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Abstract—It is normal for the modern population to spend 12 

hours or more daily indoors where the level of comfort can be 

moderated. Yet, indoor occupants are similarly exposed to 

various air pollutants just as outdoors. Indoor air pollution could 

be detrimental toward the occupant's health noted by the United 

Nation Environment Programme (UNEP) in the Pollution Action 

Note, published on 7th of September 2021. According to the 

American Society of Heating, Refrigerating and Air-

Conditioning Engineers (ASHRAE) standards, occupancy 

patterns could influence indoor air quality. Hence, this paper 

investigates the utilisation of machine learning algorithms in 

predicting occupancy patterns against indoor air quality (IAQ) 

variables such as humidity, temperature, light, and carbon 

dioxide (CO2). This study compares the performance of selected 

machine learning approaches, namely deep learning (LSTM, 

CNN), regression (ANN) and (SVR) models. In addition, it 

explores the diverse range of evaluation metrics utilized to 

evaluate the performance of machine learning in the specific 

context of Mean Squared Error (MSE) and Mean Absolute Error 

(MAE). In the training phase, the SVR model achieved the lowest 

MAE of 0.0826 and MSE of 0.0280 as compared to the other 

algorithms. The ANN model demonstrated slightly better 

generalization capabilities in the testing phase, while the LSTM 

model demonstrated robust performance in the test phase. 

Overall, the results highlighted the significant impact of 

occupancy behaviour on Indoor Air Quality (IAQ) variables and 

underscored the importance of advanced modelling techniques in 

IAQ monitoring and management, emphasizing the need for 

tailored approaches to address the complex relationship between 

occupancy patterns and IAQ variables. 
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I. INTRODUCTION 

Indoor air quality (IAQ) is a critical component in 
maintaining occupants' health, impacting the well-being of 
both the humans and the interior ecosystems. Prolonged 
exposure to harmful substances in the air could lead to 
persistent discomfort, severe illnesses, and could lead to 
respiratory attributed deaths annually [1]. Compromised air 
quality encompasses of various factors, which includes, but not 
limited to the concentration of pollutants, such as the cleaning 
supplies and the building materials [2], the indoor humidity 
levels [3], the temperature control [4] and the adequacy of the 

ventilation systems [5]. Unhealthy working space for indoor 
occupants due to poor IAQ can lead to a range of health issues, 
such as respiratory problems [6-7], asthma [8]  and fatigue [9], 
which can impact their productivity and overall well-being.  

The ability to monitor and control IAQ is essential for 
building managers to identify potential issues and implement 
corrective measures [9]. Yet, to some, comprehensive 
installation of indoor sensing system could incur a hefty cost 
which could discourage the motivation to maintain healthy 
indoor air quality. The variation of indoor air quality with 
respect to the occupancy pattern could lead to complex data 
analysis which requires the use of machine learning to study 
their linear or non-linear relationships. In recent years, the 
integration of machine learning techniques has emerged as a 
promising avenue for predicting and optimizing air quality, in 
general. Additionally, as societies grapple with the 
consequences of air pollution, understanding the effectiveness 
of machine learning models in this context is imperative [10]. 

 As indoor air pollution (IAP) poses a major risk to 
human health and is responsible for millions of deaths 
annually, preserving a good IAQ is significant for the health 
sector [11]. The intersection studies of IAQ and machine 
learning have garnered significant attention in recent years as 
researchers explore innovative ways to leverage machine 
learning techniques to enhance indoor air quality monitoring 
and management. For example, authors in the study [11], state 
that machine learning technologies are highly capable of 
providing real-time indoor air quality monitoring, which is 
essential for determining and managing indoor air pollutants. 
In addition, [12] also states that sets of algorithms are utilized 
to extract and filter general principles from massive datasets, 
allowing for the automated learning of user preferences in 
relation to the IAQ.  

Despite of this, there is a gap in current literatures, 
specifically in terms of the employment of machine learning 
techniques to predict occupancy patterns within the context of 
indoor air quality management. While previous studies have 
highlighted the potential of machine learning for real-time 
monitoring and general data analysis, few have focused on its 
application to predict occupancy patterns, which can be crucial 
for understanding indoor air quality dynamics. Therefore, this 
study aims to fill this gap by investigating the effectiveness of 
machine learning approaches in predicting occupancy patterns 
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based on variables such as humidity, temperature, light, and 
carbon dioxide (CO2). In addition, this study will determine 
which algorithms performed better and using selected 
evaluation metrics, namely, the Mean Squared Error (MSE) 
and Mean Absolute Error (MAE). 

The paper is organized into five main sections, namely the 
Introduction in Section I, where the overall background of the 
research is elaborated; the Literature Review in Section II, 
which provides extensive reviews on deep learning, regression, 
classification model, and the relationship between IAQ and 
occupancy behaviour; the Methodology in Section III, which 
elaborates on the data acquisition, data training,  data testing 
and selected machine learning algorithms' evaluation 
approaches; the Results and Analysis in Section IV, which 
provides in depth evaluations and discussions on the overall 
analysis of this study; and Conclusion in Section V, which 
sums up the investigation and highlights the key topics of this 
study. 

II. LITERATURE REVIEW 

A. Comparison between Deep Learning, Regression and 

Classification Models. 

IAQ monitoring is a critical aspect of ensuring healthy and 
comfortable indoor environments, particularly in settings such 
as homes, offices, and schools [13]. With the increasing 
prevalence of indoor air pollutants and their impact on human 
health, there is a growing need for advanced predictive models 
to accurately monitor and forecast occupancy patterns because 
occupancy patterns are closely related to the variables of IAQ.  
In this comparison models, this study delves into the field of 
deep learning, regression, and classification models, exploring 
their method and capabilities in the context of occupancy 
patterns prediction. 

1) Deep learning model. Deep learning, a subset of 

machine learning, has emerged as a powerful tool for 

processing complex data and extracting meaningful patterns 

[14]. By leveraging deep neural networks, deep learning 

models can effectively analyze large volumes of IAQ data, 

including particulate matter (PM) [15–18] volatile organic 

compounds (VOCs) [17], CO2 [17], and sulfur dioxide (SO2) 

[19, 20], to provide real-time insights into IAQ levels. These 

models can learn intricate relationships within the data, 

enabling them to make accurate predictions and identify 

potential IAQ issues before they escalate. However, for 

specific occupancy patterns [21] mentioned that predictions for 

occupancy were carried out using various deep learning 

architectures, such as Deep Neural Network (DNN), Long 

Short-Term Memory (LSTM), Bi-directional LSTM (Bi-

LSTM), Gated Recurrent Unit (GRU), and Bi-directional GRU 

(Bi-GRU), in different settings like an office, library and 

lecture room. The results demonstrated that the feature 

selection algorithm proposed performed better than a 

commonly used one, leading to higher model performance 

while requiring fewer sensors. 

Other than that, from 11 studies [15–20, 22–26] employing 
various architectures such as long short-term memory (LSTM), 

Convolutional Neural Network (CNN), unique combinations 
like Combined Self-Attention (SA) mechanism, Empirical 
Mode Decomposition (EMD) algorithm and LSTM network 
(SA–EMD–LSTM) with Ensemble Empirical Mode 
Decomposition-Sparrow Search Algorithm (EEMD-SSA-
LSTM). The performance metrics for these studies include 
Mean Absolute Error (MAE), Root Mean Squared Error 
(RMSE), Symmetric Mean Absolute Percentage Error 
(SMAPE), Mean Absolute Percentage Error (MAPE), Index of 
Agreement (IA), Theil Inequality Coefficient (TIC), coefficient 
of determination (R2) and Absolute Average Deviation. This 
diversity in metrics underscores the complexity and 
multifaceted nature of evaluating deep learning models in the 
context of air quality prediction, considering both spatial and 
temporal aspects. 

2) Regression model. Regression models, on the other 

hand, are well-suited for predicting continuous IAQ variables, 

such as PM concentration [27], temperature [28] or occupancy 

pattern [29] based on historical data and other relevant 

variables. By fitting a regression model to IAQ data, regression 

model can create a mathematical equation that describes the 

relationship between the input variables and the output [30], 

allowing to make predictions with a high degree of accuracy.  

For example, six studies [27, 28, 31–34] employ diverse 
techniques such as Artificial Neural Network (ANN), Extra 
Trees Regressor, Wavelet Artificial Neural Network, and 
Support Vector Regression (SVR). Evaluation metrics for these 
models include MAE, RMSE, SMAPE, MAPE, and Pearson 
correlation coefficient (R). The inclusion of regression models 
adds a valuable dimension to the literature, as these models 
provide insights into continuous air quality prediction. In 
addition, the study in [29] also states linear and logistic 
regression models were created using the variables to forecast 
occupant activity schedules and the probability of occupant 
presence. 

3) Classification models. Classification models are 

particularly useful for identifying discrete IAQ states, such as 

air quality categories (e.g., good, moderate, poor) or the 

presence of specific pollutants [35]. These models classify IAQ 

data into different classes based on their characteristics, 

enabling us to categorize IAQ levels and take appropriate 

actions to improve indoor air quality. Previous study primarily 

leverages random forest [31, 36–38] and decision tree [32] 

while employing a range of evaluation metrics such as 

specificity, precision, recall, accuracy, F1 score, area under the 

ROC Curve (AUC), and sensitivity. This reflects a robust 

assessment strategy to measure the performance of these 

models in predicting air quality. 

While it is possible for a classification model to estimate 
the occupancy patterns, there are some important 
considerations and limitations. In a typical classification 
problem, the goal is to predict the class label of an observation 
based on its features. So, this study will not include 
classification models, as the focus is on utilizing deep learning 
and regression models, which are deemed more important for 
the study. 
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B. Relationship between IAQ and Occupancy Behavior 

The relationship between IAQ and occupancy behavior is 
complex and symbiotic. The way in which occupants use 
spaces, their activities, and their preferences all have an impact 
on the IAQ, which includes temperature, humidity, and 
pollutants [39]. Occupancy behavior plays a crucial role in 
determining pollutant emissions, ventilation needs and desired 
comfort levels. For instance, spaces with more occupants 
engaged in activities that generate pollutants may necessitate 
higher ventilation rates [40]. Managing IAQ effectively 
involves comprehending these interconnections and devising 
strategies that could harmonise occupants' behavior while 
maintaining optimal indoor air quality. 

To encourage a healthier indoor environment, a 
comprehensive strategy that considers both IAQ variables and 
occupancy behavior is imperative. According to [41], 
architectural designs should cater to varied activities and 
occupant densities, optimizing factors like temperature control 
to curb discomfort and air stagnation. Incorporating intelligent 
building technologies to monitor and regulate IAQ variables in 
real time based on occupancy patterns can further amplify the 
interplay between IAQ and occupant behavior [42]. Ultimately, 
cultivating an atmosphere where occupants are conscientious 
about their actions and where IAQ commands shared attention 
can culminate in an enhanced IAQ and overall well-being. 

Given the intricate relationship between IAQ and 
occupancy behavior, this study aims to predict occupancy 
patterns in relation to selected IAQ variables. Understanding 
how occupants utilize spaces and engage in activities that 
affect IAQ variables like temperature, humidity, and pollutant 
levels is crucial for effective IAQ management. By leveraging 
the predictive modelling, this study seeks to develop insights 
into how occupancy patterns influence the IAQ dynamics, 
ultimately contributing to strategies that enhance the indoor 
environmental quality and occupant well-being.  

III. METHODOLOGY 

In the context of predicting occupancy patterns, the model 
training for deep learning and regression models can be 
similar, as both approaches aim to predict occupancy based on 
input variables such as temperature, humidity, light and CO2 
levels. The phase would involve several steps as shown in the 
Fig. 1 below. However, the specific implementation details and 
the model architectures would differ between the deep learning 
and regression, depending on the algorithms used. To choose a 
better algorithm that suited the aim of this study, data 
collection, data pre-processing, model training and testing, and 
model evaluation will be conducted. Fig. 1 below shows the 
phases involved in this study to predict occupancy pattern in 
relation to the IAQ variables. 

A. Phase 1 (Data Collection) 

For the data collection stage, the historical data for the 
variables such as temperature, humidity, light, CO2, and 
occupancy will be gathered. It is crucial to ensure that the data 
is representative and covers a wide range of values to capture 

the variability of the IAQ. This comprehensive dataset will 
serve as the foundation for training and evaluating the deep 
learning and regression models for predicting occupancy 
patterns. This study addresses key variables present in office 
room environment, with a focus on identifying an acceptable 
range for these variables that may pose health risks to 
occupants if exceeded.  

B. Phase 2 (Data Pre-Processing) 

In the data pre-processing phase, the input features were 
normalized to ensure data consistency. This normalization step 
is crucial for deep learning and regression models, as it helps to 
prevent features with larger scales from dominating the 
training process. Additionally, the data were split into the 
training (70%) and the testing sets (30%). The training set was 
used to train the models, while the testing set was used to 
evaluate their performance. This split is essential to assess how 
well the generalization of the models were towards unseen data 
and to prevent overfitting. Overall, these preprocessing steps 
help to ensure the models can effectively learn from the data. 

C. Phase 3 (Model Training and Testing) 

This stage implements a custom callback, 
‘MetricsCallback’, to calculate and print MAE and MSE 
during the training and testing phases of LSTM, CNN, and 
ANN models. This callback was used to monitor the model's 
performance on the training and the validation sets. However, 
the SVR model is not a neural network and therefore does not 
use the same training process. For such case, the MAE and the 
MSE were calculated manually after the training completed. 

The training process involves splitting the dataset into the 
training and the testing sets, scaling the features, and reshaping 
the data for the LSTM and CNN models. The models are then 
compiled and trained using the fit method, with the callback 
used to print the loss, the MAE, and the MSE at the end of 
each epoch. The detailed machine learning parameters used for 
each model are as follows: 

LSTM Model 

 Sequential model with an LSTM layer (64 units) and a 
dense output layer. 

 Compiled with Mean Squared Error (MSE) loss and 
Adam optimizer. 

 Trained for 50 epochs with a batch size of 32. 

 Validation data is specified for monitoring performance 
during training. 

 Callback is used to monitor and print MAE and MSE 
during training and validation. 

CNN Model 

 Sequential model with a 2D convolutional layer (32 
filters, 2x2 kernel size, ReLU activation), a flattening 
layer, and a dense output layer. 

 Compiled and trained similarly to the LSTM model. 
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Fig. 1. Phases of predicting occupancy pattern. 

ANN Model (Regression) 

 Sequential model with two dense layers (64 units, 
ReLU activation) and a dense output layer. 

 Compiled and trained similarly to the LSTM and CNN 
models. 

SVR Model 

 SVR model trained separately using the SVR class from 
scikit-learn. 

 Does not use the custom callback as it does not follow 
the same training process as neural networks. 

Once the models completed the training and testing stage, 
they were evaluated using the MAE and the MSE to observe 
the difference in term of the performance. This approach 
provides a comprehensive analysis of the models' performance, 
allowing a comparison for their ability to predict occupancy 
pattern based on the given IAQ variables. 
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D. Phase 4 (Model Evaluation) 

For model evaluation, the trained model is assessed using 
the testing dataset to gauge its performance in predicting 
occupancy. Metrics such as the Mean Squared Error (MSE) 
and the Mean Absolute Error (MAE) are used. The MSE 
provides a measure of the average squared difference between 
the predicted occupancy values and the actual values, offering 
insight into the model's overall accuracy. 

MSE = 
1

𝑛
∑  (𝑦𝑖 − Ӯ𝑖)2𝑛

𝑖=1    (1) 

where: 

 𝑛 is the number of observations. 

 𝑦𝑖 is the actual value of the target variable for the i-th 
observation. 

 Ӯ𝑖 is the predicted value of the target variable for the i-
th observation. 

On the other hand, the MAE measures the average absolute 
difference between the predicted and the actual values, 
providing an indication of the model's precision. These metrics 
collectively offer a comprehensive assessment of the model's 
performance in predicting occupancy values. 

MAE = 
1

𝑛
∑  |𝑦𝑖 − Ӯ𝑖|𝑛

𝑖=1    (2) 

where: 

 𝑛 is the number of observations. 

 𝑦𝑖 is the actual value of the target variable for the i-th 
observation. 

 Ӯ𝑖 is the predicted value of the target variable for the i-
th observation. 

IV. RESULTS AND DISCUSSION 

The discussion for this study focused on comparisons 
between the prediction results of various machine learning 
algorithms for occupancy patterns based on IAQ variables 
including an analysis of their time and memory complexities. 
In addition, this study also explores the impact of occupancy 
behavior on IAQ variables. Key findings included the 
effectiveness of certain algorithms in predicting occupancy 
patterns and how changes in IAQ variables were influenced by 
occupancy. 

A. Prediction Results for Training and Testing Data Across 

Different Machine Learning Models 

Comparing the training and the testing results is essential in 
machine learning to assess how well a model performs in 
analyzing the data. Study by [43] mentioned that during the 
training, a model learns to map input features to output labels 
using the provided data. However, this process can lead to 
overfitting, where the model memorizes the training data 
instead of learning the underlying patterns. By evaluating the 
models' performance on a separate testing dataset, one can 
gauge its ability to generalize. Discrepancies between training 
and testing results indicate potential overfitting, highlighting 
the need for adjustments such as hyperparameter tuning [43]. 
Additionally, comparing results helps in model selection, as the 

best-performing model on testing data is typically chosen for 
deployment. 

Tables 1 and 2 compare the performance of four different 
models (LSTM, CNN, ANN, SVR) in the training and the 
testing phases using the MAE and the MSE metrics. In the 
training phase (see Table 1), the SVR model achieved the 
lowest MAE, namely 0.0826 and MSE of 0.0280, indicating 
better performance in predicting occupancy pattern based on 
the input features (CO2, Light, Temperature, Humidity) 
compared to the other models. The ANN model also performed 
well, with a MAE of 0.0940 and MSE of 0.0353, followed by 
the CNN and LSTM models. 

In the testing phase (see Table 2), the ANN model 
demonstrated the best performance, achieving the lowest MAE 
0.0834 and MSE 0.0364. This indicates that the ANN model 
was more accurate in predicting occupancy pattern on unseen 
data compared to the other models. The CNN model also 
performed well in the testing phase, with an MAE of 0.0866 
and MSE of 0.0385, followed by the LSTM and SVR models. 

TABLE. I. COMPARISON OF MAE AND MSE FOR TRAINING DATA 

Model MAE MSE 

LSTM 0.1153 0.0474 

CNN 0.1024 0.0419 

ANN 0.0940 0.0353 

SVR 0.0826 0.0280 

TABLE. II. COMPARISON OF MAE AND MSE FOR TESTING DATA 

Model MAE MSE 

LSTM 0.0977 0.0420 

CNN 0.0866 0.0385 

ANN 0.0834 0.0364 

SVR 0.0968 0.0411 

Overall, the ANN and CNN models demonstrated robust 
performance in predicting the occupancy patterns, with the 
ANN model showing slightly better generalization capabilities 
in the testing phase. 

B. Complexity Analysis: Time and Memory 

Table 3 below provides the time and memory complexities 
for each of the models used in this study. For the time 
complexity, it is measured in seconds and represents the 
duration taken by each model to complete the training process. 
The LSTM model took the longest time at 0.2044 seconds, 
followed closely by the CNN model at 0.1921 seconds. The 
ANN model was next, at 0.1342 seconds, and the SVR model 
was the fastest at only 0.0156 seconds. These time 
complexities give an indication of how efficiently each model 
can process and learn from the training data. 

In terms of memory complexity, measured in MiB 
(Mebibytes), it represents the peak memory usage during the 
training process. Interestingly, all three models (CNN, ANN, 
and SVR) exhibited very similar memory usage, ranging from 
approximately 723 MiB to 738 MiB. This suggests that these 
models require a similar amount of memory to store and 
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process the data during training. The LSTM model, on the 
other hand, showed a slightly higher memory usage of 738.836 
MiB, indicating that it may require a bit more memory 
compared to the other models. 

Overall, these complexities provide insights into the 
efficiency and resource requirements of each model, which can 
be valuable for selecting the most suitable model for a given 
application based on computational resources and time 
constraints. 

TABLE. III. TIME AND MEMORY COMPLEXITY COMPARISON FOR EACH 

MODEL 

Model Time Complexity (s) 
Memory Complexity 

(MiB) 

LSTM 0.2044 738.836 

CNN 0.1921 723.012 

ANN 0.1342 723.246 

SVR 0.0156 723.086 

C. Exploring the Impact of Occupancy Behavior on Indoor 

Air Quality Variables 

The comparison of machine learning algorithms for 
predicting occupancy patterns based on IAQ variables provided 
valuable insights into their effectiveness and efficiency. The 
study focused on four models: LSTM, CNN, ANN, and SVR, 
evaluating their performance using MAE and MSE metrics in 
both training and testing phases.  

In the training phase, the SVR model exhibited the lowest 
MAE and MSE, indicating superior performance in predicting 
occupancy patterns. The ANN model also performed well, 
followed by the CNN and LSTM models. However, in the 
testing phase, the ANN model demonstrated the best 
performance, achieving the lowest MAE and MSE. This 
suggests that the ANN model was more accurate in predicting 
occupancy patterns on unseen data, highlighting its superior 
generalization capabilities compared to the other models. 

Furthermore, the study analyzed the time and memory 
complexities of each model. The LSTM and CNN models 
exhibited longer training times compared to the ANN and SVR 
models. In terms of memory complexity, all models (CNN, 
ANN, and SVR) showed similar memory usage, while the 
LSTM model required slightly more memory. These 
complexities provide insights into the computational efficiency 
and resource requirements of each model, which are crucial 
considerations for real-world applications. 

Overall, these findings underscore the importance of 
selecting the right machine learning model for predicting 
occupancy patterns based on IAQ variables. The study's results 
can guide future research in optimizing IAQ monitoring 
systems and prediction algorithms, ultimately leading to 
improved indoor air quality and occupant comfort. 

V. CONCLUSION AND FUTURE ENHANCEMENT 

This study demonstrates the importance of considering 
occupancy behavior in predicting IAQ patterns. The results 
highlight the effectiveness of machine learning algorithms, 
particularly ANN and CNN, in accurately predicting 

occupancy patterns based on IAQ variables. ANN emerged as 
the most accurate algorithm, followed by CNN, LSTM and 
SVR. These findings underscore the significance of advanced 
modeling techniques in IAQ monitoring and management, 
emphasizing the need for tailored approaches to address the 
complex relationship between occupancy behavior and IAQ 
variables. In addition, integrating machine learning models into 
IAQ management strategies can lead to improved indoor 
environmental quality and occupant well-being. 

This study also highlights the promising potential of 
relationship between IAQ variables and occupancy pattern. 
This study uses machine learning algorithms in predicting 
occupancy patterns within office room environments. This 
research aims to address this deficiency by examining how 
machine learning methods can predict occupancy patterns 
using factors like humidity, temperature, light, and CO2 levels. 
If the IAQ variables increase, it aims to determine if there's a 
corresponding increase in occupancy in room environments. It 
will also identify the most effective algorithms for this task and 
explore the various evaluation metrics, particularly focusing on 
MSE and MAE. 

Despite the successes observed, it's essential to 
acknowledge the limitations inherent in this study, particularly 
the reliance on data collected from external sources rather than 
proprietary datasets specific to the office building under 
investigation. The occupancy value is binary, either 0 or 1, 
which means the prediction can only predict these two states. 
Secondly, the data size and variables may not be sufficient to 
provide highly accurate results. Lastly, in this study, there is no 
available measurement of the room space, which is imperative 
when studying the impact of IAQ against occupancy pattern. 

Future enhancements could involve obtaining proprietary 
datasets specific to the office building under investigation. This 
can provide more accurate and relevant data for analysis. Then, 
increase the dataset size by collecting more data over a longer 
period. Additionally, consideration could be made to add more 
variables that may impact indoor air quality and occupancy 
patterns. This study must consider using indirect methods to 
estimate occupancy, such as analyzing patterns of other 
variables that are correlated with occupancy, like motion 
sensors. Lastly, to calculate the volume of the space, typically 
need the dimensions of the room (length, width, and height). If 
there have access to the physical space, it can measure these 
dimensions directly. 
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