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Abstract—Migraine is a neurovascular disorder with a preva-
lence that exceeds 1 billion individuals worldwide, but it has
long been recognized to have unique diagnostic challenges due to
its heterogeneous pathophysiology and dependence on subjective
assessments. As has been extensively documented by a number
of international law bodies, migraine in the workplace has been
identified as a significant issue that requires urgent attention.
Migraine defined by episodic, unilateral and debilitating symp-
toms including aura, nausea incurs a high socioeconomic burden
in disability. Mechanisms such as altered cortical excitability
and trigeminal system activation, although researched to a high
extent, are still inadequately understood. Deep learning and ma-
chine learning (ML) hold tremendous potential for transforming
diagnosis and classification of migraine. This study evaluates
several machine learning (ML) models such as gradient boosting,
decision tree, random forest, k-Nearest Neighbors (KNN), support
vector machine (SVM), logistic regression, multi-layer perceptron
(MLP), artificial neural network (ANN), and deep neural network
(DNN) for multi-class classification of migraine. By employing ad-
vanced preprocessing techniques and publicly obtainable datasets,
the study addresses the challenge of identifying different types of
migraines that may share common variables. In this study, several
machine learning (ML) models including gradient boosting,
decision tree, random forest, k-Nearest Neighbors show that for
multi-class migraine classification MLP and Gradient Boosting
had good performance in most models, but did perform poorly
in complex subcategories like Typical Aura with Migraine. Both
attained high accuracies (96.4% and 97 %, respectively). KNN and
Logistic Regression, two traditional models, performed well at
basic classifications but poorly at more complex situations; Neural
networks (ANN and DNN) showed much flexibility towards
data complexities. These results underscore how important it
is to align model selection with data properties and provide
avenues for improving performance through regularization and
feature engineering. This strategy illustrates how Al-powered
solutions can revolutionize the way we manage, treat, and prevent
migraines across the globe.
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I. INTRODUCTION

Migraine is a complex and common neurovascular disease
that poses many challenges to accurate diagnosis and effective
treatment. More than 90% of people in the world are affected
by headache disorders in general [1], but migraine stands out
for its effects on the brain, body, and quality of life in particu-
lar. They are among the most common causes of neurological
consultations, and treatment costs in countries such as China
approach an annual 672.7 billion yuan [2]. Although migraines
are not directly life-threatening, they significantly impair work

performance, physical health, mental well-being, and overall
quality of life [3].

The multifaceted nature of migraine, a chronic medical
condition with overlapping legal and social dimensions, is
well-documented. The impact of this condition on individuals’
rights, professional and personal lives is significant and thus
requires a comprehensive response that combines advanced
healthcare, legal protection, and technological innovation. In-
ternationally, international laws play a crucial role in regu-
lating the treatment of chronic and complex diseases such as
migraine, which have a profound impact on patients’ quality
of life and functioning. In this context, the International
Covenant on Economic, Social and Cultural Rights (ICESCR)
is a significant instrument, as it recognizes in [4] the right
of individuals to health, a comprehensive right that is not
limited to the provision of treatment but extends to the right to
access basic healthcare services, including migraine treatment.
This right is essential not only to improve the state of health
of patients but also to restore the ability to lead a normal
professional and social life [5, 6].

The Convention on the Rights of Persons with Disabilities
(CRPD) further underscores the imperative to ensure that in-
dividuals with disabilities, including those afflicted by chronic
migraine, have access to essential health services [7]. The
CRPD obliges state parties to formulate comprehensive health
policies that guarantee the provision of specialised medical
care, taking into account individual differences in diagnosis
and treatment. The utilisation of innovative technology, includ-
ing machine learning techniques, has the potential to enhance
the accuracy of diagnosis and personalise treatment regimens,
ensuring that all patients receive the timely and optimal care
they require.Legislative frameworks, such as the Americans
with Disabilities Act (ADA) in the United States, play a
pivotal role in safeguarding individuals with migraine from
discrimination in the workplace. This legislation stipulates the
provision of reasonable accommodations, such as flexible work
schedules, quiet work environments, and the ability to work
from home, thereby ensuring that individuals with migraine
can continue to perform their professional duties in a manner
that is both conducive to their well-being and effective in their
roles [5,8].

Migraine, the top cause of functional disability among peo-
ple aged 15 to 55, can severely hamper productivity and routine
activities during episodes. The often-unpredictable nature of
migraine attacks increases the anxiety and dysfunction related
to them by the uncertainty of when they might occur. Conven-
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tional treatment strategies either interrupt migraine during an
attack or reduce their frequency through preventative measures.
Preventive medication on high-risk days, as well as abortive
treatment that is most effective early in the migraine cycle,
has moved from proof-of-concept studies with more promis-
ing early data. This highlights the need for prediction-based
solutions in migraine management. In the International Clas-
sification of Headache Disorders (ICHD). In [9], headaches
are classified into three categories: primary headaches (e.g.,
migraine, tension-type headaches, and trigeminal autonomic
cephalalgias), secondary headaches, and cranial neuropathies
or facial pain disorders.

Causes of migraines are myriad, including diet, lifestyle,
genetics, and physiology (Fig. 1). The role of dietary triggers,
such as caffeine, alcohol, and food additives, together with
lifestyle factors, such as stress, poor sleeping patterns, and lack
of exercise, cannot be underestimated in precipitating attacks.
Additional risk factors include having a genetic predisposi-
tion to the condition and heightened susceptibility driven by
physiological as well as biochemical factors, from hormonal
fluctuations to neurotransmitter imbalances, which leads to
the onset of migraines. Migraines have a multi-faceted patho-
physiology, with two key components being triggers (stimuli
causing attacks) and prodromal symptoms, cognitive, sensory,
behavioral, or physical changes, that can occur 1 to 48 hours
before an attack, and serve as critical but difficult-to-measure
indicators of imminent migraines due to their highly subjective
nature and methodological biases. Indeed, neurophysiological
changes (e.g. changes in autonomic tone) can inform on this
prodromal phase. Migraine and tension-type headaches are the
most common types of primary headaches worldwide, with
10% and 40% respectively, while cluster headaches are rare,
with an estimated prevalence of 0.1% [10, 11].

Food

Daily life pattern

Genetics

Physiological and
biochemical factors

Fig. 1. Factors that trigger migraine.

Intractable migraines, with a 16% annual incidence in the
general population, are the second most prevalent cerebral
disease in the world and rank as the leading cause of disability
worldwide, even more than all neurological diseases combined
[12]. Migraines are generally divided into three categories:
migraines with aura, migraines without aura, and chronic
migraines. Migraines with aura occur in up to 25% of cases and
are characterised by transient visual, speech, or neurological
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abnormalities lasting no longer than an hour [13]. Migraines
without aura, on the other hand, appear as unilateral, moderate-
to severe-intensity, pulsatile pain, often with accompanying
nausea and vomiting, photophobia, and phonophobia, and can
last from 4 to 72 h if untreated [14]. Migraine is classified
into episodic (less than 15 headache days per month) and
chronic types (defined as 15 or more headache days per
month with eight or more headache days with features of fully
developed migraine), the latter being more frequent and having
an unfavorable impact on daily life [15].

Digital technologies on the rise allow new opportuni-
ties in migraine management. Direct translation can occur
through wearable technology and mobile health technologies
for headache characteristics, prodromic symptoms, and phys-
iological changes. However, because so much complexity is
involved in the neurobiological processes underlying migraine,
prediction can be difficult. Accurate prediction requires sophis-
ticated models capable of integrating and interpreting complex
flows of biological and physiological data. Machine learning
(ML) appears to be a promising solution, as it can process
and analyze complex and heterogeneous data types. Machine
learning could streamline migraine detection, prediction, and
classification processes, enhance diagnostic accuracy, optimize
treatments, and ultimately reduce the financial and societal
burden associated with migraine management.

This study aims to explore the revolutionary potential of
machine learning (ML) to evolve migraine attack prediction,
particularly in resource-limited settings with limited access
to state-of-the-art medical technology. Even when they can
be valuable, conventional diagnostics such as MRI (Magnetic
Resonance Imaging), PET(Positron Emission Tomography)
and CT(Computed Tomography) scans are pricey and require
specialist knowledge, which places them at a disadvantage in
developing countries. When using ML algorithms that provide
a cost-efficient and high-throughput alternative, reliable sys-
tems for diagnosing and predicting the onset of migraine are
now widely available.

Many advanced machine learning techniques were evalu-
ated in this study, such as artificial neural networks (ANN),
deep neural networks (DNN), multi-layer perceptron (MLP),
logistic regression, k-nearest neighbors (KNN), support vector
machines (SVM), gradient boosting, decision trees, and ran-
dom forests. Models showed promising results with a model
accuracy of 97.12% (MLP), 96.40% (Gradient Boosting), and
96.04% (Decision Tree). Such results showcase this exciting
potential for Al-powered approaches to revolutionize headache
management and improve patient outcomes globally.

The remainder of the paper is organized as follows:
the “Related Work™ section re-views prior research, while
the “Materials and Methods” section outlines the proposed
methodology and dataset. The “Experiments” section details
the conducted experiments and their findings. Finally, the
“Conclusion and Future Work™ section summarizes the key
results and outlines potential directions for future research.

II. RELATED WORK

Recent advances in artificial intelligence (AI) can yield
complex predictive algorithms able to predict migraine
episodes. Smith et al. For instance, [16] used supervised
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machine learning methods such as random forests and deep
learning networks on longitudinal data collected by biometric
tracking devices or mobile applications. A great example was
given by the team at the National Institutes of Health, who
showed that neural network models were able to predict future
migraine attacks 85% of the time by including trigger factors
(stress, sleep, food, etc.) into the model. This underscores the
need for machine learning to pre-emptive migraine treatment,
and real-time data collection.

Several studies have explored whether the combination of
multimodal data (e.g. genetic, environmental, and behaviour)
can augment prediction accuracy. The model of Zhang et al.
[4] was able to achieve better sensitivity and specificity than
using conventional methods by integrating information from
genetic profiles, lifestyle surveys, and wearable sensors. The
results show how combining data from multiple sources can
help us learn more about and predict migraine episodes.

There has also been ongoing research regarding advance-
ment in early detection of migraines using brain imaging tech-
niques as well as biomarkers. For example, during the premon-
itory phase of migraines, Garcia and his team found cues that
predicted a migraine episode was coming [17] and uncovered
discrepancies in patients’ levels of neurotransmitters; that is,
glutamate and serotonin. Using functional magnetic resonance
imaging (fMRI), their study suggested that there are different
patterns of brain activity before and during migraine attacks,
with encouraging potential prospects for real-time detection.
Adding to this, Garcia et al. [17] conducted further research
on serum biomarkers in migraine patients, including increased
levels of glutamate and serotonin. This opens up the potential
of diagnosis by biomolecular profile and hints at neurological
mechanisms. Their techniques help ensure early intervention
strategies, which become more accurate by providing a non-
biassed way to identify migraines.

Continuous monitoring devices like smartwatches and fit-
ness trackers have captured interest due to their ability in
terms of potentially mitigating migraines. According to Lee
et al. when physiological data (e.g. heart rate and stress) were
collected in real time, they gave a 78% chance of detecting the
initial symptoms for migraine [18]. These results highlight the
benefits of regular physiologic monitoring in migraine therapy
and may become a paving method for wearable technology-
assisted preventive treatment fighting techniques.

Conventional approaches to migraine classification are
based on the International Classification of Headache Dis-
orders’ (IHS) symptoms criteria. Recent studies, however,
aim to improve this strategy by adding more precise clinical
features. Miiller et al. [19], for example, discovered a subtype
of migraine associated with increased sensory sensitivities and
sleep disturbances, opening the door to more individualized
treatment choices.

The classification of migraines has been further trans-
formed by genomic advancements. A meta-analysis of genetic
research by Johnson et al. [20] found many genetic loci linked
to heightened migraine risk. Their study suggested a genetic
risk classification by combining genetic data with clinical
information. This in turn permitted both patient stratification
and treatment individualization to the genetic profile of each
host.
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The study in [21] used five different supervised machine
learning methods which aimed to define group of symptoms
described by participants as migraines. For classification and
deployment, we used Weka data mining tool. The results
indicated that, of all the models tested, naive bayes would
be more suitable and easier.

An investigation [22] used brain signals captured through
an EEG and a computer-aided diagnostic (CAD) system to
classify various forms of migraines. This system accomplished
classification using deep learning models as follows: VGG16,
ResNet101, and DenseNet121.

A method to integrate EEG in an online migraine detection
tool for support of clinical decision making was also pre-
sented by a respective study [23]. The EEG dataset consisted
of recordings from 21 healthy volunteers and 18 migraine
patients. The results showed that the Bi-LSTM method with
128 channels outperformed other models, including Random
Forests (RF), Linear Discriminant Analysis (LDA), and Sup-
port Vector Machines (SVM), with the maximum accuracy of
95.99%.

Furthermore, 400 patients’ clinical data that had been
annotated by domain experts was employed in a different
study [24]. The 24 most pertinent factors were chosen after
the researchers first collected data based on symptoms. Then,
to categorize migraines, an Artificial Neural Network (ANN)
and other conventional machine learning models were used.
The ANN model outperformed other algorithms including
SVM, Logistic Regression (LR), Decision Trees, and k-Nearest
Neighbors (KNN) with a 97% classification accuracy for
migraines.

In [25], different machine learning techniques were used
to examine somatosensory evoked potential components in the
frequency and temporal domains for migraine categorization.
Among these were Logistic Regression (LR), Linear Discrimi-
nant Analysis (LDA), Random Forests (RF), k-Nearest Neigh-
bors (KNN), Extreme Gradient Boosting (XGBoost), Support
Vector Machines (SVM), and Multilayer Perceptrons (MLP).
The models were able to differentiate between interictal or ictal
migraine conditions and healthy controls with an accuracy of
over 88%.

In detecting the two classes of headaches and differen-
tiating between healthy controls and migraine sufferers, the
CNN method based on an initiation module outperformed the
conventional support vector machine, which had an accuracy of
83.67%, with a greater accuracy of 86.18% [26]. A feature se-
lection technique was used in a different study [27] to enhance
the migraine group’s classification. With accuracies rising from
67% to 93%, 90% to 95%, and 93% to 94%, respectively,
this method improved the performance of the Naive Bayes,
SVM, and Adaboost classifiers. In a similar vein, a study
by [28] that used EEG signals to diagnose migraines early
revealed that the artificial neural network (ANN) outperformed
logistic regression and support vector machines (SVM) with
an accuracy of 88%. Hemoglobin changes in the prefrontal
cortex (PFC) were observed using functional near-infrared
spectroscopy (fNIRS) during a mental arithmetic (MAT) task.
The specificities and sensitivities were 75% and 100% for
chronic migraine (CM) and 100% and 75% for medication
overuse headaches (MOH), respectively. Based on the findings,
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it seems that fNIRS and machine learning work better together
to classify migraines [7].

In the medical industry, data mining techniques are essen-
tial. Data exploration classification methods such as Naive
Bayes, KNN, SVM, and random forests were used in the
study [29]. Among these, Naive Bayes emerged as the best
classifier, with an accuracy of 0.905 and a precision of 0.475.
A medical case study on hemodynamic parameter monitoring
of actual patients is presented as a practical scenario to monitor
real patients’ life parameters using the WBSN (Wireless Body
Sensor Network). N4SID models (Numerical Subspace State-
Space System Identification) were built with a low false
positive rate and an average forecasting horizon of 47 minutes
[30]. Finally, we used one of machine learning techniques to
distinguish healthy subjects with migraineurs by combining
three functional measures from rs-fMRI [31].

Ufuk et al. [32] proposed the use of deep neural networks
(DNN) for diagnosing migraines, achieving an accuracy of
95%. They used eight attributes to diagnose three types of
migraines (with aura, without aura, and chronic migraine).
Ferroni [33] suggested using a decision support system (DSS)
to diagnose medication-overuse migraine, with an accuracy of
82%. In another study [34], a DSS was proposed for diagnos-
ing primary headaches, achieving an accuracy of 80%. The
authors compared four machine learning techniques: Bagging,
Naive Bayes, Boosting, and Random Forest. Rober Keight
[36] proposed using decision trees (DST) to diagnose primary
headache types using 9 machine learning classifiers, achiev-
ing an accuracy of 95%. Hao Yang [35] used convolutional
neural networks (CNN) for migraine classification from MRI,
achieving an accuracy of 99%. Akben [36] implemented an
artificial neural network (ANN) for migraine diagnosis, with
an accuracy of 83.3%. Akben [37] also used an SVM classifier
to diagnose migraines, achieving an accuracy of 85%. Subasi
[38] tested different versions of the Random Forest method
for migraine diagnosis, obtaining an accuracy of 85.95%. De
la Hoz [39] used an ANN for migraine diagnosis, achieving
an accuracy of 88%. Yolanda Garcia [27] proposed feature
selection for migraine diagnosis, achieving an accuracy of
90%. Even more recently, researchers have focused on the use
of MRI and fMRI images for the detection and classification
of migraines [40—42].

In [43], the study presented the design and development of
an ML decision support system aimed at providing diagnosis of
tension headaches and migraines. The results obtained with the
logistic regression model were found to be the best among all.
The accuracy level raised to 0.84 with a stand against models
such as gradient boosting algorithms and random forests.

The Table I describes the parameters that were used during
related works.

III. MATERIALS AND METHODS

The provision of preparation of the data takes a long
time and uses relatively powerful computational resources,
with the straightforward methods of deep learning/machine
learning. Therefore, getting some relevant information depends
on an effective machine learning system. Designing further
this machine-learning architecture is therefore quite compli-

TABLE 1. PARAMETERS USED DURING RELATED WORKS

Study| Techniques Used Dataset/Attributes Accuracy
[23] | Bi-LSTM, SVM, LDA, EEG signals from 18 mi- 95.99%
Random Forest graine patients and 21 con-
trols
[24] | ANN, SVM, Logistic Re- | Clinical data from 400 pa- | 97%
gression, Decision Trees, tients
KNN
[25] | SVM, RE, KNN, XGBoost, Somatosensory evoked po- 88%
LDA, MLP, Logistic Re- tential features
gression
[26] | CNN with initiation mod- | EEG signals 86.18%
ule
[27] | Naive Bayes, SVM, Ad- | Feature selection applied to | Increased
aboost migraine group from
67%-94%
[28] | ANN EEG signals, fNIRS 88%
[29] | Naive Bayes, KNN, SVM, | Data exploration | 90.5%
Random Forest techniques for (Naive
classification Bayes)

[32] | DNN 8 attributes for diagnosing | 95%
3 types of migraines

[33] | DSS (Decision Support | Medication-overuse 82%

System) migraine data

[35] | DSS Primary headache data 80%

[24] | DST (Decision Trees) 9 machine learning classi- | 95%
fiers for primary headache
types

[36] | CNN MRI data for migraine | 99%
classification

37 ANN 83.3%

38 SVM 85%

Different versions of Ran- 85.95%

dom Forest

39 Random Forest

[40] | ANN
[43] | Logistic Regression, Gra-
dient Boosting, Random
Forest

- 88%
Symptom-based data for 84%
headache classification

cated. Customizing or tuning a model involves adjusting the
parameters of the classifier.

In this study, different models were trained using a variety
of machine-learning algorithms. These were adjusted and opti-
mized afterward for the dataset in order to enhance the quality
of classification. As shown in Fig. 2, the algorithms that have
been considered include Gradient Boosting, Decision Tree,
Random Forest, k-Nearest Neighbors (KNN), Support Vector
Machine (SVM), Logistic Regression, Multi-Layer Perceptron
(MLP), Artificial Neural Networks (ANN), and Deep Neural
Networks (DNN).

A. Dataset

An in-depth examination of contributing causes and related
symptoms is made possible by the migraine database that is
supplied, which provides a thorough and exhaustive overview
of the many components of this ailment. Individuals’ ages,
which range from 18 to 70 years old, are a crucial component
of the demographic data since they enable investigation of
the effects of migraines on various age groups. This dataset
is notable for its comprehensive examination of the features
of migraine episodes, recording variables like attack duration
(which can vary from 30 minutes to 72 hours) and frequency
(which can range from 1 to 10 attacks per month), providing
a more accurate picture of symptom severity and recurrence.
Additionally, a scale from 1 to 10 is used to assess the pain’s
intensity, with 10 being the most severe agony.

Additional information is given on where the pain may
occur, which assists with spotting recurring patterns, such as
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Fig. 2. Proposed system flowchart for migraine classification.

a preponderance of unilateral pain (either right or left) or pain
felt on the forehead, neck, or temples. The database has also
captured those associated conditions, nausea and vomiting,
typical signs of migraine. The other statistic showing that
70% of migraineurs feel sick and about 50% vomit during
a headache creates a more nuanced clinical impression of the
side effects.

In addition to the actual pain, this database includes phe-
nomenological and other sensory characteristics of migraines:
phonophobia (hypersensitivity to sound), photophobia (hyper-
sensitivity to light), and other visual anomalies (blurriness,
aura, etc.). The extremely important features of this disease
dealing with the sensory aspect are the symptoms, and about
60% of migraineurs experience photophobia and phonophobia
during their attacks.

This dataset, with its rich pool of variables, affords taking
a deep look into migraine research, leading to empirical
observations to determine the associations among variables.

Vol. 16, No. 1, 2025

Having this data will allow for extensive studies related to how
age, frequency of attacks, intensity, and concomitant symptoms
influence the severity of migraines. The scientific and medical
community would greatly benefit from this resource, as it is of
prime importance to improve diagnostics, design personalized
treatments, and take more focused approaches to treatment in
clinical practice.

1) Database preprocessing: Data preparation is an impor-
tant step before applying machine learning models in order
to obtain really reliable results. This comprises a number of
crucial sub-steps in the context of our analysis of migraine
data, including noise reduction, inconsistent data repair, error
detection, and data conversion into useful numerical variables.

We began our efforts by doing much cleaning of the data:
extreme values and missing information were removed, mis-
matches resolved, and missing numbers imputed. For example,
any rows where there was missing data on features such as age,
severity of pain, or frequency of attack were either deleted
or imputed. To further ensure data validity and consistency,
problematic cases of data entry (like somewhat unbelievable
values of negative ages and migraine attacks lasting more than
72 hours) were fixed.

The input was then transformed into numerical variables so
that machine learning algorithms could process it more easily.
To make the data interpretable for the analytic models, some
variables, such as pain intensity, were left on a numeric scale
(from 1 to 10), while other variables, like related symptoms
(nausea, vomiting, phonophobia), were converted into binary
variables.

These methods have strengthened data quality and made
our dataset a better candidate for machine learning models
while simultaneously guaranteeing a balanced representation
of the various classes (such as severe and non-severe mi-
graines). This pre-emphasis technique is what allows a model
to achieve the highest performance possible during training and
yield analyses that are more reliable and precise of variables
linked to migraines.

The study relied on an initial corpus of 1,386 clinical
records of Tunisian patients suffering from various pathologies
associated with migraines. Several machine learning classifiers,
including KNN, SVM, RF, DT, LG, MLP, ANN, and DNN,
were applied. The proposed analysis used the diagnosed con-
dition and migraine symptoms as input data.

This analysis focused on 23 variables, including age, vi-
sual disturbances, dizziness, and vomiting that represent the
common clinical symptomology during an acute headache. In
addition, the variable identified as diagnostic was included
to signify the type of migraine classically referred to. This
variable is the diagnosis of the migraine type that was made
by the doctor on the basis of the patient’s medical history
and reported symptoms. The symptomatic variables record the
manifestations such as nausea or lightheadedness.

The Feature Importance Analysis is shown in Fig. 3,
with enrolling age, visual disturbances, intensity of pain, and
phonophobia among the class-leading features in migraine
classification. On the contrary, there are worthless factors such
as ataxia, diplopia, and dysarthria that have little influence on
classification and could be disregarded; this would increase
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efficiency and thereby help simplify the model. This procedure
emphasizes the priority of emphasizing the necessary compo-
nents while eliminating the least important ones to boost the
performance of classifications.

Feature Importance
Age
Visual
Intensity
DPF
Character
Phonophobia
Frequency
Vertigo
Location
Photophobia
Duration
Tinnitus

Features

Sensory
Vomit
Nausea
Dysphasia
Hypoacusis
Conscience
Defect
Paresthesia
Dysarthria
Diplopia
Ataxia

0.00 0.02 004 006 0.08 010 012 014 016
Importance Score

Fig. 3. Feature importance analysis for migraine classification.

B. Classification Models

The algorithms testing on the migraine classification
dataset after applying the basic preprocessing methods, various
machine learning methods including GB, LG, SVM, KNN, DT,
RF, MLP, ANN as well as deep neural network DNN were
applied to the dataset.

The parameters utilized in the experiment are described in

Table II.

TABLE II. HYPER-PARAMETERS FOR DIFFERENT MODELS

Model Hyper-parameter Value
B‘;‘Nnmw Number of epochs 100
Activation function relu
Optimizer Adam
Model Sequential (first
layer)
Number of neurons at first dense layer 512
Hidden layer 2
Classification function softmax
Loss function categorical-cross
entropy
SVM Kernel Linear
Class sklearn.svm.SVC
Regularization parameters C 1
Probability True
KNN Neighbors range (1,15,1)
Weights Uniform
Metric distance Euclidean
RF n_estimators 100
max_depth 50
min_samples_split 5
min_samples_leaf 2
max_features sqrt
random_state 42

IV. EXPERIMENTS AND RESULTS

The outcomes for migraine classification using various
machine learning models are presented in this section. Specifi-
cally, we focus the assessment on the classifiers of complexity
namely Multi-Layer Perceptron (MLP), Deep Neural Networks

Vol. 16, No. 1, 2025

(DNN), and Artificial Neural Networks (ANN). These classi-
fiers were examined in detail with a view that performance
assessment based on a variety of training sets would reveal
their capability in maintaining accuracy, robustness, applica-
bility in migraine diagnosis and attacks management with a
large dataset. In-person examination and assessment reveal to
a great degree the applicability of such techniques in real life
including the merits and demerits.

A. ANN Model

Despite the fact that both belong to the same family of
neural networks, ANN and DNN stand separated by layers-of-
Depth and complexity, which will influence their efficiency in
predicting, detecting, and classifying migraines. ANN, having
just one or two hidden layers, is more preferred in classifica-
tion, such as classifying migraineurs from clinical tabular data,
because ANN works better with small datasets due to its lesser
training data requirements and resistance to overfitting. Fig. 4
illustrates the basic architecture of ANN.

Hidden Layer

Input Layer Output Layer

Input Output

Fig. 4. Basic model of ANN.

The accuracy curves (Fig. 5) show a steady improvement
in performance over the 100 epochs, reaching a high level and
stabilizing around 95% for both the training and validation sets.
The model does not exhibit significant signs of overfitting, as
the validation accuracy closely follows the training accuracy.
This indicates that the dense neural network (ANN) has
effectively learned to generalize without being restricted solely
to the training data.

Model Accuracy Model Loss

—— Training Loss

PSP
AP AR
AL Validation Loss

—— Training Accuracy 025
Validation Accuracy

0 20 40 60 80 100 0 20 40 60 80 100
Epochs Epochs

Fig. 5. Accuracy and loss graph of ANN model.
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The loss curve (Fig. 5) demonstrates a steady decline,
converging toward a low value, indicating the effective training
of the ANN model. The validation loss closely mirrors the
training loss, confirming good generalization without notice-
able overfitting or underfitting.

The confusion matrix (Fig. 6) provides a detailed as-
sessment of the model’s classification performance across
different categories. Correct predictions are highlighted along
the main diagonal, with most classes, including Basilar-type
aura, Familial hemiplegic migraine, Migraine without aura,
Other, and Typical aura without migraine, exhibiting near-
perfect accuracy. However, some misclassifications are noted,
particularly for Sporadic hemiplegic migraine, which shows
moderate confusion with the Other category, and for Typical
aura with migraine, where a few samples are incorrectly
classified as Basilar-type aura or Familial hemiplegic migraine.

Confusion Matrix

Basilar-type aura

Familial hemiplegic migraine -

Migraine without aura - 0

Other - 0

True

Sporadic hemiplegic migraine - 0

Typical aura with migraine - 3

o

Typical aura without migraine -
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Fig. 6. Confusion matrix of ANN model.

The ANN model provides relatively good performance, and
that can be seen by clear separability among most of the classes
and fewer misclassifications there. Additional support for ef-
fective learning and generalization is provided by accuracy
and loss curves. However, remaining challenges relate more to
classes with overlapping characteristics, such as migraines with
or without aura and the different types of hemiplegic migraine.
Class imbalances or an insufficient distinction among classes
in the dataset could be responsible for the said problems.

B. DNN Model

Deep neural networks (DNN) become particularly suited
for such works because of their more comprehensive and
deeper architecture and their capability to furnish complex
information, for instance, time-series information collected
by Internet of Things sensors for other physiological signals
(ECG, vectorcardiogram), or functional MRI images. The
ability of these models to perform well in complex tasks-
such as discerning migraine types (e.g. aura versus non-aura)
and amalgamating data from various sources to give timely
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warning of migraine attacks-is astonishing. An ability to cap-
ture complex interactions proves helpful to tackling migraine
classification’s different challenging problems. However, the
efficiency of DNN usually depends on the availability of
large datasets and the employment of complex regularization
techniques to minimize the risks of overfitting. Thus, this
emphasizes how critical it is to have proper data preparation
and model optimization to fully leverage the advantage of
DNN in this field.

The architecture of the DNN model used in the classifica-
tion of migraine types is described in its Fig. 7. It has four
layers-an input layer, two hidden layers, and an output layer.
This architecture can manage the complexity of the migraine-
related datasets and give extremely high classification results.

Classification

Data Pre-processing

Data
Source

Input Layer

Hidden Layer 1 Hidden Layer 2

Classification Layer

Fig. 7. Fundamental architectural design of a deep neural network applied to
migraine classification.

The DNN model showed a fast improvement of perfor-
mances within the first epochs, after which the accuracy curve
was stable at above 95% up to the end of 100 iterations, as
seen in Fig. 8. This behavior shows the ability of the model
to form these important data features and learn them. The
training accuracy matched close to the validation accuracy,
which shows good generalization capability. The two curves
diverge only mildly, indicating that the model avoids overfitting
and can keep providing high performance on unseen data.

The loss curve, also shown in Fig. 8, drops swiftly in
the first few epochs, indicating a decent learning process
that reduces errors. The optimization is seen to be successful
when the curve plateaus at a low value. The same pattern
occurs in the validation loss, which indicates that the model
was well-regularized and neither overfit nor underfit. Lastly,
an additional line indicates the test loss, which tells the
generalization of this model to independent data, lying very
close to the training and validation losses.

This robustness of the model has also been corroborated
by the recall and Fl-score metrics, assessing its capacity to
classify each class correctly and strike a balance between
precision and recall. All average values for these metrics
exceed 0.95.

The confusion matrix in Fig. 9 provides a detailed treatment
of misclassifications. The great clustering of values along the
diagonal illustrates that most samples have been correctly as-
signed. There are, however, slight misclassifications, including
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Fig. 8. Accuracy and loss graph of DNN model.

the assignment of four sporadic hemiplegic migraine samples
to other categories and the wrong assignment of two Basilar-
type Aura samples as Typical Aura along with migraine.
These unintentional errors are common in any multi-class
classification problem; being rare, they barely dent the overall
efficacy of the model.
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Fig. 9. Confusion matrix of DNN model.

The findings reveal the successful classification of mi-
graines by the DNN model and its high generalization capabil-
ity for fresh data. The resilience of the model is evidenced by
the almost-perfect results in numerous categories and overall
high accuracy. These encouraging results suggest that DNN
can support the diagnoses and categorizations of different
types of migraine while maintaining a strong balance between
learning and generalization.

C. Multi-Layer Perception Model

The architecture of the Multi-Layer Perceptron (MLP)
model, presented in Fig. 10, is essential for classification tasks,
particularly in predicting migraine types.Taking factors such
as age, migraine severity, or symptom frequency as inputs, the
architecture comprises three main modules: the input layer,
hidden layer(s), and the output layer. The hidden neurons
nest in various buried layers, using activation functions and
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weight computations to identify complex patterns in the data.
The output layer gives predictions like Migraine with Aura
or Migraine without Aura. Every neuron uniformly influences
the neurons in the downstream layers, thus enabling the MLP
to model complex and intricate non-linear relations while
analyzing clinical migraine data.

Input 1

Input 2

Input 3

Hidden Layer(s)

- ;|4
<+ —l-u

| Input Layer |
* !

>
|-. L

Output Layer |
g

Fig. 10. MLP Model architecture.

How well the Multi-Layer Perceptron (MLP) model have
performed in migraine prediction, detection, and classification
is validated by the learning curves (Fig. 11). The loss curve
which is an insight into learning, shows a very high decrease
from 1.75 to around 0.2 during the initial 20 epochs, thereby
it rapidly develops. It then stabilizes between 0.1 and 0.2,
which indicates the model has been successfully trained and
has effectively converged. Notably, when the training and
validation loss curves are in close proximity it implies a lack
of overfitting and high generalization to new data by the model
which is another way of saying its accuracy is high hence.

The accuracy curves (Fig. 11) further underscore the
model’s success, showing a swift increase in performance,
reaching 95 to 97% accuracy within the first 20 epochs and
maintaining stability afterward. Although slight fluctuations in
the validation curve occur likely due to mini-batch variations
or sample differences they do not compromise the overall
robustness of the results. The consistency observed between
the training and validation curves for both accuracy and loss
demonstrate that the model is well-regularized and capable of
generalizing effectively.

These results support the MLP model’s dependability in ac-
curately diagnosing migraines while striking the ideal balance
between generalization and learning.

The results gathered by the model are quite promising and
reassuring in finding which kind of migraines types is dissimi-
lar, even in the case of a multi-class scenario, when things are
much more complicated. As the confusion matrix (Fig. 12) is
quite detailed, we can witness the model’s performance within
different migraine categories.
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Fig. 11. Accuracy and loss graph of MLP model.
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Fig. 12. Confusion matrix of MLP model.

The performance of classes demonstrates very high preci-
sion in a small number of categories. Notably, Migraine with-
out aura, Other, Sporadic hemiplegic migraine, and Typical
aura without migraine are the best ones with precision, recall,
and Fl-score equal to 1.00. These facts are evidence for the
model’s ability to practically learn to correctly classify dif-
ferent types of migraines according to specific characteristics
among other features by the time the model is finished.

For Basilar-type aura, the model achieved a precision of
97% and a recall of 95%, resulting in an Fl-score of 96%.
Although these results are outstanding, they indicate that a
small number of samples were misclassified. Similarly, for
familial hemiplegic migraine, while the model achieved a
perfect recall of 100% indicating all instances of this class
were identified, its precision was 89%, suggesting some degree
of misclassification with other classes.

Performance was somewhat worse in the event of a typical
aura with migraine, with an F1-score of 89% (precision of 94%
and recall of 85%). Overlapping characteristics with different
migraine kinds are probably to blame for this, which could
make classification difficult.

97% accuracy was achieved in the experiment of experi-
menting with errors with a particular reason by the model and
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the training data, and the precision is 0.9915, recall is 0.5926,
and F1-score is 0.7321. In multi-class tasks that complicate the
problem well, such as difficulty in distinguishing the boundary
between the two classes or the presence of overlapping behav-
iors, the ability of this model to maintain balance is more than
necessary. Together, these results establish that the model is
not only able to learn from a variety of types of data but also
to classify properly into many classes in general.

V. DISCUSSION

The research compared the supervisory learning models:
Gradient Boosting, Decision Tree, Random Forest, K-Nearest
Neighbors (KNN), Support Vector Machine (SVM), Logistic
Regression, Multi-Layer Perceptron (MLP), Artificial Neural
Networks (ANN), and Deep Neural Networks (DNN) for
migraine prediction and classification. Interesting information
about the strengths and weaknesses of the models’ related to
the multi-class classification of migraine was exposed by the
comparison.

The Gradient Boosting model exhibited impressive perfor-
mance in classes such as Migraine Without Aura and Typical
Aura Without Migraine, yielding an accuracy rate of 96.4%.
But it struggled with complex types like Migraine with Typical
Aura. The Decision Tree model exhibited stellar performance
at 96.04% accuracy; yet, it faced challenges with Basilar-Type
Aura, shown by an Fl-score of 0.90.

In a number of classes, including Migraine Without Aura,
Other, and Sporadic Hemiplegic Migraine, the Multi-Layer
Perceptron (MLP) demonstrated the maximum accuracy of
97%, with flawless precision and recall. However, MLP per-
formed worse for Typical Aura with Migraine (F1-score of
89%), most likely as a result of category overlap.

The Random Forest model had a very good accuracy at
95%, but exhibited signs of overfitting, particularly in certain
categories. It performed well in less complex classes, such as
Other and Typical Aura Without Migraine. With corresponding
accuracies of 93.17% and 92.09%, KNN performed better
than SVM. KNN proved effective in distinguishing Basilar-
Type Aura and Migraine Without Aura but faced similar chal-
lenges in complex categories. Logistic Regression performed
at a baseline with an accuracy of 89%, excelling in simpler
classifications but struggling with nuanced categories, such as
Typical Aura with Migraine, where its Fl-score dropped to
70%.

The ANN model performance was robust in terms of
accuracy with 95% on overlapping class problems as long
as the scope of the clinical dataset was limited and well
defined. It was a bit challenging for the ANN to manage
overlapping classes. On the other hand, DNN performed
slightly better at 95.19%, leveraging its deeper architecture
to model more complex patterns, especially for challenging
classes like Sporadic Hemiplegic Migraine. However, the DNN
had high computational cost and also extensive regularization
requirements which are its main downsides.

In conclusion, the best models overall were the Gradient
Boosting and MLP as they gave consistently high accuracy.
Both ANN and DNN also had their advantages, ANN was op-
timal for less complicated datasets which use One Dimensional
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representations and DNN was optimal for multidimensional
and complex datasets. All these findings stress the need to be
selective on the choice of model to be developed, with respect
to the complexity of the data and the nature of the task. For
the future research, better performance may be obtained from
harnessing class imbalance, better feature engineering, fine-
tuning the regularization and adding ensemble methods.

In Table III, the results of existing work for migraine
classification are equated with the accuracy of the classification
produced by our proposed model.

TABLE III. COMPARATIVE RESULTS

Model Accuracy F1-score Sensitivity | precision
(%) (%) (%) (%)
Gradient Boosting 96.4 96 96 97
Random Forest 95 71.8 73.2 70.8
SVM 92.09 91.64 91.63 91.64
KNN 93.17 92.63 92.74 93.08
Decision Tree 96.04 95.87 95.84 96.03
Logistic Regression 89.21 89.2 89 89.8
MLP 97.12 94.14 94.25 94.32
ANN 95.86 95.4 95.7 95.7
DNN 95.19 95.15 95.08 95.18

VI. CONCLUSION

This study highlights the ability of machine learning to
correctly define attacks of migraines through classification
models. Gradient Boosting achieved an accuracy of 96.4%,
excelling in classes like Migraine Without Aura, while MLP
stood out as the best performer with 97% accuracy and
perfect scores in several classes. Artificial Neural Network
also performed well with ANN at 95% accuracy and DNN
at 95.19%, although computational demands were notable.
Other models such as Logistic Regression (89%) struggled
with nuanced categories, while Random Forest (95%), KNN
(93.17%), and SVM (92.09%) performed moderately. Finally,
MLP and Gradient boosting were the outstanding models
emphasizing the importance of model selection which depends
on the complexity of the data set in improving clinical practice.

The implications of improving our understanding of how
algorithm choice affects performance in classification and
providing a way forward in performing more efficient migraine
diagnosis are crucial for future research through feature en-
gineering and model optimization. Future studies may incor-
porate ensemble methods, refine how complex models overfit
and improve procedures for more detailed and specific types
of migraines.
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