Additionally, the methodology aims to improve
the quality of requirements that are selected and prioritized
during SCRUM sessions. The proposed model was validated
through the use of comprehensive simulations with the iThink
software.

Kumar in [16] identifies eight critical attributes—such as
leadership support, human resources, and information
technology—through literature review and expert validation. To
rank these attributes effectively, the study employs an integrated
technique called the Analytic Hierarchy Process (AHP)
Technique for Order Preference by Similarity to Ideal Solution
(TOPSIS). This combined approach allows for a structured
evaluation of the attributes based on their relative importance
and their distance from an ideal solution.

Muhammad in [17] applied Multi-Criteria Decision Making
(MCDM) techniques to rank non-functional requirements
(NFRs). The study integrates Fuzzy Logic to manage the
imprecision in NFR evaluations and employs pairwise
comparison to establish the relative importance of various
NFRs. The effectiveness of the proposed model was validated
through a case study involving Agile projects, which
demonstrated its capability to improve the prioritization process
by accurately addressing and ranking NFRs.

Agrawal in [18] proposes an Agile-based Risk Rank (AR-
Rank) method to prioritize risk factors in Agile methodology.
This method is applied by using Particle Swarm Optimization
(PSO) for iterative Optimization. The method provides
precedence ranking of risks to minimize their impact and ensure
timely delivery of risk-free software.

The AR-Rank approach is validated against other methods
and tested on ten real-life projects.

Prakash in [19] proposed ARP–GWO method, this method
uses grey wolf Optimization and the k-means clustering
algorithm. They aim to prioritize risks in Agile Software
Development and to enhance quality, reduce costs, and improve
delivery times. The Experimental demonstrates five industrial
projects that demonstrate ARP–GWO's effectiveness and high
satisfaction among developers and users.

Chaves in [20] presents a Mult-objective swarm intelligence
presents a multi-objective swarm intelligence metaheuristic
(MOABC) to solve The Next Release Problem (NRP). They
present superior performance compared to other methods on
real-world datasets. They are seeking to improve the

Optimization process by incorporating hybrid approaches,
larger datasets, and additional constraints.

Brezočnik in [21] aim to enhance iteration planning in Agile
Software Development. By introducing STAPSO, a novel
algorithm. This algorithm combines Scrum task allocation and
Particle Swarm Optimization. STAPSO is tested on a real-world
dataset. It showed promising results in task allocation and
applies to various estimation techniques.

Brezočnik in [22] provides an overview of swarm
intelligence algorithms. The paper systematically classifies
swarm intelligence algorithms based on Agile Software
Development tasks like the next release problem, risk, and cost
estimation, and discusses their promising results.

Sagrado in [23] address multi-objective Optimization
problems in the Next Release Problem (NRP). They proposed
approach includes the Ant Colony System (ACS) to multi-
objective Optimization, where ants build solutions
probabilistically, considering pheromone levels and heuristic
information. And Comparative Analysis compared with Greedy
Randomized Adaptive Search Procedure (GRASP) and Non-
dominated Sorting Genetic Algorithm (NSGA-II) to validate its
effectiveness in generating high-quality solutions for
requirement prioritization.

Somohano in [24] aims to reduce computational complexity
and enhance the precision of requirements prioritization. They
present an approach to enhancing the Analytic Hierarchy
Process (AHP) by integrating evolutionary computing
techniques. Additionally, the research suggests integration of
multiple criteria and developing a software tool to assist project
managers in the prioritization process more efficiently.

E. Other Approaches

AbdElazim in [9] introduces a comprehensive framework
for prioritizing requirements in Agile Software Development,
focusing on continuous and scalable prioritization. It effectively
manages rapidly changing requirements and their dependencies
by integrating early into the Agile process with epics and user
stories. This fully integrated approach ensures that the
framework can handle requirement changes at any stage of the
development cycle, making the Agile development process
more adaptable and responsive to evolving project needs but no
tool was provided.

Govil in [39] presents a comparative analysis of various
requirement prioritization techniques such as AHP, Pair wise
comparison, MoSCoW, planning poker, ping pong balls, bubble
sort, and others detailing their strengths and weaknesses. The
paper highlights discrete parameters that influence the success
of software projects and discusses the difficulty of prioritizing
requirements in Agile methodologies, where changes can occur
late in development. The goal is to provide product owners with
insights to select the most suitable prioritization technique based
on the project's specific needs and constraints.

Kamal in [40] explores the factors that contribute to the
success of Agile Requirements Change Management (ARCM)
in the context of Global Software Development (GSD). It
follows a two-step approach: first, identifying success factors
through a Systematic Mapping Study (SMS) and validating

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

817 | P a g e

www.ijacsa.thesai.org

them with industry practitioners via a questionnaire survey. And
the second step is to prioritize these factors using the Analytical
Hierarchy Process (AHP). This study shows twenty-one critical
success factors for ARCM in GSD, with top priorities being
resource allocation at overseas sites, communication,
coordination, control (3Cs), process improvement expertise, a
geographically distributed change control board (CCB), and
continuous top management support. The findings aim to assist
practitioners in effectively implementing ARCM activities in
GSD settings. The research further needs to develop a
comprehensive readiness model for ARCM. This model should
identify negative impact factors and collect best practices
through multiple case studies.

Kifetew in [41] discusses the use of automated decision-
making techniques to help engineers in the process of selecting
and prioritizing requirements. Effective involvement of the
development team and stakeholders is crucial in the decision-
making process enabled by these tools. The paper used Analytic
Hierarchy Process (AHP) and Genetic Algorithms to introduce
a tool-supported to perform collaborative requirements
prioritization process. The tool enables an iterative prioritization
process, therefore enabling stakeholders to actively participate
in decision-making throughout the process.

Perkusich in [42] presents an approach that leverages
intelligent software engineering techniques to enhance
requirement prioritization in Agile environments. The approach
utilizes a combination of automated tools and Machine Learning
algorithms to analyze user feedback, historical project data, and
other relevant metrics to prioritize requirements dynamically.
This method allows for continuous re-evaluation of priorities
based on new data and evolving project needs.

AL-Ta’ani in [43] proposes a conceptual framework for
continuous requirements prioritization in Agile development,
addressing the challenge of selecting key user requirements for
implementation across iterations. The framework is informed by
a thorough review of related literature and content analysis of
the data. It delineates the critical factors impacting the
requirements prioritization process and their effect on the final
product, categorizing them into three primary dimensions:
environment, process, and product. The environment includes
stakeholders’ characteristics, constraints relevant to the project,
and Requirement Nature; the process outlines the particular
processes involved in prioritization, and the Product describes
the outcomes. The study highlights the importance of systematic
prioritization to prevent costly development errors and potential
project failures, suggesting areas for future research to refine
prioritization methods and techniques.

Alkandari in [44] discusses three models for requirements
prioritization in Agile development. Model 1 focuses on
estimating business value using work breakdown structure and
knowledge factors but lacks clarity on selection criteria for
iteration. Model 2 consists of initial project backlog, prioritized
project backlog, sprint backlog, and implemented requirements,
emphasizing client-driven prioritization. Model 3 is an
improved version of Model 2 based on case studies,
incorporating business value, negative value, and risk for more
accurate prioritization. The models were evaluated based on

factors like cost, importance, risk, and dependencies to propose
a comprehensive prioritization approach.

Saeed in [45] conducted a case study across five
organizations. They used the grounded theory to assign
numerical values to qualitative data, resulting in a more efficient
and effective prioritization process. The study shows that
organizations often deviate from traditional steps, using unique
methods to handle requirements prioritization, focusing on
Business Value, Risk Factors, and Priority Criteria. The
proposed mode allows for enhancement by integrating other
techniques. Agile development's evolving nature means
prioritization methods will keep changing. To improve this
process, the study suggests more case studies to propose better
models.

Many researchers have noted gaps in the literature regarding
AI-based techniques for requirements prioritization in Agile
methodologies. The current literature identifies several key
issues, including a lack of real-world empirical validation of
these techniques. Scalability problems still exist, particularly
when handling multiple requirements or large-scale projects.
Furthermore, managing requirement dependencies is
insufficient in current methodologies. Stakeholder collaboration
is rarely fully integrated into prioritization models. This study
addresses these gaps by evaluating the effectiveness of AI
techniques in real-world Agile settings, focusing on scalability,
dependency management, and stakeholder collaboration, while
providing recommendations for future research and practical
implementation.

V. EVALUATION CRITERIA

Prioritization of requirements is the systematic procedure of
arranging requirements according to specific inputs, processing
techniques, and intended outputs. For this goal, the following
primary categories of AI-based methodologies—Fuzzy Logic,
Optimization algorithms, and Machine Learning—have been
utilized. It is essential to have evaluation criteria that assess each
type separately. This is necessary because these approaches
differ significantly in their characteristics and operational
methods. Therefore, in addition to general criteria for evaluating
prioritization techniques, unique standards have been developed
to evaluate Machine Learning approaches, Optimization
algorithms, and Fuzzy Logic are developed. All the surveyed
strategies are evaluated using ten metrics that are derived from
Fuzzy Logic, Optimization, and Machine Learning, including
Stakeholder Involvement, Dependency, Scalability, Validation,
Impact on Collaboration, Accuracy, Flexibility, Complexity,
Robustness to Uncertainty, Automation, Ease of
Implementation. These criteria are evaluated using different
values: ‘Yes’, ‘No’, and ‘Moderate’.

VI. RESULTS ANALYSIS AND COMPARISON

A. Demographics of the SLR

Table I presents a comprehensive summary of 32 research
studies categorised by year, with a detailed analysis of the
publication types, specifically journals. The analysis of 32
research studies from 2011 to 2024 reveals that 21 were
published in journals and 11 in conferences. The publishers
include Springer with 9 papers, IEEE with 10, and Elsevier with
6. The studies cover a range of topics: 3 on Fuzzy Logic, 6 on

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

818 | P a g e

www.ijacsa.thesai.org

Machine Learning, 5 on NLP, 10 on Optimization techniques,
and 8 on other approaches like frameworks and gamification.
Springer leads in publishing both journals and conferences,
while IEEE has a strong presence in both areas, especially in
Machine Learning and Natural Language Processing. Elsevier's
contributions are consistent across various topics, all in journals.

In Fig. 2, the frequency of different approaches that used in
requirements prioritization in Agile methodology. In Fig. 3, The
year chart provides an insightful look into the trend of
publications focused on using AI to prioritize requirements in

Agile methodology from 2011 to 2024 that’s illustrated in
Fig. 3.

Fig. 2. Frequency of different approaches.

TABLE I. OVERVIEW OF SELECTED STUDIES (PUBLICATION TYPE JOURNAL)

No Reference Year Technique Used Related Category Type Publisher

15 Borhan, et al. [15] 2024 Fuzzy Logic Operations Fuzzy Logic Journal JOAASR

16 Abusaeed,et al.[16] 2023 Fuzzy AHP (Analytic Hierarchy Process) Fuzzy Logic Journal Elsevier

17 Rottoli, et al.[17] 2021 Fuzzy Linguistic Labels Fuzzy Logic Conference CEUR-WS

18 Anand, et al. [18] 2017 Apriori Technique Machine Learning Journal Elsevier

19 Hudaib, et al. [19] 2019 Self-Organizing Maps Machine Learning Journal IEEE

20 Veerappa, et al. [20] 2011 Clustering Machine Learning Conference Springer

21 Belsis, et al. [21] 2014 Unsupervised Requirements Clustering Machine Learning Journal Springer

22 Achimugu, et al. [22] 2014 Clustering Machine Learning Conference Springer

23 Kumar, et al. [23] 2022 K-Means Algorithm Machine Learning Conference IEEE

24 Sachdeva, et al. [24] 2018 User Requirements Prioritization Natural Language Processing (NLP) Conference IEEE

25 Shafiq,et al. [25] 2021 NLP-based Recommendation Approach Natural Language Processing (NLP) Journal IEEE

26 Sami, et al. [26] 2024 Large Language Models Natural Language Processing (NLP) Conference Springer

27 Sharma, et al. [27] 2019 NLP Algorithm Natural Language Processing (NLP) Journal IEEE

28 Kifetew, et al. [28] 2021 User-Feedback Driven Prioritization Natural Language Processing (NLP) Journals Elsevier

29 Asghar, et al. [29] 2016
Requirements Elicitation & Prioritization
MoSCoW, Interviews, Workshops

Optimization Journal IJACSA

30 Kumar, et al. [30] 2020 AHP and TOPSIS Optimization Journal Emerald

31 Muhammad, et al.[31] 2023 Multi-Criteria Decision Making Analysis Optimization Journal IEEE

32 Agrawal, et al. [32] 2016 Risk Prioritization and Optimization Optimization Journal IEEE

33 Prakash, et al. [33] 2021 Grey Wolf Optimizer (GWO) Optimization Journal Springer

34 Chaves, et al. [34] 2015
Multiobjective Swarm Intelligence

Evolutionary Algorithm
Optimization Journal Elsevier

35 Brezočnik, et al. [35] 2018 Particle Swarm Optimization Optimization Conference Springer

36 Brezočnik, et al. [36] 2020 Swarm Intelligence Algorithms Optimization Conference Springer

37 Del Sagrado, et al. [37] 2015 Ant Colony Optimization Optimization Conference Springer

38 Somohano [38] 2021 Evolutionary Computing for AHP Optimization Conference Springer

39 AbdElazim, et al. [9] 2020 Framework-Based Approach Other Approaches Journal IOP

40 Govil, et al. [39] 2021 Information Extraction Techniques Other Approaches Journal IEEE

41 Kamal, et al. [40] 2020 Prioritization Techniques Other Approaches Journal IEEE

42 Kifetew, et al.[41] 2017 Gamification, Collaborative Techniques Other Approaches Conference IEEE

43 Perkusich, et al.[42] 2020 Intelligent Software Engineering Other Approaches journal Elsevier

44 AL-Ta’ani, et al. [43] 2013 Conceptual Framework Other Approaches Journal Elsevier

45 Alkandari, et al. [44] 2017 Enhancement Techniques Other Approaches Journal JSW

46 Saeed, et al. [45] 2023 Requirements Prioritization Techniques Other Approaches Journal

Technical

Journal of

UET

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

819 | P a g e

www.ijacsa.thesai.org

Fig. 3. Number of publications per year.

B. Strengths and Weaknesses of the Surveyed Techniques

The evaluation of the 32 papers reveals a diverse range of
strengths, weaknesses, and limitations in applying various

methodologies to Agile Software Development is presented in
Table II. Many papers showcase innovative approaches, such as
the combination of Fuzzy Logic with AHP for enhanced
decision-making, the use of NLP for automating prioritization,
and the application of advanced algorithms for task allocation
and Optimization. These strengths are often balanced by
significant weaknesses, including complexity in
implementation, the need for expert knowledge, and high
computational or data requirements. Moreover, limitations such
as scalability, data dependency, and subjective judgment
frequently emerge, indicating that while these methods provide
valuable solutions, they may not be universally applicable
without careful consideration of context and resources. Overall,
the analysis underscores the need for a tailored approach when
applying these techniques to Agile environments, ensuring that
their strengths are fully leveraged while mitigating their inherent
weaknesses and limitation.

TABLE II. STRENGTH, WEAKNESS, AND LIMITATIONS OF REQUIREMENTS PRIORITIZATIONS TECHNIQUES

Reference Strengths Weaknesses Limitations

Borhan, et al. [15]
Improved decision making under

uncertainty
Complexity in fuzzy rule definitions Limited scalability

Abusaeed,et al.[16]
Combines advantages of AHP and fuzzy
logic

Requires expert knowledge
Complexity in AHP hierarchy
formulation

Rottoli, et al.[17] Handles linguistic uncertainty effectively Potential bias
Subjective interpretation of linguistic

labels

Anand, et al. [18] Resolves conflicts through data mining Complexity in implementation Data dependency

Hudaib, et al. [19] Visualizes data patterns effectively Requires expertise in SOM Complexity

Veerappa, et al. [20] Groups similar stakeholders effectively May not capture all stakeholder nuances Data dependency

Belsis, et al. [21] Unsupervised approach reduces bias Requires large dataset Complexity

Achimugu, et al. [22] Efficiently handles large scale data May overlook individual nuances Scalability

Kumar, et al. [23] Simple and fast clustering method Sensitive to initial conditions Scalability

Sachdeva, et al. [24] Focuses on user requirements May overlook technical requirements Subjective judgement

Shafiq,et al. [25] Automates prioritization using NLP Requires large dataset Data dependency

Sami, et al. [26] Leverages advanced language models Computationally intensive Data dependency

Sharma, et al. [27] Automates release planning using NLP Requires expertise in NLP Data dependency

Kifetew, et al. [28] Incorporates user feedback in prioritization Potential bias in feedback Data dependency

Asghar, et al. [29] Enhances quality by thorough elicitation Time-consuming High dependency on stakeholder input

Kumar, et al. [30]
Effective prioritization by combining AHP
and TOPSIS

Data-intensive Complexity in combining methods

Muhammad, et al.[31]
Comprehensive evaluation of multiple

criteria
Resource-intensive High complexity

Agrawal, et al. [32]
Focuses on risk management and
optimization

Complexity in risk assessment High complexity

Prakash, et al. [33] Efficient optimization algorithm Requires parameter tuning Complexity

Chaves, et al. [34] Handles multiple objectives simultaneously Computationally intensive High complexity

Brezočnik, et al. [35] Efficient task allocation algorithm Requires parameter tuning Complexity

Brezočnik, et al. [36] Effective in solving complex problems Requires expertise in swarm intelligence Complexity

Del Sagrado, et al. [37] Effective multi-objective optimization Computationally intensive High complexity

Somohano [38]
Enhances AHP with evolutionary

computing
Complexity in implementation Requires expert knowledge

AbdElazim, et al. [9]
Provides structured approach for

prioritization
May not fit specific project needs Subjective judgement

Govil, et al. [39] Automates data extraction process Requires comprehensive datasets Data extraction accuracy

Kamal, et al. [40]
Focuses on global software development
challenges

Difficult to generalize High variability in global context

Kifetew, et al.[41] Engages stakeholders through gamification Potential for bias in game dynamics Engagement dependency

Perkusich, et al.[42] Leverages AI for software engineering Requires extensive training data Data dependency

AL-Ta’ani, et al. [43] Provides a structured approach May not fit specific project needs Subjective judgement

Alkandari, et al. [44] Improves existing processes Requires adaptation to specific projects Subjective judgement

Saeed, et al. [45] Enhances quality of agile practices Requires adaptation to specific contexts Subjective judgement

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

820 | P a g e

www.ijacsa.thesai.org

C. Comparison of AI-based Requirements Prioritization

Techniques

A comprehensive study is presented among Fuzzy Logic
based, Machine Learning based, Optimization and Natural
Language Processing-based techniques. The effectiveness of
AI-driven prioritization in Agile methodologies is influenced by
key parameters such as scalability, dependency management,
stakeholder collaboration, automation, and accuracy. AI
techniques like machine learning and optimization improve
scalability by handling large datasets and managing
dependencies effectively. NLP enhances stakeholder
collaboration by automating feedback interpretation, while
automation in AI reduces manual effort and allows dynamic
prioritization. Fuzzy logic supports decision-making under
uncertainty but may struggle with scalability. Overall, these
parameters ensure that AI techniques provide adaptable,
efficient, and accurate solutions to the challenges of
requirements prioritization in Agile development. This
comprehensive is defined based on evaluation criteria with
answer of ‘Y’ for Yes, ‘N’ for No, and ‘M’ for ‘Moderate’.

Regarding the Fuzzy Logic-based technique, evaluating the
implementation of Fuzzy Logic in Agile Software Development
requires examining both its theoretical advantages and practical
challenges. Fuzzy Logic offers a flexible and nuanced approach
to handling uncertainty and imprecision in decision-making,
particularly in complex environments like Agile projects where
requirements are often ambiguous and evolving. The evaluation,
as shown in Table III, reveals that while these Fuzzy Logic-
based approaches are strong in handling uncertainty and, in
some cases, fostering stakeholder collaboration, they generally
struggle with scalability and managing dependencies. The high
complexity and limited usability in some methods could restrict
their practical implementation in real-world Agile projects. This
highlights a need for more balanced solutions that are both
theoretically robust and practically applicable.

TABLE III. FUZZY LOGIC TECHNIQUE APPLICATIONS

R
ef

er
en

ce

S
ta

k
eh

o
ld

er

C
o
ll

ab
o

ra
ti

o
n

D
ep

en
d

en
cy

S
ca

la
b
il

it
y

C
o

m
p

le
x

it
y

an
d

 U
sa

b
il

it
y

F
le

x
ib

il
it

y

R
o
b
u

st
n

es
s

to

U
n

ce
rt

ai
n
ty

Borhan, et al. [15] Y N N N Y Y

Abusaeed,et al.[16] N N N N N Y

Rottoli, et al.[17] Y N N Y Y Y

Regarding Machine Learning technique, the evaluated
research offers innovative clustering and prioritization
techniques for Agile Software Development most to techniques
aims to categorize related requirements into clusters. The cluster
are pushed to be the next sprints based on their ranking. Some
evaluation criteria as scalability, accuracy, and stakeholder
management shows good indicator as it’s shown in Table IV.
However, they generally face challenges in practical
implementation due to complexity, lack of empirical validation,
that would show limited effectiveness in handling stakeholder
conflicts. While these approaches are valuable, their
applicability may be constrained by the need for specialized
knowledge and tools.

TABLE IV. MACHINE LEARNING TECHNIQUE APPLICATIONS

R
ef

er
en

ce

S
ta

k
eh

o
ld

er

C
o
ll

ab
o

ra
ti

o
n

D
ep

en
d

en
cy

S
ca

la
b
il

it
y

V
al

id
at

io
n

Im
p

ac
t

o
n

C
o
ll

ab
o

ra
ti

o
n

A
cc

u
ra

cy

F
le

x
ib

il
it

y

Anand, et al. [18] Y N N N Y Y N

Hudaib, et al. [19] Y Y Y N N Y Y

Veerappa, et al. [20] Y Y N N Y Y Y

Belsis, et al. [21] Y N Y N Y Y Y

Achimugu, et al. [22] Y N Y N Y Y Y

Kumar, et al. [23] N N Y Y Y Y Y

Regarding Natural Language Processing technique, most of
the paper used NLP techniques reduce direct stakeholder
involvement, which is crucial for aligning requirements with
business needs. In Table IV, we can realize many of the papers
moderate to high scalability, ease of implementation, suggesting
a potential gap in practical applicability. The validation factor
generally moderate to high. Most of the papers didn't consider
dependency directly (Table V).

TABLE V. NATURAL LANGUAGE PROCESSING TECHNIQUE APPLICATION

R
ef

er
en

ce

S
ta

k
eh

o
ld

er

C
o
ll

ab
o

ra
ti

o
n

D
ep

en
d

en
cy

S
ca

la
b
il

it
y

A
u

to
m

at
io

n

V
al

id
at

io
n

Sachdeva, et al. [24] M M Y Y M

Shafiq,et al. [25] Y Y M M Y

Sami, et al. [26] M M Y Y Y

Sharma, et al. [27] Y M Y Y Y

Kifetew, et al. [28] M M Y Y M

Regarding Optimization technique, the evaluation of these
papers indicates a week-long focus on addressing requirements
dependencies and facilitating scalability across most
approaches. As shown in Table VI, traditional decision-making
techniques, such as AHP and TOPSIS, are well-integrated with
collaboration with stakeholders. And less collaboration with
swarm intelligence or evolutionary algorithms. Continuous
improvement is a common feature across all methods, reflecting
the iterative nature of Agile methodologies. Overall, while most
approaches are not considered dependencies directly and
scalability, there is variability in how well they facilitate
stakeholder collaboration, which underscores the potential of
improvement in algorithm-based methods.

Regarding other frameworks and techniques, as it’s shown
in Table VII, the collection of papers on requirements
prioritization in Agile Software Development offers a range of
theoretical frameworks and innovative tools, most approaches
address well result in collaboration, dependencies, and
continuous improvement effectively. But there is challenges in
such terms as ease of implementation and scalability for certain
innovative methods like DMGame. This suggests that while
these approaches offer significant potential, they may require
additional refinement or adaptation to be fully effective across
different Agile contexts

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

821 | P a g e

www.ijacsa.thesai.org

TABLE VI. OPTIMIZATION TECHNIQUE APPLICATION

R
ef

er
en

ce

S
ta

k
eh

o
ld

er

C
o
ll

ab
o

ra
ti

o
n

D
ep

en
d

en
cy

S
ca

la
b
il

it
y

E
as

e
o

f

Im
p

le
m

en
ta

ti
o
n

V
al

id
at

io
n

Asghar, et al. [29] N N N Y Y

Kumar, et al. [30] Y N N Y Y

Muhammad, et al.[31] Y Y Y Y Y

Agrawal, et al. [32] Y N N Y Y

Prakash, et al. [33] N N N Y Y

Chaves, et al. [34] N N N N Y

Brezočnik, et al. [35] N Y N Y Y

Brezočnik, et al. [36] N N N Y Y

Del Sagrado, et al. [37] N N N Y Y

Somohano, et al, [38] Y Y Y Y Y

TABLE VII. OTHER TECHNIQUES APPLICATION

R
ef

er
en

ce

S
ta

k
eh

o
ld

er

C
o
ll

ab
o

ra
ti

o
n

D
ep

en
d

en
cy

S
ca

la
b
il

it
y

E
as

e
o

f

Im
p

le
m

en
ta

ti
o
n

V
al

id
at

io
n

F
le

x
ib

il
it

y
 i

n

H
an

d
li

n
g

 C
h
an

g
e

AbdElazim, et al. [9] Y Y Y Y Y Y

Govil, et al. [39] Y Y Y Y Y Y

Kamal, et al. [40] Y Y Y Y Y Y

Kifetew, et al.[41] Y N N N Y Y

Perkusich, et al.[42] N Y Y N Y Y

AL-Ta’ani, et al.
[43]

Y Y Y Y Y Y

Alkandari, et al. [44] Y Y Y Y Y Y

Saeed, et al. [45] Y Y Y Y Y Y

Results show that Machine Learning techniques, such as
clustering algorithms, effectively address the scalability
challenges in requirement prioritization for large Agile projects
by grouping similar requirements, reducing manual effort, and
improving accuracy. Fuzzy Logic also enhances stakeholder
collaboration, resolving conflicts and improving decision-
making. These findings suggest that AI techniques not only offer
technical advantages but also enhance team communication and
responsiveness in Agile workflows, though real-world
validation is still needed.

VII. LIMITATIONS

Despite the promising results of AI-based techniques for
requirements prioritization, this study has several limitations. A
key limitation is the lack of empirical validation, which affects
the practical applicability of many AI methods in Agile
environments. While these techniques show potential in
addressing scalability and improving stakeholder collaboration,
their complexity and the need for specialized knowledge pose
challenges for widespread adoption and for handling changes in
requirements effectively. Additionally, dependency
management is not adequately addressed, leaving a crucial
aspect of Agile prioritization insufficiently explored.

VIII. CONCLUSION

This paper has conducted a comprehensive systematic
literature review of AI-driven techniques for requirements
prioritization within Agile methodologies. This paper addresses
a significant gap by analysing 32 key studies spanning 2010 to
2024. The SLR finds the strengths and weaknesses of Fuzzy
Logic, Machine Learning, Optimization, and Natural Language
Processing (NLP) techniques. Our findings reveal that each
method has its distinct limitations. These limitations are
particularly in terms of scalability, accuracy, and simplicity of
implementation. These AI-based approaches offer promising
solutions to the challenges of requirements prioritization in
Agile environments.

In Future work, the analysis underscores the necessity of
developing hybrid AI-based techniques that integrate the
strengths of Fuzzy Logic, Machine Learning, Natural Language
Processing, and Optimization to create more scalable, and
efficient prioritization methods. The integrated approach could
better handle the complexities of modern software development
in Agile methodology. That approach should handle the rapidly
changing of the Agile environments where continuous
prioritization and stakeholder collaboration are critical. The
approach should focus on empirical validation of AI-based
requirements prioritization techniques through case studies and
real-world applications to ensure their practical relevance.
Additionally, there is a need to align this approach to be more
closely with stakeholder expectations and to meet the business
need, and to ensure that the prioritization process in Agile
technically and contextually appropriate. Such efforts should
prioritize creating scalable, efficient, and adaptive methods that
consider dependencies in requirements and align closely with
stakeholder needs and Agile practices and to align with the
continuous improvement. By addressing these challenges, it will
be possible to develop more effective and adaptable
requirements prioritization techniques that can be broadly
implemented in diverse, real-world software development
environments.

ACKNOWLEDGMENT

I would like to express my sincere gratitude to my
supervisors, for their invaluable guidance. I also extend my
thanks to the Software Engineering Department whose
unwavering support during my qualification year played a
pivotal role in the successful completion of this research.

REFERENCES

[1] T. Ambreen, N. Ikram, M. Usman, and M. Niazi, “Empirical research in
requirements engineering: trends and opportunities,” Requir Eng, vol. 23,
pp. 63–95, 2018.

[2] W. Jiang, H. Ruan, L. Zhang, P. Lew, and J. Jiang, “For user-driven
software evolution: Requirements elicitation derived from mining online
reviews,” in Advances in Knowledge Discovery and Data Mining: 18th
Pacific-Asia Conference, PAKDD 2014, Tainan, Taiwan, May 13-16,
2014. Proceedings, Part II 18, Springer, 2014, pp. 584–595.

[3] P. A. Laplante and M. Kassab, Requirements engineering for software and
systems. Auerbach Publications, 2022.

[4] A. Radwan, A. Abdo, and S. A. Gaber, “An Approach for Requirements
Engineering Analysis using Conceptual Mapping in Healthcare Domain,”
International Journal of Advanced Computer Science and Applications,
vol. 12, no. 8, 2021.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

822 | P a g e

www.ijacsa.thesai.org

[5] A. Gupta, G. Poels, and P. Bera, “Using conceptual models in agile
software development: a possible solution to requirements engineering
challenges in agile projects,” IEEE Access, vol. 10, pp. 119745–119766,
2022.

[6] N. H. Borhan, H. Zulzalil, and N. M. A. Sa’adah Hassan, “Requirements
prioritization techniques focusing on agile software development: a
systematic literature,” International Journal of Scientific and Technology
Research, vol. 8, no. 11, pp. 2118–2125, 2019.

[7] W. R. Fitriani, P. Rahayu, and D. I. Sensuse, “Challenges in agile software
development: A systematic literature review,” in 2016 International
Conference on Advanced Computer Science and Information Systems
(ICACSIS), IEEE, 2016, pp. 155–164.

[8] Alawneh, L, "Requirements prioritization using hierarchical
dependencies." Information technology-new generations: 14th
International Conference on Information Technology. Springer
International Publishing, 2018.

[9] K. AbdElazim, R. Moawad, and E. Elfakharany, “A framework for
requirements prioritization process in agile software development,” in
Journal of Physics: Conference Series, IOP Publishing, 2020, p. 012001.

[10] J. M. Mendel, “Fuzzy logic systems for engineering: a tutorial,”
Proceedings of the IEEE, vol. 83, no. 3, pp. 345–377, 1995.

[11] R. Anwar and M. B. Bashir, “A Systematic Literature Review of AI-based
Software Requirements Prioritization Technique,” IEEE Access, 2023.

[12] M. D. Nagpal, K. Malik, and A. Kalia, “A comprehensive analysis of
requirement engineering utilizing machine learning techniques,” Design
Engineering, pp. 2662–2678, 2021.

[13] W. Khan, A. Daud, J. A. Nasir, and T. Amjad, “A survey on the state-of-
the-art machine learning models in the context of NLP,” Kuwait journal of
Science, vol. 43, no. 4, 2016.

[14] K.-L. Du and M. N. S. Swamy, Search and optimization by metaheuristics,
vol. 1. Springer, 2016.

[15] N. H. Borhan, H. Zulzalil, N. M. Ali, A. B. M. Sultan, and R. Bahsoon,
“Stakeholder Analysis using Fuzzy Logic Operations for Integrated User
Story Prioritisation Approach in Agile-Scrum Method,” Journal of
Advanced Research in Applied Sciences and Engineering Technology, vol.
47, no. 2, pp. 76–93, 2024.

[16] S. Abusaeed, S. U. R. Khan, and A. Mashkoor, “A Fuzzy AHP-based
approach for prioritization of cost overhead factors in agile software
development,” Appl Soft Comput, vol. 133, p. 109977, 2023.

[17] G. D. Rottoli and C. Casanova, “Multi-criteria group requirement
prioritization in software engineering using fuzzy linguistic labels.,” in
ICAI Workshops, 2021, pp. 16–28.

[18] R. V. Anand and M. Dinakaran, “Handling stakeholder conflict by agile
requirement prioritization using Apriori technique,” Computers &
Electrical Engineering, vol. 61, pp. 126–136, 2017.

[19] A. Hudaib and F. Alhaj, “Self-Organizing Maps for Agile Requirements
Prioritization,” in 2019 2nd International Conference on new Trends in
Computing Sciences (ICTCS), IEEE, 2019, pp. 1–5.

[20] V. Veerappa and E. Letier, “Clustering stakeholders for requirements
decision making,” in Requirements Engineering: Foundation for Software
Quality: 17th International Working Conference, REFSQ 2011, Essen,
Germany, March 28-30, 2011. Proceedings 17, Springer, 2011, pp. 202–
208.

[21] P. Belsis, A. Koutoumanos, and C. Sgouropoulou, “PBURC: a patterns-
based, unsupervised requirements clustering framework for distributed
agile software development,” Requir Eng, vol. 19, pp. 213–225, 2014.

[22] P. Achimugu, A. Selamat, and R. Ibrahim, “A Clustering Based Technique
for Large Scale Prioritization during Requirements Elicitation. 2014,”
Cham: Springer International Publishing.

[23] B. Kumar, U. K. Tiwari, D. C. Dobhal, and H. S. Negi, “User Story
Clustering using K-Means Algorithm in Agile Requirement Engineering,”
in 2022 International Conference on Computational Intelligence and
Sustainable Engineering Solutions (CISES), IEEE, 2022, pp. 1–5.

[24] S. Sachdeva, A. Arya, P. Paygude, S. Chaudhary, and S. Idate, “Prioritizing
user requirements for agile software development,” in 2018 International
Conference On Advances in Communication and Computing Technology
(ICACCT), IEEE, 2018, pp. 495–498.

[25] S. Shafiq, A. Mashkoor, C. Mayr-Dorn, and A. Egyed, “NLP4IP: Natural
language processing-based recommendation approach for issues
prioritization,” in 2021 47th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), IEEE, 2021, pp. 99–
108.

[26] M. A. Sami, Z. Rasheed, M. Waseem, Z. Zhang, T. Herda, and P.
Abrahamsson, “Prioritizing Software Requirements Using Large
Language Models,” arXiv preprint arXiv:2405.01564, 2024.

[27] S. Sharma and D. Kumar, “Agile release planning using natural language
processing algorithm,” in 2019 Amity International Conference on
Artificial Intelligence (AICAI), IEEE, 2019, pp. 934–938.

[28] F. M. Kifetew, A. Perini, A. Susi, A. Siena, D. Muñante, and I. Morales-
Ramirez, “Automating user-feedback driven requirements prioritization,”
Inf Softw Technol, vol. 138, p. 106635, 2021.

[29] A. R. Asghar, S. N. Bhatti, A. Tabassum, Z. Sultan, and R. Abbas, “Role
of requirements elicitation & prioritization to optimize quality in scrum
agile development,” International Journal of Advanced Computer Science
and Applications, vol. 7, no. 12, 2016.

[30] R. Kumar, K. Singh, and S. K. Jain, “A combined AHP and TOPSIS
approach for prioritizing the attributes for successful implementation of
agile manufacturing,” International Journal of Productivity and
Performance Management, vol. 69, no. 7, pp. 1395–1417, 2020.

[31] A. Muhammad, A. Siddique, M. Mubasher, A. Aldweesh, and Q. N.
Naveed, “Prioritizing non-functional requirements in agile process using
multi criteria decision making analysis,” IEEE Access, vol. 11, pp. 24631–
24654, 2023.

[32] R. Agrawal, D. Singh, and A. Sharma, “Prioritizing and optimizing risk
factors in agile software development,” in 2016 ninth international
conference on contemporary computing (IC3), IEEE, 2016, pp. 1–7.

[33] B. Prakash and V. Viswanathan, “ARP–GWO: an efficient approach for
prioritization of risks in agile software development,” Soft comput, vol. 25,
no. 7, pp. 5587–5605, 2021.

[34] J. M. Chaves-Gonzalez, M. A. Perez-Toledano, and A. Navasa, “Software
requirement optimization using a multiobjective swarm intelligence
evolutionary algorithm,” Knowl Based Syst, vol. 83, pp. 105–115, 2015.

[35] L. Brezočnik, I. Fister Jr, and V. Podgorelec, “Scrum task allocation based
on particle swarm optimization,” in International Conference on
Bioinspired Methods and Their Applications, Springer, 2018, pp. 38–49.

[36] L. Brezočnik, I. Fister, and V. Podgorelec, “Solving agile software
development problems with swarm intelligence algorithms,” in New
Technologies, Development and Application II 5, Springer, 2020, pp. 298–
309.

[37] J. Del Sagrado, I. M. Del Águila, and F. J. Orellana, “Multi-objective ant
colony optimization for requirements selection,” Empir Softw Eng, vol. 20,
pp. 577–610, 2015.

[38] J. C. B. Somohano-Murrieta, J. O. Ocharán-Hernández, Á. J. Sánchez-
García, X. Limón, and M. de los Ángeles Arenas-Valdés, “Improving the
analytic hierarchy process for requirements prioritization using
evolutionary computing,” Programming and Computer Software, vol. 47,
pp. 746–756, 2021.

[39] N. Govil and A. Sharma, “Information extraction on requirement
prioritization approaches in agile software development processes,” in
2021 5th International Conference on Computing Methodologies and
Communication (ICCMC), IEEE, 2021, pp. 1097–1100.

[40] T. Kamal, Q. Zhang, M. A. Akbar, M. Shafiq, A. Gumaei, and A. Alsanad,
“Identification and prioritization of agile requirements change
management success factors in the domain of global software
development,” IEEE Access, vol. 8, pp. 44714–44726, 2020.

[41] F. Kifetew, D. Munante, A. Perini, A. Susi, A. Siena, and P. Busetta,
“DMGame: a gamified collaborative requirements prioritisation tool,” in
2017 IEEE 25th International Requirements Engineering Conference (RE),
IEEE, 2017, pp. 468–469.

[42] M. Perkusich et al., “Intelligent software engineering in the context of agile
software development: A systematic literature review,” Inf Softw Technol,
vol. 119, p. 106241, 2020.

[43] R. H. AL-Ta’ani and R. Razali, “Prioritizing requirements in agile
development: A conceptual framework,” Procedia Technology, vol. 11, pp.
733–739, 2013.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 9, 2024

823 | P a g e

www.ijacsa.thesai.org

[44] M. A. Alkandari and A. Al-Shammeri, “Enhancing the Process of
Requirements Prioritization in Agile Software Development-A Proposed
Model.,” J. Softw., vol. 12, no. 6, pp. 439–453, 2017.

[45] N. Saeed, E. Yasmin, A. R. Riaz, N. Khalid, Y. Hafeez, and I. Rubab,
“Enabling the Requirements Prioritization Techniques to Improve the
Quality of Agile Practices.,” Technical Journal of University of
Engineering & Technology Taxila, vol. 28, no. 4, 2023.

