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Abstract—This study addresses the significant challenges
posed by Advanced Persistent Threats (APTs) in modern com-
puter networks, particularly their use of DNS to establish covert
communication via command and control (C&C) servers. The
advent of TLS 1.3 encryption further complicates detection
efforts, as critical data within DNS over HTTPS (DoH) traffic
remains inaccessible, and decryption would compromise user
privacy. APTs frequently leverage Domain Generation Algo-
rithms (DGAs), necessitating real-time detection solutions based
on immediately accessible features within HTTPS traffic. Current
research predominantly focuses on system-level behavioral anal-
ysis, often neglecting the proactive potential offered by Cyber
Threat Intelligence (CTI), which can reveal malicious patterns
through Techniques, Tactics, and Procedures (TTPs) and Indi-
cators of Compromise (IoCs). This study proposes an innovative
approach utilizing the MITRE ATT&CK framework to identify
relevant features in the face of encryption and the inherent
complexity of APT activities. The primary objective is to develop
a robust dataset and methodology capable of detecting APT
behaviors throughout their lifecycle, emphasizing a lightweight,
cost-effective solution through passive monitoring of network
traffic to ensure real-time detection. The key contributions of
this research include an in-depth analysis of the encryption
challenges in detecting DNS-based APTs, a thorough examination
of APT attack strategies using DNS, and the integration of CTI
to enhance detection capabilities. Moreover, this study introduces
the KAPT 2024 dataset, generated by the KExtractor tool, and
demonstrates the effectiveness of the detection model through
experiments with a variety of machine learning algorithms. The
results underscore the potential for this approach to significantly
improve APT detection in encrypted network environments.
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I. INTRODUCTION

Advanced Persistent Threats present significant challenges
to security, representing a serious threat that demands thor-
ough research and rigorous evaluation of effective detection
techniques. These malicious actors, driven by various objec-
tives ranging from espionage to service disruption, exploit
sophisticated communication channels to establish connections
with their Command and Control servers. Recent observations
indicate that APT actors are increasingly leveraging DNS, even
when encrypted, to establish these communications, thereby
evading traditional detection methods.The use of DNS by
APT actors as a communication channel can be detected
through traffic analysis. However, existing machine learning-
based methods for detecting malicious domains face significant
challenges with HTTPS traffic because key features, such as
textual and lexical domain information, NXDomain volumes,
and other relevant data, are encrypted in TLS 1.3. The analysis

of directly exploitable information within DoH traffic is hin-
dered by the inaccessibility of a large amount of meaningful
data, while decryption methods would compromise privacy.
Another challenge, due to the evolving and stealthy nature of
APT threats using DGA algorithms, is the responsiveness of
malicious domain detection, which requires real-time analysis
based on immediately accessible features in HTTPS traffic.
The dynamic and evolving nature of these attacks necessitates
immediate responsiveness, as the effectiveness of any security
measure could be compromised without real-time detection [1].

Several techniques have been proposed in the literature
to counter APT threats in general. Most current research on
APT detection, based on machine and deep learning, focuses
on behavioral analysis of attacks at the system level, thus
neglecting crucial adversarial intelligence that could proac-
tively contribute to threat prevention [2], [3]. Cyber Threat
Intelligence has emerged as a potential solution to help or-
ganizations address the complex and stealthy nature of cyber
threats [4]. The exploration of intelligence platforms involves
extracting Techniques, Tactics, and Procedures and Indicators
of Compromise on threats. TTPs and IoCs play a crucial role in
identifying malicious behaviors and attack patterns specific to
APTs. The term “tactics” refers to the method used by the APT
to carry out the attack from start to finish. The “techniques”
used by the APT during its attack describe its technological
strategy to achieve its goals. Finally, the “procedure” of an
APT describes the steps used by the attacker to achieve its
objectives [5]. Many researchers have used machine learning
to detect APT threats. However, these proposed methods do
not consider detection at all levels of the APT lifecycle
[6]. Additionally, the lack of datasets thoroughly exploiting
the TTPs and IoCs provided by intelligence platforms does
not proactively promote the detection of C&C domains sub-
merged by DGAs, constituting a current research challenge
[7]. Publicly available datasets can detect several levels of
the cycle, but not the entirety of the phases, as many works
have unfortunately not mentioned the use of persistence and
stealth tools such as DGAs in the lifecycle. We aim to develop
a system to analyze and detect malicious domains at every
stage of the APT lifecycle using DNS, even when encrypted,
as a communication channel. Our method must meet several
key constraints, including ensuring privacy by avoiding the
use of any decryption techniques and relying solely on clear-
text features directly accessible from the traffic. Additionally,
the solution should be lightweight and low-cost, requiring no
equipment or installation on endpoints, and based on passive
network traffic monitoring. Given the nature of APT threats,
the method must also ensure efficiency and responsiveness,
enabling quick reaction with real-time detection.
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This study makes several significant contributions to the
field of cybersecurity, particularly in the detection of APTs
exploiting DNS. It provides a comprehensive analysis of the
challenges posed by encryption in threat detection, addressing
the limitations of current methods for detecting DGA attacks,
which are increasingly complicated by the widespread en-
cryption of communications. The research offers an in-depth
examination of APT attack strategies, detailing the TTPs and
IoCs employed by APTs to exploit DNS. Furthermore, it
highlights the role of CTI platforms in enhancing detection
capabilities by integrating relevant data sources and enriching
detection features. The originality of this work lies in its
innovative methodological approach, which combines Artifi-
cial Intelligence and Threat Intelligence to create a robust
dataset, namely KAPT 2024. This dataset, coupled with impor-
tance level indicators, has been rigorously tested with various
machine learning algorithms, demonstrating the effectiveness
of the proposed architectural model in real-time, multi-class
detection scenarios, thereby contributing significantly to the
advancement of cybersecurity research.

The remainder of this paper is organized as follows. Section
II provides a literature review on the subject. Section III dis-
cusses the contribution of threat intelligence in APT detection.
Section IV details the steps of our proposed methodology,
including the data sources used, feature extraction, and the
multi-class classification module. Section V implements and
evaluates the methodological approach. Finally, Section VI
concludes the article and suggests future research directions.

II. RELATED WORK

The literature review on Advanced Persistent Threats high-
lights the ongoing evolution of sophisticated attacks targeting
computer systems and networks. Various techniques have been
developed to counter APTs, with recent research emphasizing
the predominant use of machine learning techniques in detect-
ing these threats [5]. These studies underline the importance
of continuous research to enhance APT detection capabilities
and mitigate cybersecurity risks as threats evolve. For instance,
Weiwu Ren et al. have analyzed the effectiveness of deep
learning for precise and real-time APT detection [8], while
Nkiruka Eke et al. proposed a hybrid model combining deep
and machine learning techniques for more effective detection
[9]. Manuel Miguez et al. contributed by proposing a cyber
kill chain model and early detection methodology for APTs,
stressing the importance of a strategic defense approach [10].
APT attacks, meticulously planned by malicious actors, gen-
erally involve several stages. While these actors may exhibit
distinct characteristics, the phases of their attacks are typi-
cally similar, differing mainly in the tactics and techniques
used in each phase. Alshamrani et al. categorized APT at-
tacks into five stages: Reconnaissance, Establish Foothold,
Lateral Movement/Stay Undetected, Exfiltration/Impediment,
and Post-Exfiltration/Post-Impediment [11]. The authors argue
that these stages can represent any APT attack, regardless of
the objective. Several studies [2], [7], [9] in the literature
have drawn inspiration from this schema presented in [11].
By leveraging this cycle, as done in the present study, it is
possible to detect and prevent APT attacks by understanding
the techniques and tactics employed by attackers [2].

CTI plays a crucial role in compiling a comprehensive

database on APT behavior. CTI helps manage indicators of
compromise, techniques, tactics, and protocols associated with
various APT groups. Building on this foundation, Abir Dutta et
al. proposed the integration of machine learning with a threat
intelligence platform [12]. Other works [13], [14] have also
emphasized the importance of CTI in enhancing enterprise
resilience. Researchers like Yinghai Zhou et al. [15] and
Nan Sun et al. [3] have explored the use of CTI to counter
APT attacks by employing automatic extraction and analysis
methods for CTI information. Additional studies [16], [17]
have presented a framework for sharing CTI that incorporates
machine learning models. The challenges of effective threat
intelligence sharing are explored in [18], while the works
mentioned in [19] propose a trust taxonomy for sharing
threat information. Among the most widely used intelligence
platforms is the MITRE ATT&CK matrix, which catalogues a
comprehensive set of TTPs used by adversaries in each phase
of their attacks [3], [5]. The matrix’s database is continuously
updated with contributions from the research community,
making it a cornerstone for APT threat intelligence. Certain
studies underscore the increasing importance of integrating
threat intelligence and machine learning for defending against
cyberattacks [20], [21].

While existing research underscores the importance of
machine learning and CTI in detecting APT threats, it also
reveals significant limitations that need to be addressed. The
necessity of improving machine learning models by exploring
CTI platforms for enhanced resilience is evident. However,
the exploitation of TTPs and IoCs remains insufficient, as the
publicly available training datasets do not comprehensively
cover all stages of the APT lifecycle. Consequently, many of
the proposed methods fall short of detecting APT threats across
all lifecycle stages, particularly when it comes to identifying
C&C domains obfuscated by DGAs. This gap highlights the
need for further research and the development of innovative
methodologies that can overcome these challenges and provide
more effective APT detection systems.

III. CONTRIBUTION OF CTI IN DETECTING APTS

Cyber Threat Intelligence has emerged as a potential
solution for companies to address the complex and stealthy
nature of cyber threats [13]. Exploring intelligence platforms
involves extracting TTPs and IoCs about threats. TTPs and
IoCs play a crucial role in identifying malicious behaviors and
attack patterns specific to APTs. TTPs describe how attackers
achieve their objectives, while IoCs provide concrete evidence
of an intrusion, such as IP addresses, file hashes, or malicious
domain names. Various tactics, techniques, and procedures are
used at each stage of an APT attack, which progresses to
the next stage. Given that the TTP attribute allows profiling
an APT actor, it is relevant to consider it as a constituent
element of a specific detection technique, and it can be used
to anticipate and identify APT attacks early [22].

By anticipating the tactics used by attackers, security
teams can strengthen their defenses, identify weak points,
and develop appropriate detection and response strategies. In-
depth knowledge of TTPs also allows for better targeting
of security investments and maximizing the effectiveness of
protection tools and technologies. In this context, the use of
the MITRE ATT&CK matrix proves to be a valuable asset
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for security professionals. The ATT&CK matrix provides a
comprehensive view of the TTPs used by attackers, categorized
by attack stage and target platform. By integrating ATT&CK
matrix data into their security strategies, organizations can gain
a deep understanding of the tactics employed by APTs, as
well as the IoCs associated with each stage of the attack.
MITRE ATT&CK has been used to represent APT TTPs
as it provides extensive knowledge of adversary tactics and
techniques based on real-world observations. The ATT&CK
knowledge base has been widely used as a foundation for
developing specialized threat models and techniques in the
business, government, and cybersecurity sectors worldwide [5].
The choice of MITRE as a source of information on TTPs
and IoCs stems from its reputation for excellence in the field
of cybersecurity. In addition to the ATT&CK matrix, MITRE
offers a multitude of free and paid resources, such as technical
reports, analysis tools, and training programs. This wealth of
resources makes MITRE an essential partner for organizations
seeking to strengthen their security posture and protect against
APT threats. Compared to methods proposed in the literature,
the MITRE platform is better suited to APT threat intelligence,
which describes TTPs in a canonical form and can more
accurately extract the TTPs summarized in CTI reports [15].

One of the major aspects influencing the accuracy of
Machine Learning models is the search for discriminatory
features [25]. Indeed, the features designated in one APT
detection solution are not necessarily applicable to another
solution. The MITRE platform, by providing TTPs and IoCs
about APT threats, helps us designate relevant features on
the behaviors and techniques used by attackers. By analyzing
this data, we can identify the specific patterns and signals
associated with APT attacks, allowing us to determine which
features are most likely to be relevant for detecting these
attacks during each phase. For example, if an IoC indicates
that an APT attack used a specific technique to compromise
a system, we might select features related to that technique
to strengthen our detection model. Similarly, TTPs can guide
us toward the features that are most representative of the
attack methods used by APTs, enabling us to better target our
analysis and defense efforts. The feature selection process be-
gins by identifying representative techniques by exploring the
different phases of the APT attack (Initial Access, Execution,
Persistence, Privilege Escalation, Defense Evasion, Credential
Access, Discovery, Lateral Movement, Collection, Command
and Control, Exfiltration, Impact) and identifying the specific
techniques at each phase relevant to the type of targeted
attacks. Each phase of the cycle identified on the platform is
then translated into measurable features in network data. For
example, the “Data Exfiltration” phase will have measurable
characteristics such as statistics related to the volume of data
transferred, the frequency of outgoing connections, etc. There
has been immense interest in exploiting CTI, specifically
for proactive cybersecurity defense. By exploring this unique
dimension of cybersecurity, this research provides new insights
and opens avenues for innovation in combating persistent and
sophisticated threats, thereby making a significant contribution
to the advancement of the field. In the following section, we
will delve into the architectural model of our approach for
identifying relevant features in detail.

IV. PROPOSED METHODOLOGY

We have already explored intelligence platforms to identify
the most significant features that can contribute to the detection
of APT threats and designate data sources covering all phases
of the APT lifecycle in the previous section. In this section,
we present the architecture used in this study, illustrated in
Fig. 1. We proceed with feature extraction to construct the
KAPT-2024 dataset, leveraging the selected data sources. We
conclude the process by training our models with several
supervised learning algorithms.

A. Data Source

The accuracy of classification models inevitably relies on
the quality of the data. Exploring intelligence platforms allows
us to observe the various tools, TTPs, and IoCs used by
APT actors during each phase of the APT lifecycle, thereby
indicating the different data sources widely referenced in the
literature. These data sources, in pcap format, are selected
based on the tools used to generate the traffic. These tools
enable us to map the threats from each public data source
according to the APT lifecycle. This is essentially what will
be discussed in this subsection. In total, four data sources will
be analyzed to constitute our own dataset.

1) CSE-CIC-IDS2018 on AWS: CSE-CIC-IDS20181, de-
veloped in collaboration between the Communications Secu-
rity Establishment (CSE) and the Canadian Institute for Cy-
bersecurity (CIC), is designed to generate a diverse and com-
prehensive benchmark dataset for intrusion detection. Among
the simulated attacks are scenarios such as network infiltra-
tion from the inside, HTTP denial-of-service attacks, web
application attack collection, brute-force attacks, and attacks
based on recent vulnerabilities such as Heartbleed. CSE-CIC-
IDS2018 dataset mainly covers the initial compromise, lateral
movement, and camouflage phases of the APT threat lifecycle.
Included attacks such as brute-force attacks, web attacks, and
port scans illustrate a strong focus on the initial compromise
phase, crucial for gaining initial access to target systems.
Although this dataset is useful for analyzing these critical
stages, it does not cover the entire APT threat lifecycle, omit-
ting phases such as persistence, privilege escalation, defense
evasion, data exfiltration, and final impact [23].

2) UNSW-NB15: The UNSW-NB152 dataset was specifi-
cally designed to evaluate Intrusion Detection Systems, making
it a valuable tool for threat detection and prevention. With a
variety of source files and a wide range of simulated attacks,
UNSW-NB15 provides a more realistic and comprehensive
representation of modern network traffic compared to some
previous datasets like NSL-KDD. The UNSW-NB15 dataset
covers several phases of the APT threat lifecycle. Fuzzers
and Analysis attacks are associated with the Reconnaissance
phase, where attackers gather information about potential
targets. Backdoors, DoS, Exploits, and Shellcode attacks fall
under the Initial Compromise phase, where attackers exploit
vulnerabilities to gain access to target systems. Generic and
Worms attacks are linked to the Lateral Movement phase,
allowing attackers to move within the compromised network.
Although the dataset provides a good representation of critical

1https://www.unb.ca/cic/datasets/ids-2018.html
2https://research.unsw.edu.au/projects/unsw-nb15-dataset
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Fig. 1. The methodological structure of the proposed method.

phases, it does not explicitly cover all phases, such as data
exfiltration and post-exfiltration [24].

3) CIC-IDS 2017: The CIC IDS 20173 dataset is designed
for the evaluation of Intrusion Detection Systems (IDS) and
Intrusion Prevention Systems (IPS). It contains both benign
network traffic and common attacks, thus providing a realistic
representation of real-world data. The attacks included in the
dataset cover a wide range, including Brute Force FTP, Brute
Force SSH, DoS, Heartbleed, Web Attack, Infiltration, Botnet,
and DDoS. CIC-IDS 2017 covers the Initial Compromise phase
with web attacks such as XSS (Cross-Site Scripting) and SQL
injection attacks, as well as brute-force attacks on services like
FTP and SSH. The Lateral Movement phase is represented by
infiltration attacks and the use of botnets to move laterally
within the network, with port scans (PortScan) being possi-
ble. The Camouflage phase includes DoS attacks like Hulk,
GoldenEye, slowloris, slowhttptest, and DDoS, which seek to
conceal malicious activities. However, the dataset does not
seem to explicitly cover the data exfiltration phase, which is
also an essential component of the APT attack lifecycle [23].

4) KDGA-Insight23: The KDGA-Insight234 dataset [25]
is specifically designed for real-time analysis of DNS traffic,
focusing on detecting malicious activities such as Domain
Generation Algorithms, particularly in the context of using
DNS over HTTPS. It includes 36 features extracted from
pcap files, which are used to distinguish different types of
DNS traffic, including DoH and non-DoH traffic, DoH-Tunnel
and non-Tunnel traffic, as well as DGA and non-DGA traffic.
This dataset can contribute to APT threat detection, especially
regarding DGA attacks. In the context of DGA attacks, the
initial compromise of a host machine is a fundamental step,
corresponding to the first two stages of the APT cycle:
acquiring initial access and establishing an initial foothold.
Subsequently, setting up a tunnel through the Command and
Control corresponds to a later stage of the APT cycle, usually
associated with lateral movement within the network and
exfiltration of sensitive data. This step aims to establish secret

3https://www.unb.ca/cic/datasets/ids-2017.html
4https://github.com/artapsoba/KDGA-Insights

communication between the compromised machine and the
C&C server, thereby allowing the attacker to access and control
the network more broadly. As for the use of DGA, it may
be considered in the camouflage or persistence phase, where
attackers deploy sophisticated techniques to evade detection
and maintain their network access over the long term. The
KDGA-Insight23 dataset provides valuable information for
APT threat detection, focusing particularly on DGA attacks
and the use of tunnels via C&C. These aspects are closely
related to several stages of the APT attack lifecycle, thereby
enhancing its relevance in the cybersecurity context.

In conclusion, the use of the four datasets CSE-CIC-
IDS2018, CIC-IDS2017, UNSW-NB15, and KDGA-Insight23
in our project is of crucial importance for several reasons.
Firstly, each dataset offers a unique perspective on threats
and potential attacks encountered in the modern cybersecurity
landscape. CSE-CIC-IDS2018 and CIC-IDS2017 provide a
variety of real-world attacks, allowing for the testing and
evaluation of Intrusion Detection Systems effectiveness in
detecting common attacks such as DoS, brute-force attacks,
and web attacks. On the other hand, UNSW-NB15 focuses on
detecting malicious activities related to DNS traffic, offering
valuable insight into detecting DNS-based attacks, including
DGA attacks. Lastly, KDGA-Insight23 specifically focuses on
detecting DGA attacks in the context of using DNS over
HTTPS, making it particularly relevant for detecting camou-
flage and persistence activities associated with APT attacks. By
combining these four datasets, we are able to broadly cover the
entire lifecycle of APT attacks, from reconnaissance to long-
term persistence in the network. Each dataset contributes to
filling the gaps of the others in terms of coverage of specific
attack types and camouflage techniques used by attackers.
The combined use of these four datasets allows us to benefit
from a comprehensive and balanced overview of potential
threats in the cybersecurity domain, thereby enhancing our
ability to develop and evaluate robust and effective Intrusion
Detection Systems against APT attacks. Table I represents our
dataset, encompassing all phases of the APT threat lifecycle
and enabling threat detection at each stage of the cycle. By
extracting these features from the data sources explored in this
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TABLE I. APT CYCLE DESCRIPTION AND ATTACK/TOOLS

APT Cycle Description Attack/Tools
Reconnaissance Network reconnaissance, identify-

ing vulnerabilities
PortScan

Initial compro-
mise

Establishing a foothold in the net-
work through various techniques

Brute Force, Sql Injec-
tion, XSS, FTP-Patator,
SSH-Patator

Lateral
Movement

Discovering the internal network
through compromised systems and
taking control of critical devices

Infiltration attack, Bot
ARES

Data
Exfiltration

Transferring data from local ma-
chines in the network to C&C
servers, locations, or remote users

Iodine, Dnscat2, Dns2tcp

Post
Exfiltration

Persisting the exfiltration process,
disabling other critical compo-
nents, and destroying evidence to
ensure clean removal from the or-
ganization’s network

DoS GoldenEye, DoS
Hulk, DoS Slowhttptest,
DoS slowloris, DoS
Heartbleed, DDoS
LOIC, DGA

subsection, our dataset stands out for its ability to capture and
analyze the various aspects of APT attacks through these 87
selected features.

B. Feature Extraction and Data Pre-Processing

Lexical and textual data have largely lost their relevance
due to traffic encryption. Information related to DNS, HTTP,
and TLS layers, which has been successfully used in the
literature, is now encrypted. The widespread adoption of
traffic encryption presents fewer opportunities for security
professionals and represents one of the major challenges today.
This study addresses the issue of respecting user privacy
while maintaining an optimal level of security. It seeks to
demonstrate the effectiveness of Machine Learning methods
using only the information directly accessible from DoH
traffic. Feature extraction from network packets is a crucial
step in network data analysis, particularly for APT detection.
In this process, packets are grouped by flow to capture network
interactions between specific IP addresses and ports, thereby
defining forward (incoming) and backward (outgoing) flows.
This grouping allows for detailed and granular characterization
of data flows, facilitating the analysis of suspicious network
behaviors. Forward and backward flows are used to distinguish
communication directions, which is essential for identifying
potential attack patterns such as unusual data transfers or
suspicious responses. By analyzing features such as packet
lengths, inter-arrival times (IAT), and TCP flags (PSH, URG),
traffic patterns can be better understood, and anomalies in-
dicating a threat can be detected. This approach enables the
identification of not only the overall characteristics of flows
but also the directional nuances that might indicate malicious
activities, making the analysis more precise and relevant for
APT detection. The dataset is labeled based on the tools
used to generate the traffic. We extract a total of 87 features
that comprehensively cover the phases of the APT lifecycle.
Depending on the tools used to generate the data sources
utilized in this study, we have grouped the raw data into six cat-
egories (Normal, Reconnaissance, Initial Compromise, Lateral
Movement, Data Exfiltration, and Post Exfiltration) as outlined
in Table I. Preprocessing involves cleaning the dataset of all
its outliers. The transformations applied to this dataset include
digitization, normalization, imputation of missing values, and
feature selection. Normalization involves changing the range

Fig. 2. Collected dataset.

of values from a large range to a smaller one, typically [0, 1] or
[-1, 1] [26]. In this study, data normalization was conducted
using the MinMaxScaler() method from the Sklearn library,
followed by data imputation, which involved removing rows
with missing values. The next step focused on selecting the
most significant features. This process began with analyzing
the correlation between features using a heatmap, which helped
identify and remove highly correlated, redundant columns,
thereby simplifying the model and improving its performance.
The study then employed Recursive Feature Elimination (RFE)
to optimize feature selection, retaining only the most relevant
variables. This approach reduced noise, improved predictive
accuracy, and stabilized performance with around 55 features,
leading to a more efficient and accurate model.

C. Dataset KAPT 2024

The KAPT24 dataset is designed to address the challenges
posed by APT threats. It is structured around the complete life-
cycle of APT threats, covering the phases of Reconnaissance,
Initial Compromise, Lateral Movement, Data Exfiltration, and
Post-Exfiltration. The primary objective of this dataset is to
provide a comprehensive solution for detecting APT threats by
leveraging features extracted directly from HTTPS traffic. To
construct this dataset, we utilized intelligence platforms such
as MITRE ATT&CK to identify relevant Techniques, Tactics,
and Procedures and Indicators of Compromise. This informa-
tion was crucial in selecting features that effectively capture
malicious behaviors. This approach allows for the detection
of suspicious activities in a non-intrusive manner, making the
dataset valuable for research and the development of new threat
detection techniques. The data is collected and classified into
different phases of the APT threat lifecycle, as illustrated in
Fig. 2. This dataset includes the following categories: Normal
(446,828 samples), Reconnaissance (127,424 samples), Initial
Compromise (134,686 samples), Lateral Movement (129,087
samples), Data Exfiltration (87,737 samples), and Post Exfil-
tration (122,055 samples).

A thorough analysis is conducted to select the most rel-
evant features, those that demonstrate a significant ability
to discriminate between normal traffic and malicious traffic
related to APTs. The choice of features and the method of
grouping by flow are motivated by the need to capture the
complex dynamics and abnormal behaviors that characterize
APT attacks. The forward and backward flows provide a
detailed view of network interactions, thus facilitating the
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identification of anomalies typical of different phases of an
APT attack. The features of the KAPT24 dataset, summarized
in Table II, include essential information for network flow
analysis and APT threat detection.

TABLE II. EXTRACTED FEATURES

Feature Group Features
Flow Identification F01: FlowID, F02: SrcIP, F03: DstIP, F04: SrcPort, F05:

DstPort, F06: Protocol, F07: Timestamp

Flow Duration and
TTL

F08: Fl Duration, F09: TTL, F10: DistinctTTLValue

Packet Counts F11: Tot Fwd Pkts, F12: Tot Bwd Pkts, F13:
TotLen FwdPkts, F14: TotLen BwdPkts

Packet Length
Statistics

F15: Fwd-Pkt Len Max, F16: Fwd-Pkt Len Min, F17:
Fwd-Pkt Len Mean, F18: Fwd-Pkt Len Std, F19: Bwd-
Pkt Len Max, F20: Bwd-Pkt Len Min, F21: Bwd-
Pkt Len Mean, F22: Bwd-Pkt Len Std

Flow Rates F23: Flow Byts sec, F24: Flow Pkts sec

Inter Arrival Times F25: Flow IAT avg, F26: Flow IAT Std, F27:
Flow IAT Max, F28: Flow IAT Min, F29: Fwd IAT Tot,
F30: Fwd IAT avg, F31: Fwd IAT Std, F32:
Fwd IAT Max, F33: Fwd IAT Min, F34: Bwd IATTot,
F35: Bwd IAT avg, F36: Bwd IAT Std, F37:
Bwd IAT Max, F38: Bwd IAT Min

Flag Counts F39: Fwd PSH Flags, F40: Bwd PSH Flags, F41:
Fwd URG Flags, F42: Bwd URG Flags, F54:
FIN Flag Cnt, F55: SYN Flag Cnt, F56: RST Flag Cnt,
F57: PSH Flag Cnt, F58: ACK Flag Cnt, F59:
URG Flag Cnt, F60: CWE Flag Cnt, F61: ECE Flag Cnt

Header and Byte
Metrics

F43: Fwd Header Len, F44: Bwd Header Len, F45:
Fwd Byts sec, F46: Bwd Byts sec, F47: Fwd Pkts sec,
F48: Bwd Pkts sec

Ratios and Aver-
ages

F62: Down Up Ratio, F63: Pkt Size Avg, F64:
Fwd Seg Size Avg, F65: Bwd Seg Size Avg, F66:
Fwd Byts blk Avg, F67: Fwd Pkts blk Avg, F68:
Fwd Blk Rate Avg, F69: Bwd Byts blk Avg, F70:
Bwd Pkts blk Avg, F71: Bwd Blk Rate Avg

Subflows F72: Subflw Fwd Pkts, F73: Subflw Fwd Byts, F74: Sub-
flw Bwd Pkts, F75: Subflw Bwd Byts

Initial Window
Metrics

F76: Init Fwd Win Byts, F77: Init Bwd Win Byts

Active and Idle
Times

F78: Fwd Act Data Pkts, F79: Fwd Seg Size Min, F80:
Active Mean, F81: Active Std, F82: Active Max, F83: Ac-
tive Min, F84: Idle Mean, F85: Idle Std, F86: Idle Max,
F87: Idle Min

D. Classification Module

To evaluate the performance of our classification model,
we employed six state-of-the-art algorithms. Each of these
algorithms was selected for its distinct capabilities to handle
complex data and deliver accurate results in various contexts.
Using these supervised learning algorithms, we constructed
detection models based on the features extracted from the
KAPT24 dataset. This dataset, rich in information and metic-
ulously annotated, served as the foundation for training our
models. Through this training, the models have acquired the
ability to effectively predict APT threats at each stage of
their lifecycle. Specifically, our classification models were
designed to identify and categorize malicious activities into six
distinct categories: Normal (Stage 0), representing benign or
normal activities that pose no threat; Reconnaissance (Stage 1),
involving information-gathering activities where the attacker
searches for vulnerable entry points; Initial Compromise (Stage
2), which marks the phase where the attacker successfully
compromises the target system initially; Lateral Movement
(Stage 3), referring to movement within the network, allowing
the attacker to navigate and extend access to other systems;

Data Exfiltration (Stage 4), where the attacker extracts sensitive
information from the target network; and Post Exfiltration
(Stage 5), encompassing post-exfiltration activities that typ-
ically include attempts to cover up traces of the attack or
maintain access to the compromised system.

The integration of these algorithms into our classification
module has enhanced the accuracy and reliability of threat
detection. Each algorithm brings a unique approach to data
analysis, capturing various nuances of malicious behaviors.
For example, Random Forests and Support Vector Machines
provide robust perspectives in terms of classification, while
ensemble algorithms like XGBoost, LGBM, and CatBoost
optimize performance through sophisticated aggregation meth-
ods. The Multi-Layer Perceptron leverages neural networks’
capabilities to model complex relationships between features.
Similarly, Koala et al. employed a comparable approach by
using multiple machine learning algorithms to analyze ap-
plication behavior through event traces in detecting security
vulnerabilities [?]. The use of these cutting-edge algorithms
has enabled the creation of a sophisticated and effective clas-
sification model, capable of detecting and categorizing APT
threats across all phases of their lifecycle, ensuring proactive
and robust defense against advanced cyber threats. Building
on the proposed methodology, the next section will focus on
the practical implementation and evaluation of this approach,
demonstrating its effectiveness in real-world scenarios through
comprehensive experimentation and analysis.

V. IMPLEMENTATION AND EVALUATION OF THE
APPROACH

In this section, we transition from the theoretical foun-
dation provided in the proposed methodology to the practi-
cal implementation of our approach. The main objective of
implementing this approach is to demonstrate its real-world
applicability, especially given the evolving and adaptive nature
of DGAs. To this end, we developed a Flask application
using Python, capable of capturing real-time network traffic,
extracting key features, and analyzing them through a pre-
trained classification model integrated into the system. For
packet manipulation, we utilized the Scapy library, which
allows for efficient packet sniffing and feature extraction. The
system is designed to operate in real-time, predicting whether
the sniffed packet is benign or malicious, thus offering an
immediate response to potential threats.

Additionally, we integrated a graphical user interface (GUI)
using Tkinter to streamline user interaction, making the system
more accessible and user-friendly for practical deployment.
This real-time capability is crucial for staying ahead of the
constantly evolving DGA tactics and bolstering cybersecurity
defenses.

In this section, we will thoroughly evaluate the relevance of
the extracted features using performance indicators to ensure
the system’s predictions are both accurate and reliable. Finally,
we will conclude by presenting the results of various perfor-
mance metrics that validate the robustness of our approach,
highlighting its capacity to detect APT threats in real-time
environments.
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Fig. 3. Feature importance using mutual information.

A. Relevance of Features Analysis

Mutual information is a measure that captures nonlinear
and independent relationships in data distribution, making
it more flexible than methods like Pearson correlation or
ANOVA. Unlike Pearson correlation, which only measures
linear relationships, or chi-square tests, limited to categorical
variables, mutual information is robust to monotonic trans-
formations and useful for both continuous and categorical
variables. It also outperforms model-based feature importance
methods in machine learning by avoiding bias towards features
with more levels. Fig. 3 presents the mutual importance of
features in the KAPT 2024 dataset, used to address challenges
posed by APT. The vertical bar chart displays features on
the horizontal axis and their mutual importance values on
the vertical axis. This visualization highlights that virtually
all features have notable mutual importance, suggesting that
the feature set is relevant for detecting APT threats.

In summary, we can conclude that the selected features
contribute, to varying degrees, to the classification process of
the models. This provides a solid starting point for training
our models with supervised learning algorithms, whose very
satisfactory results are detailed in the following subsection.

B. Results Analysis

In this subsection, we analyze the results obtained from
applying various machine learning algorithms to our dataset.
The confusion matrix is a crucial metric for evaluating clas-
sification models in machine learning, particularly in the
context of multi-class classification problems [30]. It provides
a detailed view of the model’s performance by showing not
only the number of correct predictions but also the types and
quantities of errors made. From the confusion matrix, various
performance metrics such as precision, recall, F1 score, and
accuracy can be calculated for each phase individually, offering
a more nuanced evaluation of the model’s performance. It

Fig. 4. Simulation results.

also helps identify if certain classes are systematically under-
predicted or over-predicted, which is particularly useful in
imbalanced datasets where some classes may dominate. By
using ensemble algorithms such as XGBoost, CatBoost, and
LightGBM, as well as algorithms like Random Forests, SVMs,
and MLPs, the classification performances of these algorithms
are compared and evaluated in a multi-class approach for each
of the 6 stages of the APT lifecycle. To ensure the integrity of
the evaluation, we followed a methodical approach by mixing
samples from each class before splitting them into distinct
training and test sets. The results of these evaluations are
concisely summarized in Fig. 4, which represents the average
metrics across all phases of the cycle [31].

The graph shows that the MLP, LGBM, XGBoost, Cat-
Boost and RF algorithms achieve very high and similar scores
in terms of Accuracy, Precision, and F1-Score, indicating their
effectiveness for this dataset.

Regarding the results from the confusion matrix analysis,
let’s focus on the MLP case, which offers very satisfactory
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Fig. 5. Confusion matrix for MLP.

results. The confusion matrix for the MLP algorithm (Fig. 5)
shows robust overall performance in classifying the different
classes, with high numbers on the diagonal representing correct
predictions. For example, class 0 is well predicted with 88,018
instances correctly classified, while classes 2 and 3 also show
high classification rates, with 26,705 and 25,826 instances
correctly classified, respectively. However, some classification
errors, though minor, are present, as indicated by the off-
diagonal values. False positives, such as the 797 instances of
class 0 incorrectly classified as class 3, and false negatives,
like the 806 instances of class 1 predicted as class 0, highlight
the limitations of the algorithm.

The results obtained from our study have exceeded our
expectations, confirming the effectiveness of our proposed
solution. Our approach aims to provide a cost-effective and
privacy-conscious method that is highly responsive to the
evolving nature of APT threats targeting DNS. Initially, we
identified 87 plaintext features that are directly accessible
without the need for third-party equipment to decrypt data.
Subsequently, we developed a lightweight application for cap-
turing traffic, which demonstrated its capability to analyze
network traffic in real-time and detect APT threats effectively.
Furthermore, the integration of the MITRE framework has
provided a comprehensive understanding of APT behaviors,
enabling proactive threat detection. This makes our approach
not only more efficient and effective but also lightweight and
secure, addressing critical concerns in cybersecurity.

VI. CONCLUSION

The absence of significant features due to encryption in
TLS, the limited exploitation of intelligence platforms in
the search for proactive solutions, and the lack of training
data covering all stages of the APT lifecycle underscore the
importance of a balanced understanding of adversaries’ behav-
iors, capabilities, and intentions for effective defense against
APT threats targeting DNS. This study sought to develop a
comprehensive approach for analyzing and detecting malicious

domains throughout the entire APT lifecycle. The method
had to meet several constraints: strict privacy compliance,
lightweight and low operational cost, as well as optimal
efficiency and responsiveness. To address this challenge, we
developed a distinctive feature extraction module by analyzing
TTPs and IoCs from APT threats using the MITRE ATT&CK
matrix, thus contributing to the identification of features and
data sources for building a dataset covering all phases of the
APT lifecycle. Another major contribution of this study lies in
the focus on detecting C&C servers and tools such as DGAs
within the APT lifecycle.

Our experiments were conducted using six machine learn-
ing algorithms enabling a thorough evaluation of our ap-
proach’s performance in a multi-class framework. This novel
approach, which integrates intelligence platforms and im-
portance indicators, has proven effective in detecting APTs
throughout their entire lifecycle. The results obtained open
promising perspectives for the continuous improvement of
threat detection systems. Our future work will focus on es-
tablishing an intelligence platform aimed at sharing threat
information within a trust circle for stakeholders with com-
mon challenges and strategies. Community sharing allows for
alerting others about the occurrence of a probable attack and
benefiting from feedback on how to counter a threat.
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2008, p. 235-246. doi: 10.1007/978-3-540-89197-0 24.

[29] Gouayon Koala, Didier Bassolé, Telesphore Tiendrebeogo, and
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