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Abstract—In a computational complexity theory, P, NP, NP-
complete and NP-hard problems are divided into complexity
classes which are used to emphasize how challenging it is to solve
particular types of problems. The Knapsack problem is a well-
known computational complexity theory and fundamental NP-
hard optimization problem that has applications in a variety of
disciplines. Being one of the most well-known NP-hard problems,
it has been studied extensively in science and practice from
theoretical and practical perspectives. One of the solution to the
Knapsack problem is the Dantzig’s greedy algorithm which can
be expressed as a linear programming algorithm which seeks
to discover the optimal solution to the knapsack problem. In
this paper, an optimized Dantzig greedy (OptDG) algorithm that
addresses frequent edge cases, is suggested. Furthermore, OptDG
algorithm is compared with the Dantzig’s greedy and optimal
dynamically programmed algorithms for solving the Knapsack
problem and performance evaluation is conducted.
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I. INTRODUCTION

In computational complexity theory P, NP, NP-complete
and NP-hard terminology is used to denote how difficult it is
to find solutions to a specific type of problem. To begin, it
has to be determined whether the problems are P, NP, NP-
complete, or NP-hard. A problem is P if it can be resolved in
polynomial time [1]. If the suggested solution can be checked
in polynomial time, the problem is NP [2]. A problem is
NP-complete if it is in NP, and all other NP problems can be
reduced to it in polynomial time [1]. This implies that if a
solution is discovered for an NP-complete problem, it can be
applied to all other NP problems. A problem is NP-hard if it
is at least as difficult as the most difficult NP problems. This
implies that if a solution is discovered for an NP-hard problem,
it can be applied to all NP-complete problems [3]. The
Knapsack problem is a well-known computational complexity
theory and fundamental NP-hard optimization problem that has
applications in a variety of disciplines, including operations
research, cryptography, and combinatorial optimization. If a
collection of items is given, each of which has a weight and a
profit, and a knapsack that can only carry a certain quantity of
weight, the Knapsack problem is present. The objective is to
determine which subset of items can enhance the total profit
of the knapsack without exceeding its carrying capacity. The
0-1 Knapsack is a variant of the Knapsack problem in which a
knapsack with a specific capacity c and n items with weights
t1, t2, ..., tn and profits p1, p2, ..., pn is given. The main goal
is to find the item combination that maximizes the total profit
of the knapsack while adhering to the weight limit, with the

additional constraint that each item can only be turned on or
off once, i.e., each item can only be used once. The theory
can be formulated and Integer Linear Program (ILP) shown
below:

maximize

n∑
i=1

pixi (1a)

subject to

n∑
i=1

tixi ≤ c (1b)

xi ∈ {0, 1} ,∀i ∈ {1, 2, 3, ..., n} (1c)

The n binary variables x1, x2, ..., xn are decision vari-
ables that determine whether or not an item is placed in
the knapsack. As part of the input, the problem parameters
c, n, t1, t2, ..., tn and p1, p2, ..., pn are given. The 0-1 knapsack
problem is NP-hard, indicating that exact solutions to problems
with enormous inputs may be intractable. To tackle the NP-
hard knapsack problem, several algorithms, including dynamic
programming, branch and bound, and genetic algorithms, have
been proposed. However, these algorithms only perform well
with smaller quantities, i.e., in particular types of problems. As
the numbers increase, it becomes nearly impossible to solve
the problem.

The 0-1 Knapsack problem is a major optimization problem
strongly related to a number of other major optimization
problems. For example, by solving an equivalent 0-1 Knapsack
problem instance, instances of the binary integer programming,
and the bounded and unbounded knapsack problems can be
solved. Furthermore, the 0-1 Knapsack problem arrises as a
column generation subproblem of the cutting stock problem
and is a particular instance of a variety of problems such as
the knapsack problem with conflicts [4], [5], the traveling thief
problem [6] and the multidimensional knapsack problem [7].

II. RELATED WORK

The Knapsack problem is among the most actively re-
searched topics in combinatorial optimization. In recent years,
a vast number of the Knapsack problem variants have been ad-
dressed. The 0-1 Knapsack is the most well-known Knapsack
problem, and it has been intensively studied for decades. These
studies have yielded an abundance of theoretical, practical,
and algorithmic findings that have, to some extent, saturated
this particular field [8]. According to research conducted by
study [9], the Knapsack problem is listed as one of the most
popular algorithmic problems, as well as the and the second
most popular problem in the NP-hard category. In this section,
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a brief summary of the literature regarding the 0-1 Knapsack
problem is presented.

The most effective algorithms for solving the 0-1 Knapsack
problem employ branch-and-bound, dynamic programming, or
hybrid approaches that combine the both. Over time, a se-
quence of advancements resulted in the creation of MT1 [10],
MT2 [11], Expknap [12], Minknap [13], and Combo [14]
algorithms. The Combo algorithm is the most significant
algorithm among several others. Despite being published over
twenty years ago, it remains the best-known and most effective
algorithm. It can solve the majority of problem instances within
a few seconds. Although it shares similarities with the Minknap
algorithm, Combo introduces new techniques when faced with
a large number of dynamic programming states. The Combo
algorithm uses a number of interesting methods, one of which
is adding valid inequalities (cardinality constraints) to the
formulation of integer programming, which are then relaxed
to make more accurate dual bounds [15]. Previous research
[12], [14], [16], [17] consistently demonstrates that Combo
is typically the fastest algorithm among the five algorithms
studied. In this paper, an empirical hardness model, using
Combo’s running time as an indicator of problem instance
difficulty, is adopted. Given Combo’s ability to efficiently
solve most large problem instances within seconds and the
(weak) NP-hardness of the Knapsack problem, researchers
have expressed interest in identifying more challenging in-
stances. While it is generally believed that such hard instances
exist, the process of discovering them and understanding the
key features contributing to their difficulty remains unclear.
Research on instances of the 0-1 Knapsack problem often fo-
cuses on instances with considerably large coefficients, such as
those exhibiting exponential growth relative to the number of
items (n). Evaluating the practical difficulty of these instances
does not involve using existing algorithm implementations like
Combo, as most implementations support only 32-bit or 64-bit
integers. Instead, these instances are examined against hypo-
thetical sets of algorithms, considering different assumptions
about the strength of the bounds employed by these algo-
rithms. Noteworthy papers in this category include [18], [19],
and [20], which describe challenging problem instances with
large coefficients designed for various hypothetical algorithms.
[21] and [22] introduced new branching strategies for Branch-
and-Bound (B&B) methods. The analysis of how item profits
or weights respond to perturbations was explored by [23],
[24] and [25]. [26] focused on a specific sensitivity analysis
called tolerance analysis, which can be performed in amor-
tized time O(c log n) for each item. Recent advancements
in enhancing existing Fully Polynomial Time Approximation
Schemes (FPTAS) were made by [27] and [28]. A sensitivity
study of greedy heuristics was provided by [29] for the 0-1
knapsack problem and the subset sum problem. [30] addresses
the discounted 0-1 knapsack problem (DKP), an extension
of the classical knapsack problem where items are grouped
into threes, and only one can be picked from each group.
They suggest preprocessing and reducing the problem size
before using dynamic programming using exact and heuristic
fixation methods. These strategies greatly reduce DKP instance
solution time, and the authors provide a new collection of more
difficult instances for further evaluation.

III. METHODS TO SOLVE 0-1 KNAPSACK PROBLEM

Dynamic programming is a potent methodology and opti-
mization technique in mathematics and computer programming
that allows problems to be broken down into smaller sub-
problems and their solutions to be saved to prevent redundant
computations [31]. Dynamic programming yields accurate
results for locating optimal solutions, but its computational
complexity frequently renders it impractical, necessitating the
use of heuristics as an alternative method. In experiments
conducted in this research, adapted [32] and Dantzig’s greedy
algorithm, are used.

A. Dantzig’s Greedy Algorithm

The Dantzig’s greedy algorithm can be used to solve the
0-1 Knapsack problem. The simplex method is a method for
resolving linear programming issues, and the Dantzig’s greedy
algorithm is a particular kind of linear programming algorithm
based on it. The algorithm, which can be expressed as a linear
program, seeks to discover the optimal solution to the knapsack
problem. The fundamental idea behind Dantzig’s method is to
build a table with columns that indicate the weight capacity
of the knapsack and rows that represent items. The profit of
each cell in the table represents the maximum profit that can be
obtained for a specific weight capacity using the items utilized
up until that point. The table is filled from bottom to top. The
initial step of the technique is to add the profit of the first item
to the table’s first row. The algorithm chooses the maximum
profit for each cell based on a comparison between the weight
capacity profits of the knapsack with the current item and the
knapsack without it for each subsequent row. The maximum
possible profit for the specified weight restriction and item
count is the last number in the last row of the table. Using
a straightforward dynamic programming technique, Dantzig’s
greedy algorithm can be implemented with a time complexity
of O(nC), where n is the number of items, and C is the
maximum weight the knapsack can carry. Due to the need
to store a table with n rows and C columns, the technique
has an O(nC) time complexity. Due to its assumption that
each item can only be used once, Dantzig’s approach can only
be used to solve the 0-1 Knapsack problem. As a result, the
unbounded knapsack problem cannot be resolved using it [33].
Algorithm 1 displays Dantzig’s greedy algorithm.

B. OptDG Algorithm

According to Danzig’s heuristic approach, it has been
assumed that items from largest to smallest are placed in a
knapsack, based on the pi

ti
(profit-over-weight) ratio. The main

challenge is to increase the total profit of placing items into the
knapsack in this manner by replacing a specific item or more
items, if possible. The following theorem is demonstrated: if
an item with profit pi and weight ti is removed and then one
or more items are inserted to the right of the removed item
in the sorted sequence, a higher weight than the deleted item
should be chosen in order to to attain a higher profit. In other
words, if an item is removed and replaced with another item
to its right while maintaining or decreasing the total weight
in the knapsack, the overall worth will either remain the same
or it will drop. This theorem will be useful in two situations:
first while looking for a better profit, it will be obvious that
either one of the previously skipped items must be included
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Algorithm 1 Dantzig’s greedy algorithm for solving 0-1
Knapsack problem

Require: A set of items items, and a knapsack capacity
capacity

Ensure: A knapsack that is packed to its full carrying capacity
with items that have the greatest possible profit

function SOLVEKNAPSACKGREEDY(items, capacity)
Sort items by item p/t in decreasing order
knapsack items← []
total p← 0
total w ← 0

for each item in items do
if total w + item weight ≤ capacity then

total p← totalp + item val
total w ← totalw + item weight
Add item to knapsack items

end if
end for

return knapsack items, total p, total w
end function

(i.e., the item to the left of the deleted item in the sorted list)
or items with a weight greater than the weight of the removed
item. Furthermore, when developing algorithms to find the
optimal profit or searching for a heuristic that provides a better
profit than a pre-determined one when the knapsack is full,
replacements involving items with lower profit-to-weight ratios
and of equal or lower total weight should not be considered.
In other words, there is no need to investigate these item
replacement possibilities.

Theorem 1: If α, β, γ, andδ are all greater than zero, and
if α

β ≥
γ
δ , then the following holds: α

β ≥
α+γ
β+δ ≥

γ
δ .

Proof:

Given equation α
β ≥

γ
δ gives:

α

β
=

α
β · (1 +

δ
β )

1 + δ
β

=

α
β + αδ

β2

1 + δ
β

=

(
α
δ + α

β

)
· δβ(

β
δ + 1

)
· δβ

=

α
δ + α

β

β
δ + 1

≥
α
δ + γ

δ
β
δ + 1

=
α+γ
δ

β+δ
δ

=
α+ γ

β + δ
,

α+ γ

β + δ
=

α+γ
β

β+δ
β

=

α
β + γ

β

1 + δ
β

≥
γ
δ + γ

β

1 + δ
β

=

(
γ
δ + γ

β

)
· βδ(

1 + δ
β

)
· βδ

=

γβ
δ2 + γ

δ
β
δ + 1

=

γ
δ ·

(
β
δ + 1

)
β
δ + 1

=
γ

δ
.

Theorem 2: If in the Danzig sequence, the term p
t is to

the left of the terms p1

t1
, p2

t2
, ..., pn

tn
, that is, p

t ≥
pi

ti
for every

i = 1, 2, ..., n, and if t = t1+t2+...+tn (the weight of the item

inserted in the knapsack is equal to the weight of those that will
be inserted instead), then it follows that v ≥ p1+p2+ ...+pn.
That is, the profit of the item initially placed in the knapsack
and then removed is greater than the total profit of the items
that will be placed in its place.

Proof: If instead of an item with profit p and weight t,
we insert an item to its right in the sequence of items sorted
in descending order by the profit-to-weight ratio, that is, if we
insert an item with ratio p1

t1
where p

t ≥
p1

t1
, then it is evident

that if the denominators are equal, p ≥ p1. That is, p
t ≥

p1

t1
, and

t = t1 implies p ≥ p1. Hence p
t ≥

p1

t1
and t = t1 implicates

p ≥ p1.

Assume that instead of an item with profit p and weight
t, n items are inserted to its right in the sequence of items
sorted in descending order by the profit-to-weight ratio, i.e.,
items with ratios p1

t1
, p2

t2
, · · · , pn

tn
, and t = t1 + t2 + · · · + tn

are inserted, which implies:

p

t
≥ p1

t1
,
p

t
≥ p2

t2
, · · · , p

t
≥ pn

tn

Without loss of generality, it can be assumed that the ratios
pi

ti
are sorted in descending order. Due to lemma 1 (all weights

and profits are positive), it holds that:

p1
t1
≥ (p1 + p2)

(t1 + t2)
≥ p2

t2
≥ p3

t3
p1
t1
≥ p1 + p2 + p3

t1 + t2 + t3
≥ p3

t3
≥ p4

t4
· · ·

p

t
≥ p1

t1
≥ p1 + p2 + · · ·+ pn

t1 + t2 + · · ·+ tn
≥ pn

tn
that is,

p

t
≥ p1 + p2 + · · ·+ pn

t1 + t2 + · · ·+ tn
and t = t1 + t2 + · · ·+ tn

which implies that Eq. 4, is true, as claimed.

p ≥ p1 + p2 + · · ·+ pn (4)

In particular, it follows that when replacing an item of
weight t and profit p with a set of items that have a total
weight smaller than the removed item (t > t1+ t2+ · · ·+ tn),
and satisfy the condition that the ratio p

t ≥
pi

ti
for every

i = 1, 2, ..., n, then it also holds that p ≥ p1 + p2 + · · ·+ pn.
By employing the Dantzig’s greedy algorithm to fill the
knapsack initially and subsequently attempting to improve the
situation by replacing one item with others, an item that is
heavier than the one being removed or an item that was
previously overlooked or skipped during the initial filling, has
to be selected. Specifically, if the knapsack has been filled to
its maximum capacity C using the Danzig method, it ensures
the optimal selection of items. To enhance the results further,
OptDG algorithm is proposed. The algorithm removes the
heaviest item from the knapsack and adds other items until
equation 5 is met.

i=1∑
n

ti ≤ C (5)
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Algorithm 2 OptDG algorithm for solving the 0-1 Knapsack
problem

Require: A set of items items, total knapsack capacity
capacity, current total profit, and current total weight

Ensure: A knapsack that is packed to its full carrying
capacity with items that have the greatest possible profit

function SOLVEKNAPSACKOPTIMIZED(items, C,
knapsack items, total p, total w)

Sort items by item’s weight in decreasing order
unique items← Items not contained in the knapsack
heavy item← Heaviest item in a knapsack

total w ← total w − heavy weight
total p← total p− heavy profit
Remove heaviest item in a knapsack

for item in unique items do
if total w + item weight ≤ C then

total p← total p+ item val
total w ← total w + item weight
Add item to knapsack items

end if
end for
return knapsack items, total p, total w

end function

function SOLVE KNAPSACK(items, capacity)
knapsack items, total p, total w, new items←

SolveKnapsackGreedy(items, C)
if size of knapsack items == 0 then

return [], 0, 0
end if
opti knapsack, opti p, opti w ←

SolveKnapsackOptimized(new items, C,
knapsack items, total p, total w)

if opti p > total p then
return opti knapsack, opti p, opti w

else
return knapsack items, total p, total w

end if
end function

The resulting knapsack must meet an Eq. 6, and have a
higher profit than the previous knapsack. If the improvement
in knapsack profit is not achieved, the algorithm reverts to
the Dantzig’s solution. The optimization aims to maximize the
knapsack’s profit and approach the outcome of the optimal
algorithm. OptDG algorithm, depicted in Algorithm 2, has a
time complexity of O(nC), where n represents the number of
items and C represents the maximum weight capacity of the
knapsack.

C −
n∑

i=1

ti ≥ 0 (6)

IV. EXPERIMENTAL RESULTS

This section provides an evaluation of the OptDG algo-
rithm’s performance in relation to Datzing’s greedy algorithm
(implemented using dynamic programming). Table I to Table
VII present results of an experiment that benchmarked both
Datzing’s greedy algorithm and OptDG algorithm with differ-
ent item generation strategies.

V. DISCUSSION

This section discusses research outcomes on the optimal
(using dynamic programming) algorithm, Datzing’s greedy
algorithm, and newly proposed OptDG algorithm.

The maximum number of items that can be placed in the
knapsack remains at 20, but the total capacity of the knapsack,
as well as the profits and weights of the items, vary depending
on the case. In order to observe the speed of execution of a
specific test case, the number of iterations was set to 100,000.
This means that we generated new items 100,000 times and
attempted to fill the knapsack. The number of cases and the
duration of the algorithm are mean averages. In the first test
case, we generated random items with weights ranging from
1 to the knapsack’s carrying capacity C, and their profits
ranged from 1 to 100. The outcomes for the first test case
are displayed in Table I. In 4% of cases, the OptDG algorithm
outperformed Dantzig’s greedy algorithm, but it took longer
to execute in those cases than Dantzig did in other situations.
Table II shows the results of the methods that were tested,
with weights equal to the knapsack’s total capacity and random
profits between 1 and 100. Because the heaviest item in the
knapsack could not be found when all things were of the same
weight, the optimized procedure in this observed scenario was
never better than conventional Dantzing. Table III displays
how items are organized in a knapsack, with weights equal
to 5 and profits chosen at random from 1 to 100. Even in
this test case, Dantzing’s greedy algorithm was still superior
because, like in the previous observation, it is unable to identify
the heaviest item in the knapsack when all of the profits are
equal. The improved approach takes twice as long as the
standard Dantzig’s greedy algorithm due to the time spent
looking for the heaviest item, which cannot be discovered. The
configuration of items in the knapsack is shown in Table IV,
where the profits are equal to 5, and the weights of the items
are distributed at random from 1 to the knapsack’s maximum
capacity. Because all items have fixed profits and the OptDG
algorithm also sought the items with the highest profit, it was
unable to determine the best arrangement of the items in the
knapsack and did not outperform Dantzing’s greedy algorithm
in this case. Table V shows the combination of items when
their squared profits and randomly generated weights between
1 and T are used. The OptDG algorithm exhibited the highest
efficiency in the observed case in point, but since it must place
items in the knapsack twice, it is frequently slower than the
standard Dantzig’s greedy algorithm. Table VI displays how
items are arranged when the weights are created at random
between the ranges of 1 and T and the profits are powers of 10.
In this instance, the Dantzig’s greedy algorithm and the optimal
algorithm were nearly identical, and the OptDG algorithm
also added to the Dantzig’s greedy algorithm’s strengths. As
a result, the accuracy of the algorithm has increased to 100%.
If the OptDG algorithm cannot find a better result, it will
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TABLE I. CASE 1: THE ITEMS IN THE KNAPSACK ARE RANDOMLY GENERATED, WHERE BOTH THE PROFITS AND THE WEIGHTS ARE RANDOMLY
GENERATED IN THE RANGE OF 1 TO 100

Capacity
[C] Items Iters.

Dantzing
closer to
optimal

OptDG
better than
Dantzing

Optimal
timings

[ns]

Danzing
timings

[ns]

OptDG
timings

[ns]

50 20 100000 60.264% 4.509% 231050 4700 4830
100 20 100000 60.127% 4.342% 478580 3780 5830
150 20 100000 60.261% 4.380% 686380 4880 4560
200 20 100000 60.197% 4.316% 897600 4230 6540
250 20 100000 60.182% 4.293% 1108070 2480 5950
300 20 100000 60.183% 4.400% 1343440 3270 5470
350 20 100000 60.216% 4.344% 1566680 3400 7210
400 20 100000 60.246% 4.318% 1818600 4580 5620

TABLE II. CASE 2: THE ITEMS IN THE KNAPSACK ARE RANDOMLY GENERATED WHERE THE PROFITS ARE RANDOMLY GENERATED IN THE RANGE
FROM 1 TO 100, AND THE WEIGHTS ARE EQUAL TO THE TOTAL CAPACITY OF THE KNAPSACK C

Capacity
[C] Items Iters.

Dantzing
closer to
optimal

OptDG
better than
Dantzing

Optimal
timings

[ns]

Danzing
timings

[ns]

OptDG
timings

[ns]

50 20 100000 100% 0% 171210 2820 4860
100 20 100000 100% 0% 342810 2170 4180
150 20 100000 100% 0% 527060 3440 4490
200 20 100000 100% 0% 688170 4390 4850
250 20 100000 100% 0% 833560 2970 4010
300 20 100000 100% 0% 999790 3270 5760
350 20 100000 100% 0% 1183110 3920 3270
400 20 100000 100% 0% 1323160 3580 4950

TABLE III. CASE 3: THE ITEMS IN THE KNAPSACK ARE RANDOMLY GENERATED WHERE THE PROFITS ARE RANDOMLY GENERATED IN THE RANGE OF
1 TO 100, AND THE WEIGHTS ARE EQUAL TO THE NUMBER 5

Capacity
[C] Items Iters.

Dantzing
closer to
optimal

OptDG
better than
Dantzing

Optimal
timings

[ns]

Danzing
timings

[ns]

OptDG
timings

[ns]

50 20 100000 100% 0% 254390 3590 6240
100 20 100000 100% 0% 503960 4210 7220
150 20 100000 100% 0% 718510 4090 6660
200 20 100000 100% 0% 950920 3760 7660
250 20 100000 100% 0% 1191520 4040 5180
300 20 100000 100% 0% 1444620 5890 5300
350 20 100000 100% 0% 1706450 5930 8460
400 20 100000 100% 0% 2001300 5530 6250

TABLE IV. CASE 4: THE ITEMS IN THE KNAPSACK ARE RANDOMLY GENERATED WHERE THE PROFITS ARE EQUAL TO THE NUMBER 5, AND THE
WEIGHTS ARE RANDOMLY GENERATED RANGING FROM 1 TO 100

Capacity
[C] Items Iters.

Dantzing
closer to
optimal

OptDG
better than
Dantzing

Optimal
timings

[ns]

Danzing
timings

[ns]

OptDG
timings

[ns]

50 20 100000 100% 0% 195300 2190 5010
100 20 100000 100% 0% 430430 3140 4540
150 20 100000 100% 0% 626020 3570 4490
200 20 100000 100% 0% 849670 4090 5870
250 20 100000 100% 0% 1060400 3730 5580
300 20 100000 100% 0% 1283480 5000 5750
350 20 100000 100% 0% 1529420 6100 5010
400 20 100000 100% 0% 1786890 4240 3960
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TABLE V. CASE 5: THE ITEMS IN THE KNAPSACK ARE RANDOMLY GENERATED WHERE THE PROFITS ARE SQUARED, AND THE WEIGHTS ARE
RANDOMLY GENERATED RANGING FROM 1 TO 100

Capacity
[C] Items Iters.

Dantzing
closer to
optimal

OptDG
better than
Dantzing

Optimal
timings

[ns]

Danzing
timings

[ns]

OptDG
timings

[ns]

50 20 100000 64.006% 5.439% 226020 4740 4530
100 20 100000 64.037% 5.148% 452930 4830 5590
150 20 100000 64.065% 5.077% 680830 5470 3720
200 20 100000 63.641% 5.249% 897590 4460 5100
250 20 100000 63.872% 5.182% 1118750 4090 5170
300 20 100000 63.959% 5.097% 1347190 4030 6530
350 20 100000 64.040% 4.990% 1597040 3780 5000
400 20 100000 63.969% 5.115% 1864040 4820 7990

TABLE VI. CASE 6: ITEMS IN THE KNAPSACK ARE RANDOMLY GENERATED WHERE THE PROFITS ARE POWERS OF 10, AND THE WEIGHTS ARE
RANDOMLY GENERATED RANGING FROM 1 TO C

Capacity
[C] Items Iters.

Dantzing
closer to
optimal

OptDG
better than
Dantzing

Optimal
timings

[ns]

Danzing
timings

[ns]

OptDG
timings

[ns]

50 20 100000 99.869% 0.027% 234560 6570 6420
100 20 100000 99.847% 0.029% 473490 5280 6400
150 20 100000 99.834% 0.031% 692280 4900 6760
200 20 100000 99.843% 0.042% 918950 4990 7000
250 20 100000 99.840% 0.021% 1147130 5170 8740
300 20 100000 99.844% 0.025% 1407410 4990 7480
350 20 100000 99.841% 0.028% 1666750 5780 7180
400 20 100000 99.809% 0.041% 1902380 7320 7960

TABLE VII. CASE 7: THE ITEMS IN THE KNASPACK ARE RANDOMLY GENERATED WHERE THE PROFITS ARE RANDOMLY GENERATED RANGING FROM 1
TO 100, AND THE WEIGHTS ARE POWERS OF 10

Capacity
[C] Items Iters.

Dantzing
closer to
optimal

OptDG
better than
Dantzing

Optimal
timings

[ns]

Danzing
timings

[ns]

OptDG
timings

[ns]

50 20 100000 100.000% 0.000% 187830 6880 4840
100 20 100000 98.609% 1.351% 375880 7030 5960
150 20 100000 100.000% 0.000% 556060 6560 7840
200 20 100000 99.989% 0.002% 723580 8410 5520
250 20 100000 100.000% 0.000% 915100 7980 9490
300 20 100000 100.000% 0.000% 1118070 7950 5790
350 20 100000 100.000% 0.000% 1279060 8640 8800
400 20 100000 100.000% 0.000% 1492240 7160 6690

return the Dantzing result. Table VII displays the results when
the weights are powers of 10, and the profits are randomly
generated in the range of 1 to 100.

VI. CONCLUSION

In this paper, the binary knapsack (KP01) problem is
addressed, which is one of the most complex problems in
the theory of computational complexity. Although dynamic
programming yields an exact answer, it is computationally
expensive for large numbers. Heuristic algorithms are used to
quickly approximate results in order to speed up the process at
the expense of solution precision. In this research, we looked
at Dantzig’s greedy algorithm, which efficiently places items
in the knapsack but falls short of the dynamic programming
approach’s outcome in some circumstances.

In order to address this issue, OptDG algorithm is pro-
posed. The proposed algorithm, after arranging the knapsack
using the Dantzig’s greedy algorithm, removes the heaviest
item and attempts to add other items that are not currently
in the knapsack. If the total profit of the knapsack increases,
the function returns the new solution, otherwise it returns the

original solution. Theoretical foundations of the proposed algo-
rithm is described and mathematically presented. Furthermore,
a benchmark for performance evaluation of the speed and
accuracy metrics of the proposed OptDG algorithm, optimal
dynamically programmed algorithm and Dantzig’s greedy al-
gorithm in various scenarios is conducted. In the majority of
instances, the proposed OptDG algorithm outperformed the
conventional Dantzig’s greedy algorithm. According to the
performance evaluation results, due to the additional knapsack
filling, the proposed OptDG algorithm requires an additional
minor time for execution which is not considered as a draw-
back in majority of possible applications.

The aim of our forthcoming research is to integrate further
benchmark studies to enhance our comprehension of how to
optimize the OptDG algorithm in regard to Dantzing’s greedy
model.
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