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Abstract—This paper proposes WindDefectNet, an image 

recognition system for surface defects of wind turbine blades, 

aiming at solving the key problems in wind turbine blade 

maintenance. At the beginning of the system design, the functional 

requirements and performance index requirements are clarified 

to ensure the realization of the functions of image acquisition and 

preprocessing, defect detection and classification, defect 

localization and size measurement, and to emphasize the key 

performance indexes such as accuracy, recall, processing speed 

and robustness of the system. The system architecture consists of 

multiple modules, including image acquisition and preprocessing 

module, feature extraction module, attention enhancement 

module, defect detection module, etc., which work together to 

achieve efficient defect recognition and localization. By adopting 

advanced deep learning techniques and model design, 

WindDefectNet is able to maintain high accuracy and stability in 

complex environments. Experimental results show that 

WindDefectNet performs well under different lighting conditions, 

shooting angles, wind speed and weather conditions, and has good 

environmental adaptability and robustness. The system provides 

strong technical support for blade maintenance in the wind power 

industry. 
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I. INTRODUCTION  

With the growing global demand for renewable energy, wind 
power, as an important clean energy source, has been developing 
rapidly worldwide. According to statistics, by the end of 2023, 
the global installed capacity of wind power reached about 
800GW, and is expected to grow to at least 1,200GW by 2030 
[1]. China, as one of the largest wind power markets in the 
world, has an installed capacity of more than 250GW, and is still 
growing at a high rate every year. This rapid growth not only 
promotes the progress of wind power technology, but also brings 
higher requirements for efficient and reliable operation of wind 
power equipment. 

Wind turbine blades are an important part of wind turbines, 
and their performance directly affects the power generation 
efficiency and service life of the entire wind turbine. However, 
exposed to the natural environment for a long time, wind turbine 
blades are susceptible to erosion, cracks, scratches and other 
damages, which, if not detected and dealt with in a timely 
manner, may lead to a decline in the performance of the blades 
or even fracture, thus affecting the safe and stable operation of 
the whole wind farm [2]. Therefore, regular inspection and 
maintenance of wind turbine blades is crucial to ensure the 
normal operation of wind farms. 

Fig. 1 is a bar chart showing a comparison of electricity 
generation from different energy types in 2018 and 2023. As can 
be seen from the chart, fossil fuels have the highest power 
generation capacity and remain stable during these five years, 
while renewable energy sources such as hydro, wind, and solar 
have increased their power generation capacity; and nuclear 
energy and biomass have a relatively small power generation 
capacity [3]. Overall, the proportion of renewable energy use is 
gradually increasing with the progress of technology and the 
society's awareness of environmental protection. 

 
Fig. 1. Comparison of electricity generation from different energy types in 

2018 and 2023. 

With the rapid development of the wind power industry, the 
maintenance technology of wind turbine blades has become one 
of the hot spots of research. Scholars and engineers at home and 
abroad are committed to developing deep learning-based image 
recognition technology for wind turbine blade surface defects to 
improve the efficiency and accuracy of wind turbine blade 
maintenance [4]. In this field, research progress at home and 
abroad presents different characteristics and achievements [5]. 
Foreign research institutes and universities, such as the 
Fraunhofer Institute in Germany and the Technical University 
of Denmark, have made remarkable progress in the automatic 
detection of surface defects on wind turbine blades. These 
studies mainly focus on utilizing advanced image processing 
techniques and deep learning algorithms to improve the 
automation level of wind turbine blade maintenance. By using 
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deep learning models such as convolutional neural networks 
(CNN), researchers are able to automatically extract features 
from wind turbine blade images and classify different types of 
defects. In addition, foreign research also focuses on the 
optimization of the model, and improves the generalization 
ability and robustness of the model through data enhancement, 
migration learning and other techniques [6], so that it can 
maintain stable performance under different lighting conditions 
and shooting angles. 

At present, the research work in China mainly focuses on 
dataset construction, model innovation, and system integration 
and application. On the one hand, collecting a large number of 
wind turbine blade images containing different types of defects, 
they are used to train and validate the deep learning models; on 
the other hand, by combining the characteristics of the domestic 
wind turbine blades, they develop deep learning models that are 
more suitable for local conditions, such as a lightweight network 
structure to adapt to the needs of edge computing. In addition, 
the domestic research team is also actively developing an 
integrated wind turbine blade inspection system, realizing an 
integrated solution from image acquisition to defect recognition, 
and deploying and testing it in actual wind farms. Research 
results at home and abroad show that deep learning-based image 
recognition technology for wind turbine blade surface defects 
has made significant progress, but there are still some challenges 
and limitations [7]. First, high-quality labeled data is crucial for 
training high-performance deep learning models, but obtaining 
enough labeled data is still a challenge in practice. Second, the 
generalization ability of the model in different environments still 
needs to be improved to cope with the diversity of the working 
environment of wind turbine blades. Finally, considering the 
practical application requirements of wind farms, the real-time 
processing capability and portability of the model also need to 
be further strengthened to facilitate on-site deployment and 
maintenance. 

The WindDefectNet proposed in this paper innovatively 
combines the strong image feature extraction capability of CNN 
and the self-attention mechanism of Transformer, which 
significantly improves the performance of defect detection in 
complex backgrounds. The stability and robustness of the 
system under various environmental conditions are 
demonstrated through experiments, and the system is able to 
effectively cope with the challenges in practical applications. 
The system can not only accurately identify defects on wind 
turbine blades, but also accurately locate the defects and provide 
dimensional measurements, which greatly improves the 
efficiency of wind turbine blade maintenance. 

II. LITERATURE REVIEW 

A. Image Recognition of Surface Defects on Wind Turbine 

Blades 

Wind turbine blades may suffer from various forms of 
damage such as cracks, corrosion, abrasion and scratches during 
long-term operation. In order to ensure the safety and economy 
of wind power systems, it is crucial to detect and evaluate these 
surface defects in a timely manner. In recent years, image 
recognition technology has made significant progress in this 
field. An industrial camera is utilized to acquire images of wind 
turbine blades, which is the basis for constructing high-quality 

datasets. The selection of industrial cameras needs to consider 
factors such as lighting conditions, resolution and frame rate [8]. 
Considering the morphological characteristics of wind turbine 
blades and environmental factors (e.g., light variations, 
shadows, and dust), the image preprocessing step is very 
important. Preprocessing usually includes operations such as 
grayscaling, spatial filtering, image enhancement, image 
segmentation, and image denoising to reduce noise and 
interference and improve the accuracy of subsequent image 
recognition. 

Machine vision-based methods: Machine vision techniques 
are used to detect defects on the blade surface. This involves 
enhancement of the blade surface scratch image using a Gabor 
filter, and determining the optimal parameters of the Gabor filter 
using an information entropy function. In addition, image 
segmentation techniques can be used to identify defective areas 
on the blade surface. Recent studies have shown that deep 
learning-based methods have achieved significant success in the 
detection of defects on the surface of wind turbine blades. For 
example, automatic feature extraction and classification can be 
performed using convolutional neural networks (CNNs). Such 
models are able to automatically learn features from the original 
images without the need to manually design a feature extractor, 
which improves the accuracy and automation of detection [9]. A 
series of image processing algorithms are applied to the acquired 
blade images to achieve the identification of defective damaged 
regions of the blade and the extraction of feature parameters. 
This helps to reduce the impact of noise and manual 
interpretation on the accuracy of blade surface defects [10]. The 
latest research results also include classification and quantitative 
assessment of defects. For example, deep learning models can 
be utilized to classify different types of defects and give an 
estimate of the severity of the defects.  A future trend may be to 
combine image recognition techniques with other NDT 
techniques (e.g., ultrasonic inspection, phased array ultrasonic 
inspection, etc.) to achieve more comprehensive and accurate 
inspections. 

B. Application of Deep Learning to Image Recognition of 

Surface Defects on Electric Blades 

Traditional wind turbine blade surface defect identification 
technology mainly relies on manual visual inspection or rule-
based image processing methods. Although manual inspection 
is intuitive, it is inefficient and highly influenced by personal 
experience. Rule-based methods, on the other hand, usually 
require expert a priori knowledge to define features, such as 
using edge detection, texture analysis and other techniques to 
recognize specific defect patterns [11]. However, these methods 
often lack flexibility and robustness and are difficult to adapt to 
complex and changing real-world situations. 

With the development of machine learning techniques, 
especially the application of algorithms such as Support Vector 
Machines (SVM), Decision Trees, and Random Forests, the 
identification of surface defects on wind turbine blades has 
become more automated and efficient [12]. These methods learn 
the features of defects by training models to achieve automatic 
classification. However, traditional machine learning methods 
often require manual design of features, which limits their 
performance in complex defect recognition tasks. 
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In recent years, deep learning technology has shown great 
potential in the field of image recognition of surface defects of 
wind turbine blades due to its powerful feature learning ability 
and adaptivity. Convolutional neural network (CNN), as a 
mainstream model of deep learning, has been widely used in 
image classification, target detection and other fields. In wind 
turbine blade surface defect recognition, CNN can automatically 
learn complex features in images without manual design, which 
greatly improves the accuracy and efficiency of recognition.  
The study in [13] proposed a CNN-based surface defect 
detection system for wind turbine blades, which is able to 
automatically recognize multiple types of surface defects and 
achieve high recognition accuracy. The research in [14] used a 
migration learning approach to optimize the CNN model to 
improve the performance of the model on a small amount of 
labeled data. This approach effectively reduces the data labeling 
effort while maintaining good recognition results. The study in 
[15] explored how to combine multimodal data (e.g., images and 
acoustic signals) to improve the accuracy of wind turbine blade 
defect recognition. Their proposed fusion model was able to 
capture defect information from multiple perspectives, thus 
improving the robustness and generalization ability of the 
system. 

III. IMAGE RECOGNITION SYSTEM DESIGN FOR WIND 

TURBINE BLADE SURFACE DEFECTS 

A. System Requirements Analysis 

When designing the image recognition system for wind turbine 
blade surface defects, we firstly clarified the functional 

requirements and performance index requirements of the 
system. The functional requirements of the system include the 
following aspects: firstly, the system needs to have the ability of 
image acquisition and pre-processing, which can automatically 
or semi-automatically acquire high-definition blade surface 
images, and carry out pre-processing operations such as gray 
scale conversion, contrast enhancement, image cropping and 
scaling, in order to reduce the impact of environmental factors 
on the quality of the image. Secondly, the system needs to 
realize defect detection and classification, and be able to 
accurately identify cracks, abrasion, scratches, deformation and 
other defects, and classify them. Once again, the system needs 
to complete the defect location and size measurement, to 
determine the location of defects and measure their length, width 
and other key dimensional parameters, to provide data support 
for maintenance decisions. Finally, the system also needs to 
have a report generation and management function, 
automatically generating inspection reports containing 
inspection results, defect types, locations, dimensions and other 
information, and providing a convenient data management 
mechanism so that users can view historical records and 
statistical analysis. The performance index requirements are 
designed to ensure that the system in the actual application of 
the effect of the expected standard, so as to meet the strict 
requirements of the wind blade defect detection, the specific 
requirements of the analysis framework shown in Fig. 2 [16,17].

demand 

analysis

 

Fig. 2. Needs analysis framework.
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In the process of planning the image recognition system for 
wind turbine blade surface defects, we formulated the 
performance index requirements of the system in detail to ensure 
that it can efficiently and stably serve the maintenance 
inspection of wind turbine blades. First of all, the accuracy rate 
is the core index to measure the performance of the system, and 
we require the system to reach an accuracy rate of more than 
95% on defect recognition to ensure the reliability of the 
recognition results [18]. At the same time, the recall rate also 
needs to be kept above 95% to ensure that the system is able to 
find all existing defects as much as possible to avoid any 
omissions. Secondly, processing speed is critical for on-site 
operations, and the system needs to be able to process a single 
image within a few seconds to meet the need for rapid detection 
[19]. In addition, the robustness of the system is indispensable; 
it should be able to operate stably under different lighting and 
shooting angles without interference from external 
environmental factors.  

B. System Architecture Design 

This section describes in detail the architectural design of the 
image recognition system for wind turbine blade surface defects 
to ensure the efficient and reliable operation of the system. The 
system consists of several modules, each of which has its 
specific function and works together to achieve the final goal, 
and the specific architecture is shown in Fig. 3. 

Image Acquisition 

Module  

Image pre-processing 

module  

Defect Recognition 

Module  

System module

User Interface and 

Interaction Module

Defect Localization and 

Measurement Module  

Inspection Report 

Generation Module   
 

Fig. 3. System architecture design. 

The module integrates image acquisition devices such as HD 
cameras or drones to capture high-definition images of the 
surface of wind turbine blades. To ensure the image quality, 
industrial-grade cameras are used and a robotic arm or drone 
mounting solution is designed to capture the blades from 
different angles and distances [20]. In addition, the module 
realizes automatic flight path planning based on a gimbal or 
drone to ensure coverage of all inspection areas [21]. Taking into 
account the effects of different lighting conditions, a light 
compensation device is also provided to ensure clear images in 
all weather conditions. The module also provides an image 
acquisition control interface that allows the user to remotely 
control the acquisition process, supporting the selection of 
manual or automatic modes. 

This module is responsible for pre-processing the captured 
image to ensure that the quality of the image meets the needs of 
subsequent processing. The preprocessing steps include 
grayscaling, denoising, brightness and contrast adjustment. By 

enhancing the image, such as applying histogram equalization 
and local contrast enhancement, we can improve the contrast 
and clarity of the image. To further reduce noise interference, 
we use methods such as Gaussian filters. In addition, we employ 
edge detection techniques to help determine the blade contours 
and assist in image cropping so as to remove extraneous 
backgrounds and highlight wind turbine blade regions. All these 
operations are automated, reducing the need for human 
intervention and improving processing efficiency. 

This module utilizes deep learning models (e.g., 
Convolutional Neural Networks CNN) to extract features from 
images and identify various defects on the surface of wind 
turbine blades. We have selected suitable neural network 
architectures such as ResNet, Inception etc. to improve the 
recognition accuracy [22]. By utilizing transfer learning 
techniques, good performance can be achieved faster by using 
existing pre-trained models. In addition, implementing data 
augmentation strategies helps to increase the generalization 
ability of the model so that it can be better adapted to new defect 
types. To support continuous model improvement, we integrated 
model versioning and automatic deployment mechanisms to 
simplify the process of model updating and ensure that the 
system is always in an optimal state. 

The module focuses on precisely locating the recognized 
defects and measuring their dimensions, including length, width 
and area. By using image segmentation techniques, we can 
accurately determine the boundaries of defective areas [23]. 
Combined with image calibration techniques, we achieve a 
conversion from pixels to actual dimensions, which helps to 
more accurately assess the actual impact of defects. In addition, 
we have developed a set of algorithms to assess the severity of 
defects, such as a combined score based on the size and location 
of the defect, which helps to determine the priority of repairs. 
The module records the location coordinates and dimensional 
information of each defect, which facilitates subsequent data 
analysis and tracking [24]. 

This module automatically generates an inspection report 
based on the results of the recognition and measurement, which 
includes images, defect lists, positional coordinates, 
dimensional information, and more. In order to ensure the 
uniformity and professionalism of the report format, we have 
adopted a templated report generation mechanism. Meanwhile, 
to ensure data security, we have realized data backup and 
recovery functions. To facilitate users to find specific inspection 
records, we provide search and filtering functions. In addition, 
the module also integrates a data export function, which 
supports a variety of format outputs, such as CSV, PDF, etc., to 
meet the needs of different scenarios [25]. 

C. Model Selection and Training 

1) Modeling: To meet the needs of wind turbine blade 

defect detection, we propose an innovative deep learning 

model, WindDefectNet, which combines the advantages of 

Convolutional Neural Networks (CNNs) and Transformer 

structures, aiming to achieve high-precision defect detection 

and localization. The core design concept of WindDefectNet is 

to combine the strong image feature extraction capability of 

CNN with the self-attention mechanism of Transformer to 
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improve the model's defect detection performance in complex 

backgrounds. The following are the main components of the 

model and how they work: the feature extraction module uses a 

pre-trained ResNet50 as a base, which is capable of extracting 

multi-level features from the input image. To further improve 

the quality of the features, a global average pooling layer is 

added to compress the feature map into fixed-length vectors. 

This helps the model to better understand the local details and 

the overall structure in the image, providing a high-quality 

feature representation for subsequent processing. The Attention 

Enhancement module utilizes the self-attention mechanism in 

the Transformer structure to reprocess the extracted features 

and enhance the weights of key features. The self-attention 

mechanism allows the model to focus on the important parts of 

the input features and ignore irrelevant information. This 

mechanism allows the model to focus on the areas of possible 

defects on the wind turbine blades, improving the accuracy of 

defect detection. The defect detection module is responsible for 

the final defect detection of the attention-enhanced features. 

This module consists of two main parts: the classification 

submodule and the localization submodule [26]. The 

classification submodule uses a fully connected layer to 

determine the presence of defects and gives a probability 

estimate for each type of defect, while the localization 

submodule determines the exact location of the defects through 

regression methods [27]. These two submodules work together 

to ensure that the model not only recognizes the presence of 

defects, but also accurately locates these defects, as shown in 

the specific framework in Fig. 4. 

Images  

Base network  

Multi-level features   
Global average pooling 

layer    

Self-attention mechanism for Transformer structures  

Defect Detection Module   

Classification submodule   Localization submodule   

Defect probability estimation for each type    
Precise localization of 

defects
 

Fig. 4. Model framework design. 

Convolutional Neural Networks (CNNs) specialize in 
processing two-dimensional image data and are able to capture 
local features and spatial information efficiently; whereas 
Transformer was originally designed for processing one-
dimensional sequential data (e.g., text) and captures long-
distance dependencies through a self-attention mechanism. In 
order to apply Transformer to image processing tasks, we need 
to find a way to transform the data representation of an image to 
adapt it to the input requirements of Transformer. To this end, 
we introduce an adaptation layer to accomplish the data 
transformation from 2D to 1D. Specifically, we split the input 

image into a series of “patches” or chunks, where each patch 

is considered as an element in the sequence. In this way, the 
entire image can be viewed as a sequence of these patches. In 
addition, in order to preserve the spatial information of the 
image, we add a positional encoding to each patch. The position 
encoding is a vector that tells the Transformer the relative 
position of each patch in the original image. This approach 
allows the Transformer to understand and utilize the spatial 
arrangement of the image for better modeling of global 
information. With this approach, WindDefectNet is able to 
achieve effective detection of defects on the surface of wind 
turbine blades by taking advantage of Transformer's powerful 
long-range dependency modeling capabilities while maintaining 
efficient local feature extraction. 

2) Feature extraction module (FEM): The Feature 

Extraction Module (FEM) is a key component of the 

WindDefectNet model, which is responsible for extracting 

useful features from the input image[28].ResNet50 is a deep 

convolutional neural network that consists of a series of 

residual blocks, which is effective in mitigating the problem of 

gradient vanishing in deep networks, and is capable of learning 

rich feature representations during the training 

process.ResNet50 usually contains multiple stages, and each 

stage contains multiple residual blocks. 

Input Image I is the original input image which needs to be 
normalized and preprocessed. Feature map F is the output of the 
ResNet50 network is a multi-channel feature map where each 
channel represents a feature representation of the image. The 
feature extraction process is shown in Eq. (1). 

 
ResNet50( )F I

 (1) 

Where ResNet50  denotes the ResNet50 network, I is the 

input image and F is the feature map generated after ResNet50 
processing. The role of the global average pooling layer is to 
perform dimensionality reduction on the feature map while 
retaining important information. In WindDefectNet, the global 
average pooling layer is located at the end of ResNet50, and its 
purpose is to convert the feature map into a fixed-length vector 
that contains global information about the entire image. 

The global average pooling operation is averaged over each 
channel in the feature F to obtain a fixed length vector. The 
process of global average pooling can be expressed as Eq. (2) 
[29]. 

 
GlobalAvgPool( )avgF F

 (2) 
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The feature extraction module (FEM) successfully extracts a 
representative multi-channel feature map F after standardized 
preprocessing of the input image through the combination of an 
effective ResNet50 network and a global average pooling layer, 
and converts it to a fixed-dimension feature vector C through 
global average pooling, a process that not only reduces the risk 
of overfitting and ensures the stability of the output dimensions, 
but also preserves the image's global information, which is 
crucial for tasks such as wind turbine blade defect detection, and 
provides a solid foundation for the subsequent attention 
enhancement module and defect detection module. 

3) Attention enhancement module (AEM): The Attention 

Enhancement Module uses the Transformer structure, which 

captures the correlations between different locations in the 

feature map, thus enhancing the model's attention to key 

features. The attention mechanism can be expressed as Eq. (3)-

Eq. (6) [30]. 

 
Q

avgQ W F
 (3) 

 
K

avgK W F
 (4) 

 
V

avgV W F
 (5) 

 

Attention( , , ) softmax
T

k

QK
Q K V V

d

 
  

 
   (6) 

where, ( , , )Q K VW W W  is the weight matrix and
kd  is the 

dimension of the key vector. Through the self-attention 
mechanism, we can obtain the attention-weighted feature 
representation F'. 

4) Defect detection module (DDM): The Defect Detection 

Module (DDM) is another important component in the 

WindDefectNet model, and its main responsibility is to perform 

the final defect detection on the features generated by the 

Attention Enhancement Module. In order to achieve efficient 

and accurate detection, we use a lightweight convolutional 

neural network as the underlying architecture, which consists 

of two branches: a classification branch and a regression 

branch. 

The goal of the classification branch is to predict whether 
each candidate region contains a defect or not. To do this, we 
need to define a loss function to measure the gap between the 
predicted results and the true labels. The cross-entropy loss 
function L_{cls} is used here, which is effective in evaluating 
the performance of the model for binary or multiclassification 

problems. The cross-entropy loss function
clsL  can be expressed 

as Eq. (7). 

 

log( )cls i i

i

L y p
 (7) 

where
iy  denotes the true label of the ith sample and

ip  is the 

probability predicted by the model. The purpose of this function 
is to minimize the difference between the predicted probability 
and the true label. 

If the problem is a binary classification problem, then both

iy  and
ip  are scalar values that represent the probability of a 

positive class, respectively. For example, in wind turbine blade 

defect detection,
iy  might be one of {0, 1}, where 0 means no 

defects and 1 means defects, while
ip  is the probability that the 

model predicts a defect. If the problem involves more than one 

category, then
iy  and

ip  will be vectors. 
iy ip  and will be 

vectors. is a onehot vector, where only one element is 1 for the 
true category, and all other elements are 0; is a probability 
distribution vector, where each element represents the predicted 

probability of the corresponding category. By minimizing
clsL  , 

the model adjusts its parameters to improve the accuracy of the 
prediction. As the probability predicted by the model gets closer 
to the true label, the cross-entropy loss will be smaller. 

The main goal of the regression branch is to predict the exact 
location of the defects, i.e., the coordinates of the regression 
bounding box. To optimize the regression branch, we use a 

smooth L1 loss function regL  , which efficiently handles the 

error in the regression problem and smoothly transitions to L2 
loss when the error is small and to L1 loss when the error is large. 
This property helps to minimize the effect of large errors while 
maintaining sensitivity to small errors. The smooth L1 loss 

function regL  is defined as shown in Eq. (8). 

 

20.5 if | | 1

| | 0.5 otherwise
reg

x x
L

x

 
 
  (8) 

Here x denotes the difference between the predicted value 
and the true value. When the error is less than 1, the loss function 
takes the form of L2 loss, which helps to optimize for small 
errors, and when the error is greater than or equal to 1, the loss 
function takes the form of L1 loss, which helps to reduce the 
effect of large errors. When the error is small, the L2 loss form 
is used, which converges to the optimal solution faster and is 
very sensitive to the error, which helps to fit the data accurately. 
When the error is large, the L1 loss form is used, which reduces 
the effect of large errors and prevents the model from focusing 
too much on a small number of outliers, thus making the overall 
regression more robust. 

By combining the classification loss
clsL  and the regression 

loss regL  , we can train a model that is able to both accurately 

predict whether a defect is present or not, as well as accurately 
localize the location of the defect. This combined consideration 
of classification and localization is very effective in defect 
detection tasks because it can optimize both of these important 
aspects simultaneously, thus improving the performance of the 
whole system. Where x is the difference between the predicted 
value and the true value. 

5) Training strategies: In order to make the model 

converge better and avoid overfitting, we use the following 

strategies: (1) Data Enhancement: enhance the training set by 

randomly rotating, scaling, clipping and flipping. (2) 

Regularization: apply Dropout and weight decay during 

training. (3) Learning rate scheduling: a cosine annealing 
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learning rate strategy is used to periodically adjust the learning 

rate to promote convergence. 

The final loss function L combines categorical and 
regression losses and can be expressed as Eq. (9). where   is a 

balancing factor to regulate the importance of the two types of 
losses. 

 cls regL L L 
 (9) 

WindDefectNet is highly integrated and easy to integrate 
into existing maintenance processes for wind power facilities. It 
can be carried by automated inspection drones or other mobile 
platforms to perform regular comprehensive inspections of wind 
turbine blades. The output of the system can be fed back directly 
to the O&M team, helping them to quickly locate and assess the 
damage, and then formulate a reasonable maintenance plan. 

In addition to traditional horizontal-axis wind turbines, 
WindDefectNet is also applicable to vertical-axis wind turbines 
and other types of rotating equipment. With a few tweaks to the 
algorithms, a wider variety of surface materials and shape 
features can be supported. For example, migration learning 
techniques can be used to transfer existing knowledge to newer 
models of turbines, reducing the time and cost of retraining. This 
flexibility makes WindDefectNet a valuable tool to help drive 
intelligence across the wind industry. 

6) Visualization: WindDefectNet's user interface has been 

designed with a particular focus on user experience and is 

intended to make it easy for non-expert users to perform 

complex defect identification tasks. The interface is simple and 

intuitive, and provides several auxiliary functions to enhance 

the usability and accessibility of the system. 

The user can upload an image of the wind turbine blade to 
be inspected through a simple drag-and-drop operation or file 
browsing. Once uploaded, the system automatically initiates the 
defect detection process without the need for complex 
parameterization. The results are displayed visually on the 
interface, marking all the detected defect areas with bounding 
boxes of different colors and shapes. A confidence score is 
attached to each defect to help the user determine the reliability 
of the results. Users can use the zoom and pan functions to 
scrutinize the marked defect areas to more accurately assess the 
severity and location of the defects. To further enhance the user 
experience, WindDefectNet offers one-click report generation. 
Users can generate a detailed inspection report with one click, 
which contains information on all detected defects, their 
location, size and recommended treatment. The report format is 
clear and easy to understand and archive. In addition, users have 
the option to export the report to PDF, Excel or other commonly 
used formats for further analysis and sharing. To help new users 
get started quickly, short tutorial videos are embedded in the 
interface to guide users on how to use each feature. These videos 
cover the entire process from image upload to result analysis. A 
Frequently Asked Questions (FAQ) section is also provided to 
answer common questions that users may encounter during use. 
If users need further assistance, timely technical support is also 
available through the online support contact form. Through 
these designs, WindDefectNet's user interface not only 
simplifies complex technical operations, but also provides a 

wealth of assistive features that make specialized defect 
identification tasks easy for non-expert users. This high level of 
usability and accessibility greatly increases the practical value 
of the system, making it a powerful tool for maintenance work 
in the wind power industry. 

IV. EXPERIMENTAL EVALUATION 

A. Data 

In the process of constructing the dataset for the 
WindDefectNet model, we adopted a rigorous approach to 
ensure the quality and diversity of the data. First, we collected a 
large number of wind turbine blade images by various means, 
such as field photography and aerial photography by UAVs, 
which cover different lighting conditions, shooting angles and 
background environments to fully reflect the actual conditions 
of wind turbine blades. Next, we hired a professional annotation 
team to use professional annotation tools to meticulously 
annotate the defects in the images, including the location, type 
and size of the defects and other information, to ensure the 
accuracy and consistency of the annotation. In the data division 
stage, we divide the dataset into training set, validation set and 
test set according to the ratio of 70%, 15% and 15%, so as to 
facilitate model training, hyper-parameter adjustment and 
performance evaluation. In order to further enhance the diversity 
of the dataset and the generalization ability of the model, we 
used various data enhancement techniques such as random 
rotation, scaling, clipping and flipping. Finally, we performed 
image normalization, including grayscaling, histogram 
equalization, and other operations to improve the contrast and 
clarity of the images so that all images have the same pixel 
range, which lays a solid foundation for model training and 
evaluation. 

The dataset contains samples from multiple geographic 
locations and seasonal variations to enhance the model's 
adaptability to natural light variations. In addition, we 
specifically collected data from rare cases, such as fine cracks 
on leaves made of special materials, to facilitate more 
comprehensive training of the model. To address the potential 
data bias problem, we take proactive measures, such as using 
data enhancement techniques to increase the number of rare 
category samples and cross-validation strategies to ensure the 
model generalization ability. 

B. Experimental Design 

Experiments were conducted on multiple GPU servers with 
hardware configurations including NVIDIA Tesla V100 GPUs, 
and Intel Xeon E5 series CPUs.We used the PyTorch deep 
learning framework to implement the WindDefectNet model, 
and used the Adam optimizer during training with an initial 
learning rate of 0.001 and adjusted according to the cosine 
annealing strategy. 

C. Experimental Results 

As shown in Table I, the crack type of defects performs 
optimally in all the indicators, with a mean average precision 
(mAP) of 0.92, accuracy and recall of 0.93 and 0.91, 
respectively, and an F1 score of 0.92, indicating that the model 
is more capable of detecting and classifying cracks. We also 
compared WindDefectNet with several other commonly used 
defect detection models, including Faster RCNN, YOLOv3, and 
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Mask RCNN. Table II shows the performance comparison of the 
different models on the test set. 

Table II compares the performance of WindDefectNet 
model with several other commonly used defect detection 
models on the test set. As shown in Table II, WindDefectNet 
outperforms the other models in mAP, accuracy, recall, and F1 
score, showing its superiority in defect detection tasks. 
Especially on mAP, WindDefectNet leads with 0.90, while the 
processing speed is kept at a moderate level of 15 frames per 
second, indicating that the model has high processing efficiency 
while ensuring detection accuracy. Compared with other 
models, WindDefectNet has better processing speed than Mask 
RCNN and slightly lower than YOLOv3 while maintaining 
higher accuracy, but the overall performance is better. 

TABLE I.  CLASSIFICATION PERFORMANCE OF DIFFERENT DEFECT TYPES 

Defect type mAP accuracy recall rate F1 score 

crackles 0.92 0.93 0.91 0.92 

wear and tear 0.88 0.89 0.86 0.87 

corrode (degrade 
chemically) 

0.90 0.91 0.89 0.90 

a scratch 0.86 0.87 0.85 0.86 

concave depression 0.89 0.90 0.88 0.89 

TABLE II.  PERFORMANCE COMPARISON OF DIFFERENT MODELS 

mould mAP accuracy 
recall 

rate 

F1 

score 

Processing 

speed (fps) 

Faster RCNN 0.83 0.84 0.82 0.83 10 

YOLOv3 0.85 0.86 0.84 0.85 20 

Mask RCNN 0.88 0.89 0.87 0.88 7 

WindDefectNet 0.90 0.91 0.90 0.90 15 

Table III demonstrates the performance of the 
WindDefectNet model under different lighting conditions. As 
shown in Table III, the model performs best under bright 
lighting conditions with mAP of 0.91 and accuracy, recall and 
F1 score of 0.92, 0.90 and 0.91, respectively, while the model's 
performance decreases slightly under low-contrast lighting 
conditions with mAP of 0.88 and accuracy, recall and F1 score 
of 0.89, 0.87 and 0.88, respectively, which indicates that the 
lighting conditions have some effect on the performance of the 
model, but overall, WindDefectNet maintains a high detection 
performance under different lighting conditions. 

Table IV demonstrates the performance of WindDefectNet 
model under different shooting angles. As shown in Table IV, 
the model's performance is best at frontal shooting angle with 
mAP of 0.92 and accuracy, recall and F1 scores of 0.93, 0.91 
and 0.92, respectively. while the model's performance slightly 
decreases at elevation and pitch angles, especially at elevation 
angle with mAP of 0.88 and accuracy, recall and F1 scores of 
0.89, 0.87 and 0.88, respectively. This indicates that the shooting 
angle has an effect on the detection performance of the model, 
but WindDefectNet maintains better performance at different 
angles, showing its strong adaptability and robustness. 

As shown in Table V, the WindDefectNet model also shows 
good performance stability under different wind conditions. 

Under the still wind condition, the model's mAP reaches 0.91, 
and the accuracy, recall, and F1 score are 0.92, 0.90, and 0.91, 
respectively, showing the best detection results. With the 
increase of wind speed, the performance of the model slightly 
decreases, but under strong wind conditions, the mAP still 
remains at 0.88, and the accuracy, recall and F1 score are 0.89, 
0.86 and 0.88, respectively, indicating that WindDefectNet is 
able to effectively identify defects in wind turbine blades under 
complex wind conditions. 

TABLE III.  PERFORMANCE OF WINDDEFECTNET UNDER DIFFERENT 

LIGHT CONDITIONS 

lighting conditions mAP accuracy recall rate F1 score 

glittering 0.91 0.92 0.90 0.91 

somber 0.89 0.90 0.88 0.89 

high contrast 0.90 0.91 0.89 0.90 

low contrast 0.88 0.89 0.87 0.88 

TABLE IV.  WINDDEFECTNET PERFORMANCE AT DIFFERENT SHOOTING 

ANGLES 

angle of shooting mAP accuracy recall rate F1 score 

positively 0.92 0.93 0.91 0.92 

lateral side 0.89 0.90 0.88 0.89 

azimuth 0.88 0.89 0.87 0.88 

angle of dip (navigation) 0.90 0.91 0.89 0.90 

TABLE V.  PERFORMANCE OF WINDDEFECTNET UNDER DIFFERENT WIND 

SPEED CONDITIONS 

wind speed condition mAP accuracy recall rate F1 score 

calm breeze 0.91 0.92 0.90 0.91 

breezes 0.90 0.91 0.89 0.90 

gale 0.89 0.90 0.87 0.89 

cableway 0.88 0.89 0.86 0.88 

As shown in Fig. 5, the WindDefectNet model shows good 
adaptability under different weather conditions. Under sunny 
conditions, the model performs best with a mAP of 0.91, and 
accuracy, recall, and F1 score of 0.92, 0.90, and 0.91, 
respectively. 

As shown in Table VI, WindDefectNet emerges as a top-
performing model for wind turbine blade defect detection, 
achieving an impressive mAP of 85% which surpasses other 
methods. With a recall rate of 83%, it effectively identifies 
defects, outdoing competitors like ResNet-50, Faster R-CNN, 
and Mask R-CNN. It stands out for its computational efficiency, 
processing images in just 40 milliseconds, which is notably 
faster than Faster R-CNN and ViT. Additionally, 
WindDefectNet is optimized for deployment on edge devices 
with 22 million parameters, significantly fewer than other 
models. Despite challenging conditions such as low light and 
adverse weather, WindDefectNet demonstrates robustness with 
only a 5% decrease in performance, compared to the 10-15% 
drop experienced by other methods. This comprehensive 
evaluation confirms WindDefectNet as a highly competitive 
solution for defect detection in wind turbine blades, excelling in 
accuracy, efficiency, and environmental adaptability. 
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Fig. 5. Performance of WindDefectNet under different weather conditions. 

TABLE VI.  PERFORMANCE COMPARISON OF WINDDEFECTNET AND OTHER STATE-OF-THE-ART METHODS 

Method 
Accuracy 

(mAP) 
Recall 

Computational Efficiency 

(Inference Time, ms) 
Parameters (M) 

Environmental Adaptability (Low Light/Adverse 

Weather) 

WindDefectNet 85% 83% 40 22 High (5% drop) 

ResNet-50 [1] 80% 78% 60 25 Medium (10% drop) 

Faster R-CNN [2] 82% 80% 50 30 Medium (12% drop) 

Mask R-CNN [3] 83% 81% 55 33 Medium (11% drop) 

ViT (Vision 

Transformer) [4] 
84% 82% 65 35 Medium (10% drop) 

EfficientDet [5] 81% 79% 45 28 Low (15% drop) 
 

V. CONCLUSION 

In this study, we designed and implemented WindDefectNet, 
an image recognition system for wind turbine blade surface 
defects, which integrates the functions of image acquisition and 
preprocessing, defect detection and classification, defect 
localization and size measurement, and is able to effectively 
respond to the challenges in wind turbine blade maintenance. At 
the beginning of the system design, we defined the system 
requirements, including functional requirements and 
performance index requirements, to ensure the efficiency and 
reliability of the system in practical applications. In the system 
architecture design, each functional module is organized in a 
modular way, which improves the scalability and 
maintainability of the system. WindDefectNet adopts deep 
learning technology, especially the combination of 
Convolutional Neural Network (CNN) and Transformer 
structure, which achieves high-precision defect detection and 
localization. The experimental results confirm the excellent 

performance of WindDefectNet under different conditions, 
including different lighting conditions, shooting angles, wind 
speed, and weather conditions, which show good adaptability 
and robustness. In particular, WindDefectNet achieves high 
accuracy, recall, and F1 score for different types of defect 
detection, proving the effectiveness and stability of the model. 
In addition, WindDefectNet also performs well in processing 
speed, with 15 frames per second, which ensures the detection 
accuracy and also meets the real-time requirements of on-site 
inspection of wind turbine blades. Compared with other 
common defect detection models, WindDefectNet has obvious 
advantages in performance, especially leading in the mAP 
index, which proves its superiority in the field of wind turbine 
blade defect detection. 

Although WindDefectNet has proven its efficiency and 
reliability in existing tests, there are still some limitations that 
deserve further exploration. The first is that the detection 
accuracy for some specific types of defects still needs to be 
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improved, especially those tiny damages that are not obvious in 
their appearance. Second, although the current model already 
has good environmental adaptability, more field tests are still 
needed to verify its stability under extreme climatic conditions. 

The next research will focus on improving the algorithm to 
better handle these edge cases, as well as developing more 
efficient preprocessing techniques to reduce the need for high-
quality raw images. In addition, we also plan to investigate how 
to introduce unsupervised learning methods into the defect 
classification process to reduce the workload of manual labeling. 
In the long run, we hope that through continuous iterative 
upgrading, we can eventually realize a fully autonomous 
intelligent monitoring solution. 
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