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Abstract—Background subtraction plays a critical role in 

computer vision, particularly in vehicle detection and tracking. 

Traditional Gaussian Mixture Models (GMM) face limitations in 

dynamic traffic scenarios, leading to inaccuracies. This study 

proposes an Improved GMM with adaptive time-varying 

learning rates, exponential decay, and outlier processing to 

enhance performance across light, moderate, and heavy traffic 

densities. The model's parameters are automatically optimized 

using the Cuckoo Search algorithm, improving adaptability to 

varying environmental conditions. Validated on the 

ChangeDetection.net 2014 dataset, the Improved GMM achieves 

superior precision, recall, and F-measure compared to existing 

methods. Its consistent performance across diverse traffic 

scenarios highlights its effectiveness for real-time traffic flow 

analysis and vehicle detection applications. 
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I. INTRODUCTION 

In recent years, the significance of vehicle detection and 
tracking systems has increased, driven by the growing demand 
for efficient and intelligent transportation systems. These 
systems play a pivotal role in diverse applications such as 
traffic management, accident prevention, and autonomous 
vehicle navigation [1-5].  To meet these demands, accurate and 
dependable Background Subtraction (BS) methods are 
essential in handling the complexities posed by dynamic and 
different traffic scenarios. Researchers have proposed many 
methods to study vehicle detection, such as traditional 
computer vision, machine learning, deep learning, motion-
based, radar-based, and fusion techniques. This research 
specifically focuses on traditional computer vision methods: 
background subtraction in terms of mathematical contributions. 

The BS method is a technique used for object detection. It 
involves segmenting the foreground from the background 
scene by generating a binary mask that identifies moving 
objects. The core principle of the BS method is to compute the 
difference between the current frame and a reference frame 
(background image). Thresholding techniques are then applied 
to classify the segmented pixels as either foreground or 
background. This process effectively isolates moving objects 
from the stationary background. 

BS is a pivotal component in detection, tracking, and scene 
understanding, has been extensively addressed through GMM. 
GMM, known for their efficacy, are widely utilized to model 
complex and multi-modal background scenes by capturing 
statistical distributions of pixel intensities over time [6-8]. 
However, the application of traditional GMMs encounters 
notable challenges in the domain of vehicle detection, 
particularly when faced with different traffic densities. These 
challenges stem from the inherent limitations of constant 
learning rates in traditional GMMs, which are unable to adjust 
dynamically to the varying characteristics of the data. Traffic 
density and vehicle movement patterns can vary significantly 
over time and across environments. In such scenarios, a fixed 
learning rate often proves suboptimal, leading to issues such as 
slow convergence or convergence to suboptimal solutions, 
thereby impacting detection accuracy. 

Moreover, traditional GMMs treat all observations equally, 
including outliers, which can distort the underlying data 
distribution and reduce the precision of the segmentation. They 
also assume that pixels do not closely match the mean 
belonging to the same statistical cluster, which may not be 
accurate in highly dynamic environments. These shortcomings 
hinder the ability of traditional models to adapt effectively to 
rapid changes in traffic conditions, such as those encountered 
in heavy or fluctuating traffic densities. 

To address these limitations, this study proposes an 
Improved Gaussian Mixture Model (Improved GMM) that 
builds upon the strengths of traditional GMMs while 
introducing key enhancements. The Improved GMM 
incorporates an adaptive time-varying learning rate, which 
allows the model to dynamically adjust its parameters based on 
the characteristics of the current data. This adaptability 
improves performance across different traffic densities by 
better accommodating environmental changes. 

Additionally, the model introduces exponential decay, 
which emphasizes pixels closer to the mean, enhancing the 
model's ability to distinguish between objects and background 
elements with higher precision. Outlier processing is also 
incorporated to control the influence of new covariance update 
observations, ensuring robustness against noisy data and 
outliers. These modifications collectively enable the Improved 
GMM to handle the complexities of vehicle detection under 
varying traffic densities. 
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Finally, to further enhance the robustness and adaptability 
of the Improved GMM, the Cuckoo Search (CS) optimization 
technique is employed for automatic parameter tuning. Inspired 
by the breeding behavior of cuckoos, this metaheuristic 
algorithm intelligently selects optimal values for critical 
parameters, such as the number of Gaussian components and 
learning rates, by exploring the parameter space efficiently. 
Unlike manual tuning, CS optimization dynamically adapts to 
the complexity of different traffic scenes, ensuring that the 
Improved GMM consistently delivers high detection accuracy 
across diverse environmental conditions with minimal human 
intervention. 

Traffic density affects the dynamics of the background 
scene. In light traffic conditions, background updates may 
occur less frequently as there are fewer changes to the 
background. In contrast, the background may change rapidly in 
heavy traffic conditions due to the movement of multiple 
vehicles. Understanding and adapting to these variations in 
background dynamics is essential for accurate background 
subtraction [9-10]. 

The focus extends beyond the general challenges of vehicle 
detection to performance under different traffic densities—
light, moderate, and heavy traffic conditions. The classification 
can be defined by the number of vehicles per square foot. Light 
traffic scenarios may involve less than three vehicles 
distributed per 500 square feet; moderate traffic represents a 
balance of vehicles, which is less than five vehicles distributed 
per 500 square feet, while heavy traffic introduces challenges, 
such as more than six vehicles distributed per 500 square feet. 
These variations necessitate developing an adaptive method to 
effectively address these issues while maintaining high 
detection accuracy and computational efficiency. 

The structure of this paper is organized as follows: Section 
II reviews related works, providing an overview of existing 
approaches and background subtraction enhancements. Section 
III comprehensively discusses GMM and its applications in 
background subtraction. Section IV details the proposed 
Improved GMM, outlining modifications and introducing key 
elements. Section V describes the experimental setup and 
datasets utilized for evaluation, while results and discussion is 
given in Section VI and finally, the paper is concluded in 
Section VII. 

II. RELATED WORKS 

In the realm of computer vision, the study of background 
subtraction has been both significant and extensively explored. 
This led to the development and presentation of numerous 
methods and techniques to overcome diverse challenges, 
particularly in the context of detecting vehicles within dynamic 
traffic scenarios. The GMM has been widely adopted for 
background subtraction in computer vision applications, 
particularly in the vehicle detection field [7]. Initially, 
Friedman and Russel introduced the GMMs for background 
subtraction [11], while Stauffer and Grimson subsequently 
developed effective modified equations [6]. Numerous 
researchers also proposed additional modifications and 
improvements on the original model to enhance its 
performance in various traffic scenarios. Hence, this section 

reviews several key developments and recent field 
advancements, focusing on an overview of the existing GMM 
methods and their improvements in background subtraction. 
Stauffer and Grimson denoted the GMM as a background 
subtraction method, which gained significant popularity due to 
its ability to model complex and multi-modal background 
scenes [6]. The study successfully achieved the objectives by 
capturing the statistical distribution of pixel intensities over 
time. Consequently, numerous researchers proposed 
improvements and modifications to the traditional GMM. 

Zivkovic developed an adaptive GMM with a configurable 
number of Gaussian components, producing improved model 
adaptations to changing conditions [7]. Meanwhile, Zuo et al. 
designed an enhanced method for noise interruption for the 
traditional GMM [12]. The study incorporated several 
techniques to improve performance, including image block 
averaging, wavelet semi-thresholding, and adaptive 
background updating. Thus, the method effectively eliminated 
noise issues and enhanced the detection performance of the 
moving targets. The study also utilized an adaptive background 
update during the background updating phase, resulting in 
more accurate detection results. Another study by Lin and 
Chen discovered a novel method for recognizing moving 
objects that integrated GMM with visual saliency maps [13]. 
The approach effectively overcame the challenges caused by 
shadow situations while producing stable detection results, 
which transformed each image frame to the L∗, a∗, and b∗ 
colour spaces. A Gaussian filter was then utilized to smooth the 
L∗, a∗, and b∗ channels, eliminating small texture features and 
noise. The saliency maps were estimated for each channel and 
linearly merged to generate a comprehensive saliency map, 
which was combined with the foregrounds to obtain the 
moving objects. 

Meanwhile, Zivkovic and Heijden present two efficient 
adaptive density estimation methods for background 
subtraction in video surveillance systems. The first method is 
based on a GMM and uses recursive equations to update model 
parameters and select appropriate components for each pixel. 
The second method is a nonparametric kernel-based approach 
that adapts to changes in the scene by updating the training 
data set. The performance of both methods is evaluated and 
compared to other algorithms. The results show that the 
nonparametric method outperforms the GMM approach in 
terms of accuracy but at the cost of increased processing time. 
This research provides valuable insights into the challenges of 
background subtraction and offers practical solutions for real-
world applications [14]. A study by Varadarajan et al. proposes 
a new approach to modeling and subtracting backgrounds 
effectively in scenes with complex dynamic textures. The 
proposed method considers the spatial relationship between 
pixels, modeling regions as mixture distributions rather than 
individual pixels. In this research, the researchers derive novel 
online update equations using expectation maximization (EM) 
for modeling scenes containing dynamic textures. The 
effectiveness of the proposed algorithm is experimentally 
verified on various video sequences and compared with other 
well-known background subtraction algorithms. The results 
show that the proposed algorithm performs better than most 
algorithms and produces comparable results to ViBe, one of 
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the best background subtraction algorithms currently in the 
literature [15]. 

Another study by Cioppa et al. introduces a novel algorithm 
called Real-Time Semantic Background Subtraction (RT-SBS), 
which combines real-time background subtraction with high-
quality semantic information for improved performance. The 
algorithm addresses the limitations of traditional background 
subtraction methods by leveraging semantic information 
provided at a slower pace and for some pixels. RT-SBS reuses 
previous semantic information by integrating a change 
detection algorithm during the decision process, ensuring real-
time applicability while maintaining performance comparable 
to SBS. This work advances real-time background subtraction 
algorithms, particularly in scenarios with dynamic 
backgrounds, illumination changes, and moving objects [16]. 

Işık et al. proposed a novel method for foreground or 
background extraction in videos, specifically designed to 
address challenges posed by dynamic backgrounds. The 
Common Vector Approach for Background Subtraction 
(CVABS) leverages the Common Vector Approach (CVA) 
obtained through Gram-Schmidt Orthogonalization to achieve 
accurate background modeling. By treating background 
modeling as a spatiotemporal classification problem, the 
algorithm computes the common vector of frames to acquire 
the background model, enabling effective foreground object 
detection. The method incorporates a self-learning feedback 
mechanism to mitigate the impact of dynamic scenes and 
illumination changes on foreground detection accuracy. 
Experimental evaluations on diverse, dynamic backgrounds 
demonstrate the effectiveness of CVABS, positioning it as a 
competitive solution in the field of moving object segmentation 
[17]. 

In recent years, researchers also emphasized optimizing the 
GMM framework for specific applications, such as vehicle 
detection in traffic scenarios. A study by Zhang et al. described 
GMM with Confidence Measurement (GMMCM) as a 
potential solution [18]. The study addressed the susceptibility 
of background subtraction models towards contamination by 
slowly moving or temporarily stopping vehicles. Furthermore, 
the GMMCM incorporated a Confidence Measurement (CM) 
technique, assigning trust values to each pixel in the 
background model. This method quantified the current 
reliability of background pixels, and the design was developed 
to balance the dynamic changes in brightness and background 
(resolving contamination challenges) in complex urban traffic 
scenes. Consequently, this method was successful through a 
self-adaptive learning rate, which ensured the background 
model remained accurate. Another study by Lima et al. 
included a method for estimating the region-specific thresholds 
using a feedback step [19]. The approach employed spatial 
analysis to select an appropriate threshold for each region, 
which was utilized for pixel classification. A filtering 
technique was applied to the segmentation before the threshold 
estimate to address classification errors. This filtering process 
eliminated disturbances and consolidated the entire area into a 
cohesive unit. During the feedback phase, segmentation 
corrections estimated the thresholds for subsequent iterations. 
Notably, the filtering stage focused on correcting foreground 
errors, significantly enhancing the vehicle areas. This 

recommended strategy facilitated the segmentation of 
previously segmented regions and resembled a first-order 
Markov chain estimate of the threshold. 

In a study by Agrawal and Natu, a novel approach was 
developed by combining GMM with blob analysis, including 
labelling and morphological operations, to enhance the 
accuracy of foreground detection [20]. The model computed 
the difference between the reference frame BMG (x, y) and the 
current frame while applying a threshold to isolate the region 
of interest. In constructing the foreground model, a threshold 
value was selected for each pixel, which was determined using 
the standard deviation. A study by Luo et al. summarised a 
motion detection method considering spatial variation in image 
thresholds [21]. The approach required calculating the 
projected motion size under different image regions, 
established using a mapping correlation between the geometric 
motion features and the appropriate enclosing rectangle 
(BLOB) level in the spatial domain. This discovery enabled an 
adaptive threshold for each motion, effectively removing 
unwanted noise during motion detection. 

Chen and Ellis employed a multi-dimensional Gaussian 
Kernel Density Transform (MDGKT) pre-processor to reduce 
noise in the spectral, temporal, and spatial domains [22]. This 
pre-processor applied spatial and temporal smoothing to each 
spectral component using a multivariate kernel, regarded as the 
product of two radially symmetric kernels. The MDGKT was a 
crucial component in improving the reliability of the GMM. 
Thus, the time interval and resolution of the GMM were 
changed by modifying the size of the kernel through a pair of 
bandwidth parameters. Kalti and Mahjoub designed a unique 
approach that incorporated a fuzzy distance into the 
Expectation-Maximisation (EM) and Adaptive Distance-based 
Fuzzy-C-Means (ADFCM) algorithms [23]. The pixel 
characterization in the study was based on two factors: the 
inherent attributes of the pixel and the characteristics of its 
surrounding neighbourhood. The classification was then 
measured using an adaptive distance that preferred one of the 
attributes concerning the pixel spatial location within the 
image. Another study by Wei and Zheng studied a method that 
calculated the L2 norm between the GMMs to measure the 
similarity corresponding to two pixels [24]. The study recorded 
the grayscale information of the pixel and the feature 
abundance in the local image region. Compared to individual 
pixels based on their differences, higher accurate pixel 
intensity measurements and information variation in the 
surrounding region were obtained. This similarity-based 
approach enhanced the performance of image-denoising 
models and preserved the detailed information in the image. 
Likewise, Chen and Ellis discussed an innovative approach that 
addressed the global illumination change concern in 
background model adaptation [22]. The study applied a revised 
adaptive strategy within the iterative learning process of the 
Zivkovic-Heijden GMM (ZHGMM). This method was 
implemented by integrating a modified adaptive schedule into 
an existing filtering system, yielding superior performance than 
previous approaches (particularly in scenarios involving 
sudden illumination changes). 

Martins et al. designed a novel classification mechanism 
that combined colour space discrimination, hysteresis, and 
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dynamic learning rate to address sudden illumination changes 
in the background model [25]. Each channel element (L∗, a∗, 
and b∗) was analyzed individually, and the decisions obtained 
from each channel were merged using the AND rule, 
producing superior results than majority voting. This approach 
ensured a faster model and slower adaptations in dynamic and 
static regions. A higher learning rate (αUBG) was applied if the 
pixel classification transitioned from foreground to 
background. Therefore, this mechanism promoted rapid 
adaptation when the background reappeared, effectively 
preventing the phantom image from emergence. 

Regarding mathematical contributions, Su introduced a 
GMM with a data model optimization approach to address the 
adapting challenge of light transitions [26]. The initial step in 
the process included gradient picture calculation of the video 
stream using the Scar Operator. Subsequently, the RGB values 
and gradients were integrated, and noisy movement areas were 
eliminated using various techniques (combining the remaining 
sites). The two model outputs were compared to determine the 
final makeup area in mitigating incorrect diagnosis risk. Thus, 
the results demonstrated that the approach enhanced the 
detection process accuracy by minimizing the erroneously 
detected area occurrences caused by sudden illumination 
changes. 

The advancements in GMM-based background subtraction 
have significantly addressed noise, dynamic textures, and 
illumination changes. Approaches such as RT-SBS, CVABS, 
and adaptive density estimation have demonstrated success in 
handling specific scenarios, including dynamic backgrounds 
and complex traffic environments. However, these methods 
often rely on manually tuned or fixed parameters, hindering 
their adaptability to fluctuating traffic densities and varying 
environmental conditions. This study bridges these gaps by 
proposing an Improved GMM that incorporates adaptive time-
varying learning rates, exponential decay, and robust outlier 
processing, supported by CS Optimization for automatic 
parameter tuning. This ensures consistent and robust 
performance across light, moderate, and heavy traffic 
scenarios, contributing to the development of efficient vehicle 
detection systems. 

III. GAUSSIAN MIXTURE MODEL IN VEHICLE DETECTION 

GMM is a Mixture of Gaussians (MoG), a prominent 
strategy for background subtraction methods in computer 
vision applications. A study by Stauffer et al. discovered this 
strategy based on a parametric model in handling multiple 
modes within the pixel values [6]. The study implied that the 
background and foreground distributions for the GMM were 
Gaussian, in which the background area was more visible and 
exhibited smaller variances than the foreground. This 
assumption enabled the GMM to effectively manage slow-
lighting changes and -moving objects, periodic motion, long-
term scene changes, and camera noise. Conversely, the GMM 
was only used for its computational efficiency and excellent 
performance in numerous applications, as the previous 
assumption was not always true. 

The GMM aims to construct a background model for each 
pixel to the time-domain distribution of pixel values in a video 
sequence. This model represents the weighted sum of a finite 

number of Gaussian functions, which describes the multi-peak 
state of pixels while being suitable for complex background 
models (light gradients and swaying trees). In the GMM, 
Gaussian components with large weights represent the 
background, while those with small weights represent the 
foreground. Generally, a new pixel is part of the background if 
it correspondingly matches the Gaussian model. Otherwise, the 
pixel is treated as a foreground pixel if it does not match a 
Gaussian model (or match a Gaussian model with only a small 
weight). The efficacy of GMM has prompted various 
improvements and extensions in the field, which has become a 
widespread practice for background extraction in computer 
vision applications [7, 10, 26, 27, 28]. Hence, the application of 
GMM in vehicle detection can be expressed as in Eq. (1), 
where the weighted sum of K Gaussian distributions times the 
Gaussian component. 


𝑓(𝑥𝑡) = ∑ 𝛱𝑘,𝑡 ⋅ 𝛷

𝐾

𝑘=1

(𝑥𝑡 , 𝜇𝑘,𝑡 , 𝜎𝑘,𝑡) 

where 𝑥𝑡 is the pixel value; 𝛷(𝑥𝑡 , 𝜇𝑘, 𝜎𝑘,𝑡) is the Gaussian 

component density with mean 𝜇𝑘,𝑡 with covariance matrix 𝜎𝑘,𝑡; 

𝛱𝑘,𝑡 is the weight associated with the kth Gaussian component. 

Subsequently, 𝛷(𝑥𝑡 , 𝜇𝑘,𝑡 , 𝜎𝑘,𝑡) is formulated as: 

 𝛷(𝑥𝑡 , 𝜇𝑘,𝑡 , 𝜎𝑘,𝑡) =

1

(2𝜋)
𝑛
2 |𝜎𝑘,𝑡|

1
2

𝑒−
1

2
(𝑥𝑡−𝜇𝑘,𝑡)

𝑇
∑ (𝑥𝑡−𝜇𝑘,𝑡)−1

𝑘,𝑡 


where 𝑛  is the dimension of the pixel intensity. The 

covariance matrix is also assumed as 𝜎𝑘,𝑡 = 𝜎𝑘,𝑡
2 𝐼. Each new 

pixel value, 𝑥𝑡  is compared with each of the existing 𝐾 
Gaussian distributions. A pixel is considered to match a 
Gaussian distribution if its value falls within a range of 2.5 
standard deviations from the mean of that distribution where 

the matching condition is |𝑥𝑡 − 𝜇𝑘,𝑡−1| ≤ 2.5𝜎𝑘,𝑡−1 . The 

classification process involves categorizing a pixel as 
background if it matches with the Gaussian distribution 
identified as background, and as foreground if it matches with 
the Gaussian distribution identified as foreground. In cases 
where the pixel does not match with any of the 𝐾  Gaussians, it 
is classified as foreground. This process results in the creation 
of a binary mask. A new Gaussian distribution is added if 𝑘 <
𝐾, while the Gaussian distribution is replaced with the lowest 

priority 𝑘 = 𝐾 ( 𝜎𝑘,𝑡
2 = 𝛱𝑘,𝑡/𝜎𝑘,𝑡 ) if 𝑘 = 𝐾 . The weights of 

every Gaussian distribution must be updated for the next 
foreground detection, 

 𝛱𝑘,𝑡 = (1 − 𝛼)𝛱𝑘,𝑡−1 + 𝛼𝜓𝑘,𝑡 

where 𝜓  is the indicator function and 𝛼  is the constant 
learning rate. The mean and variance that do not find a match 
remain unchanged. However, for the component that does 
match, its mean and variance are updated according to the 
following criteria: 

 𝜇𝑘,𝑡 = (1 − 𝛽)𝜇𝑘,𝑡−1 + 𝛽𝑥𝑡  

 𝜎𝑘,𝑡
2 = (1 − 𝛽)𝜎𝑘,𝑡−1

2 + 𝛽(𝑥𝑡 − 𝜇𝑘,𝑡)(𝑥𝑡 − 𝜇𝑘,𝑡)
𝑇
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where 𝛽 = 𝛼 ⋅ 𝛷(𝑥𝑡 , 𝜇𝑘,𝑡 , 𝜎𝑘,𝑡) . If the kth Gaussian 

distribution matches 𝑥𝑡 , then 𝜓 = 1. Otherwise, 𝜓 = 0 if the 
kth Gaussian distribution does not match with 𝑥𝑡. The Gaussian 
distribution weights are then normalized after being modified. 
The 𝐾 Gaussian distribution for each pixel is described after 
the modification process as: 


𝐵 = 𝑎𝑟𝑔𝑚𝑖𝑛 (∑ 𝛱𝑘 > 𝑡ℎ

𝑏

𝑘=1

) 

where 𝑡ℎ is the threshold. Based on the ratio (𝛱/𝜎), these 
distributions are listed by priority order, beginning with the B 
Gaussian distribution. Subsequently, a continuous comparison 
of the 𝑥𝑡 and 𝐵 Gaussian distribution is performed. The pixel is 
considered a background point if the 𝑥𝑡  distribution matches 
any preceding 𝐵  Gaussian distribution points. Alternatively, 
the pixel is regarded as a foreground point if it does not match, 
and the moving object detection is considered complete. 

IV. PROPOSED IMPROVED GMM 

The proposed Improved GMM model is fixed as in Eq. (1) 
and the Gaussian component in Eq. (2), but there are some 
modifications in Eq. (3) to Eq. (5), which are the updating 
parameters of the Gaussian component. This section presents 
the GMM modifications for achieving high accuracy in vehicle 
detection across various traffic densities, which addresses the 
traditional GMM limitations by introducing an adaptive time-
varying learning rate, exponential decay, and outlier 
processing. Traditional GMMs have limitations, such as fixed 
learning rates, sensitivity to outliers, and difficulties in 
distinguishing between closely spaced objects. Therefore, these 
enhancements allowed the Improved GMM to effectively 
capture the dynamic nature of traffic density variations and 
improve detection accuracy. The suggested Improved GMM 
was founded on the improvements to the mean, covariance, and 
weight equations presented by Stauffer and Grimson [6]. The 
upgrades are as follows: 

 𝜇𝑘,𝑡 = (1 − 𝛽(𝑡))𝜇𝑘,𝑡−1 + 𝛽(𝑡)𝑥𝑡 ⋅ 𝑒−𝜆𝑑𝑡 

 𝜎𝑘,𝑡
2 = (1 − 𝛽(𝑡))𝜎𝑘,𝑡−1

2 + 𝛽(𝑡)(1 − 𝛾)(1 −

𝑒−2𝜆𝑑𝑡)(𝑥𝑡 − 𝜇𝑘,𝑡)(𝑥𝑡 − 𝜇𝑘,𝑡)
𝑇
 



 𝛱𝑘,𝑡 = (1 − 𝛼)𝛱𝑘,𝑡−1 + 𝛼𝑒−𝜆𝑑𝑡  

where 𝛽(𝑡) = 𝑐/(𝑐 + 𝑡). 

A. Adaptive Time-Varying Learning Rate 

Traditional GMMs use a constant learning rate, which 
struggles to adapt to changing traffic densities. For example, in 
heavy traffic, where vehicles move closely together, or in light 
traffic, where vehicles are sparse, a fixed learning rate may 
result in slow adaptation or inaccurate background modeling. 
An adaptive time-varying learning rate controls the weights 
assigned to the newly arriving data samples [30]. This 
suggestion enables the algorithm to quickly adapt to traffic 
flow changes and detect vehicles more accurately by 
considering the distance between the pixel and the current 
means. This modification is mathematically represented by 
Theorem 1. 

Theorem 1. The β(t) is derived using the Robbins-Monro 
stochastic approximation method, which involves solving the 
recursive equation as: 

 β(t) = 𝑐/(𝑐 + 𝑡) 

where c is a constant that controls the learning rate. 

Proof. The Robbins-Monro stochastic approximation 
method is an iterative algorithm to solve root-finding issues for 
non-linear equations in form f(x) = 0, which is based on 
stochastic gradient descent [31, 32, 33]. The Robbins-Monro 
conditions are satisfied to demonstrate the validity of the 
update rule in Eq. (10). This validity ensures the convergence 
of the stochastic approximation method, which two main 
criteria of the Robbins-Monro conditions are as follows: 

Condition 1: The sum of the learning rates [∑ β(t)t ] should 
diverge and ∑ β(t)t = ∞ . By evaluating the summation, a 
telescoping series is expressed as:  

 ∑ β(t)

t

=
c

c + 1
+

c

c + 2
+

c

c + 3
+. . . +

c

c + t
 

When the terms are rearranged, they can be written as: 


∑ β(t)

t

= c [
1

c + 1
+

1

c + 2
+

1

c + 3
+. . . +

1

c + t
] 

Since Eq. (12) diverges, it can reach infinity as t 
approaches infinity. Therefore, ∑ β(t)t  also diverges, satisfying 
Condition 1. 

Condition 2: The ∑ β2(t)t  should converge and ∑ β2(t)t <
∞. By expanding and simplifying the expression, an equation 
is formulated as: 

 ∑ β2(t)t =
c2

(c+1)2 +
c2

(c+2)2 +
c2

(c+3)2 +. . . +
c2

(c+t)2 

As in Eq. (13) converges, a finite sum is demonstrated as t 
approaches infinity. Hence, ∑ β2(t)t  also converges, satisfying 
Condition 2. When both conditions are satisfied, the updated 
rule in (10) is proven valid within the context of the Robbins-
Monro stochastic approximation method [34]. This updated 
rule ensures the learning algorithm convergence as the iteration 
or t approaches infinity. This strategy provides more weight to 
the newer data pixels while maintaining a certain importance 
level for the past data pixels. The constant (c) in the Robbins-
Monro stochastic approximation method controls the learning 
rate and should be chosen based on the data characteristics and 
the specific application [35]. 

The 𝑐  parameter value is selected based on a priori data 
knowledge, such as possible value ranges for the model 
parameters and the data distribution. Notably, the 𝑐  value 
affects the performance of the algorithm, which selecting the 
incorrect value leads to slow convergence or instability. The 
value of the iteration or 𝑡 is typically set to increment by one 
with each iteration. The 𝑡  value is also interpreted as the 
number of algorithm iterations or observations analyzed, which 
the 𝑡 initial value and the growth rate impact the convergence 
speed and algorithm stability. If the 𝑡 initial value is too small, 
the step size can be excessively large, causing instability and 
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overestimating the optimal solution. Similarly, if the 𝑡 initial 
value is too high, the step size can be extremely small, leading 
to slow convergence and the possibility of becoming trapped 
with a suboptimal solution. The 𝑡 growth rate also affects the 
convergence speed and algorithm stability. A rapid increase in 
𝑡 promotes faster convergence, which leads to instability and 
overestimation. Alternatively, a slower growth in 𝑡  produce 
stable behaviour, which leads to slow convergence. 

B. Exponential Decay 

Exponential decay improves the model's ability to handle 
dynamic objects and lighting changes by giving more weight to 
recent pixels closer to the mean. For example, when vehicles 
move closer to the camera, their pixels influence foreground 
detection more significantly. The parameter 𝜆  adjusts the 
contributions of each current pixel (mean, covariance, and 
weight parameters) to the Improved GMM. When this 
adjustment is incorporated, the vehicle detection precision 
increases to the distance between the current pixel and the 
current mean. The 𝜇𝑘,𝑡−1 is the previous mean, 𝑥𝑡 is the current 

pixel, and 𝑑𝑡  is the Euclidean distance between 𝑥𝑡  and the 

previous mean 𝜇𝑘,𝑡−1 . Furthermore, the introduction of the 

exponential decay factor ( 𝑒−𝜆𝑑𝑡 ) from Eq. (7) to Eq. (9) 
ensures that the contribution of each pixel decreases as its 
distance from the current mean increases [36]. This 
characteristic is consistent with the notion that pixels closer to 
the mean influence the parameter changes more than those 

further away [37]. The additional term (1 − 𝑒−2𝜆𝑑𝑡) adjusts the 
contribution of each pixel to the covariance parameter based on 
its distance from the current mean. From Eq. (7) to Eq. (9), 

𝛱𝑘,𝑡−1 represents the previous weight, and 𝑒−𝜆𝑑𝑡  modifies the 

contribution of each data point to the weight parameter with 
respect to its distance from the current mean. This modification 
assures that the contribution of each data point to the weight 
reduces as its distance from the current mean increases [38]. 
The updated parameter equation is explained in the Theorem 2: 

Theorem 2. Consider e−λdt  to be the exponential decay 
factor introduced from the Improved GMM ((7) to (9)) for 
vehicle detection in real-time traffic flow analysis. Based on 
the distance from the current mean, this exponential decay 
factor modifies the contribution of each current pixel to the 
mean, covariance, and weight parameters. Therefore, the 
equations are: 

 μk,t = (1 − β)μk,t−1 + βxt ⋅ e−λdt  

 σk,t
2 = (1 − β)σk,t−1

2 + β(1 − e−2λdt)(xt −

μk,t)(xt − μk,t)
T




 Πk,t = (1 − α)Πk,t−1 + αe−λdt 

Proof. Consider two pixels (xt1 and xt2), where dt1 is the 
distance between xt1  and the mean. In addition, dt2  is the 
distance between xt2 and the mean. Assume dt1 < dt2. Hence, 
xt2  and dt2  are substituted into Equation 14 produces a new 
equation: 

 μk,t = (1 − β)μk,t−1 + βxt2 ⋅ e−λdt2  

Since dt1 < dt2, the e−λdt1  is greater than e−λdt2 . The xt1 
contribution to the mean parameter is higher than xt2. Similar 

reason is extended to Eq. (15) and Eq. (16) to demonstrate that 

e−λdt1  influences the covariance and weight parameters (in a 
manner that decreases the pixel contribution as its distance 
from the mean rises) [39]. 

The contribution of each pixel to the mean parameter 
decreases as the pixel moves away from the current mean. This 
outcome prevents outliers or noisy data points from 
significantly affecting the estimated mean [40]. If a pixel is far 
from the current mean, it may not accurately represent the 
underlying distribution, so its contribution to the mean should 
be downweighed. In vehicle detection, a pixel corresponds to a 
vehicle far from the current mean is an outlier or an erroneous 
detection caused by noise in the sensor data. When 
downweighing the contribution of each pixel to the mean, the 
algorithm is more robust to such outliers and minimizes the 
likelihood of false positives or misclassifications. Therefore, 
adjusting the contribution of each data point to the mean 
parameter based on its distance from the current mean 
improves the accuracy and robustness of the GMM algorithm 
for vehicle detection in real-time traffic flow analysis. 

C. Outlier Processing 

Traditional GMMs treat all data points equally, including 
outliers, which can distort the background model. For instance, 
sudden reflections, shadows, or noisy pixels may lead to false 
detections. To address this, a robustness parameter (𝛾) is added 
to control how much the model updates with new data [41]. 
This modification permits the influence control of new 
observations on covariance matrix updates [42]. The 𝛾 in the 
covariance updated equation of the GMM improves the 
robustness of the model against outliers and noisy data. This 
new equation is expressed as: 

 𝜎𝑘,𝑡
2 = (1 − 𝛽)𝜎𝑘,𝑡−1

2 + 𝛽(1 − 𝛾)(𝑥𝑡 −

𝜇𝑘,𝑡)(𝑥𝑡 − 𝜇𝑘,𝑡)
𝑇




The updated equation treats all observations in traditional 
GMM, including the outliers. Hence, the covariance matrix 
adapts to the outliers and incorporates their influence, 
potentially leading to distorted estimates of the underlying data 
distribution. On the contrary, the Improved GMM presented 
with 𝛾  allows the influence control of the new covariance 
update observations. When adjusting 𝛾  value, the weight 
provided to outlier-like observations is reduced, effectively 
downplaying their impact on the covariance estimation. When 
𝛾  is closer to 1, the impact of new observations is reduced, 
making the model more robust to outliers. Robust estimators 
mitigate the influence of outliers or departures from model 
assumptions, providing more reliable parameter estimates [43]. 

The model responsivity is controlled by incorporating 𝛾 
into the covariance update equation. This control mechanism 
balances integrating new information and protecting against 
outliers. When 𝛾 is adjusted, the weight given to outlier-like 
observations is reduced, allowing the model to focus more on 
reliable and representative data points [44]. Extensive 
experiments on real-world datasets were investigated in this 
study to assess the effectiveness of the proposed modification. 
The performance of the traditional GMM formulation was then 
compared with the modified version, incorporating an adaptive 
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time-varying learning rate, exponential decay, and outlier 
process. 

V. COMPUTATIONAL SETUP 

A. Algorithm 

The discussion above outlines the computational algorithm 
for Improved GMM by introducing an adaptive time-varying 
learning rate, exponential decay, and outlier processing. The 
steps are similar to traditional GMM, except for steps (4) and 
steps (5), where there are modifications to the updating 
parameters means, variance, and weight. The algorithm can be 
summarized as: 

Algorithm 1: Improved GMM 

Initialize 𝐾, 𝑘, 𝛼, 𝜆, 𝛾, 𝑑  and 𝑐 

Step 1 Obtain the current pixel value 𝑥𝑡 from video frames. 

Step 2  Compare the current pixel value with 𝑘 existing Gaussian 

distributions, with a matching condition |𝑥𝑡 − 𝜇𝑘,𝑡−1| ≤

2.5𝜎𝑘,𝑡−1. A match is identified if the pixel value falls 

within 2.5 standard deviations of the distribution. 

Step 3 If the matching condition is satisfied, classify the pixel 

values as background. Otherwise, consider the pixel value 

part of the foreground. If 𝑘 < 𝐾, add a new Gaussian 

distribution; otherwise, replace the Gaussian distribution 

with the lowest priority 𝑘 = 𝐾. 

Step 4 Update expressions in (7) and (8) if mean and standard 
deviation do not match. 

Step 5 After match inspection, update (9) and normalize it after 
modification. 

Step 6 List distributions by priority order based on the ratio 𝛱/𝜎 

, starting with the B Gaussian distribution. 

Step 7 Conduct a continuous comparison of 𝑥𝑡 and (6). Classify 

the pixel as a background point if it matches any 

preceding 𝐵 Gaussian distribution points; otherwise, 

consider it a foreground point, indicating the completion 

of moving object detection. 

B. Dataset 

The Improved GMM was implemented using Python, 
leveraging libraries such as NumPy for numerical 
computations, OpenCV for video processing and background 
subtraction, Scikit-learn for Gaussian Mixture Model 
operations, and Matplotlib for result visualization. Jupyter 
Notebook served as the primary development environment, 
enabling interactive code execution and analysis. The 
experiments were conducted on a standard laptop equipped 
with an Intel Core i5 processor (2.50 GHz), 8 GB RAM, and 
Windows 11 (64-bit). The system achieved a processing speed 
of approximately 0.75 seconds per frame. 

The evaluation of the Improved GMM was conducted using 
the CDNet 2014 dataset, a benchmark dataset widely used for 
background subtraction methods. This dataset includes videos 
representing various traffic densities, categorized as light 
traffic (less than three vehicles per 500 square feet), moderate 
traffic (three to five vehicles per 500 square feet), and heavy 
traffic (more than five vehicles per 500 square feet). 

To prepare the dataset for analysis, each video was divided 
into individual frames for frame-by-frame processing. The 

frames were resized to a consistent resolution of 640×480 
pixels to ensure efficient processing. Ground truth masks 
provided in the dataset were used for validation by comparing 
them against binary masks generated by the Improved GMM. 
The implementation of the Improved GMM algorithm 
followed the modifications outlined in Section III. Key 
parameters were initialized. The CS algorithm was employed 
to automatically tune these parameters, ensuring optimal 
performance for various traffic conditions. During frame 
processing, the GMM dynamically updated its parameters 
using adaptive learning rates and exponential decay to refine 
the model, while outlier processing mitigated noise and sudden 
changes. Finally, the binary masks were refined through 
morphological operations, such as dilation and erosion, to 
eliminate noise and enhance detection accuracy. The 
experiment involved the Improved GMM method and was 
compared with masks generated using the traditional GMM 
[6], Effective Adaptive GMM (EGMM) [14], Region-based 
Mixture of Gaussians (RMoG) [15], Boosted GMM (BMOG) 
[25], Competitive Learning for Varying Input Distributions 
(CL-VID) [45], Real-Time Sematic Background Subtraction 
Version 2 (RT-SBS-V2) [16] and Common Vector Approach 
Background Subtraction (CVABS) [17]. 

C. Cuckoo Search Optimization 

The CS optimization algorithm was employed to 
automatically tune the key parameters of the Improved GMM, 
including c, K, α, λ, γ, and threshold (th). This algorithm, 
inspired by the breeding behavior of cuckoos, efficiently 
explores the parameter space using a balance between local and 
global search mechanisms. To determine the appropriate 
parameter ranges, prior literature and empirical 
experimentation were consulted. Table I provides the initial 
ranges for each parameter: 

TABLE I.  RANGE PARAMETERS OF OPTIMIZED PARAMETERS 

Parameters Range 

c 0.01 ≤ c ≤ 0.1 

K 2.0 ≤ K ≤ 5.0 

𝛼 5.0 ≤ 𝛼 ≤ 50.0 

𝜆 0.01 ≤ 𝜆 ≤ 1.0 

𝛾 0.1 ≤ 𝛾 ≤ 1.0 

th 3.0 ≤ th ≤ 7.0 

The CS algorithm began by initializing a population of 
candidate solutions, each representing a unique set of 
parameter values within the predefined ranges. These 
candidates were evaluated using a fitness function designed to 
maximize the accuracy of the Improved GMM's background 
subtraction. The fitness function compared the binary masks 
generated by the model with the ground truth annotations, 
considering metrics such as precision, recall, and F-measure. 
During each iteration, the algorithm updated the candidate 
solutions by simulating the levy flights of cuckoos, which 
allow for both local fine-tuning and global exploration of the 
parameter space. Poor-performing solutions were replaced by 
better-performing ones, ensuring that the algorithm converged 
towards an optimal set of parameter values. 
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Default settings for CS algorithm hyperparameters were 
replaced with experimental investigations to determine the 
most effective parameter combinations for the Improved 
GMM. Specifically, the number of Gaussian components (N) 
and the probability of adaptation (Pa) were key factors in 
optimizing the background modeling process. 

The number of Gaussian components (N) represents the 
number of distributions used to model each pixel's background, 
which is crucial in capturing the complexity of background 
variations. A higher N allows for more sophisticated 
background modeling, enabling the algorithm to better handle 
complex scenes with multiple background states such as 
changing lighting conditions, moving shadows, or repetitive 
background patterns. The probability of adaptation (Pa) 
controls the rate at which the model updates its background 
distributions. By experimenting with different values of N and 
Pa, we aim to find the optimal configuration that provides the 
most accurate and robust background subtraction across 
various traffic scenarios. Table II and Table III illustrate the 
experimental results for different values of N and Pa. 

TABLE II.  EXPERIMENTAL RESULTS FOR DIFFERENT VALUES OF N USING 

PA=0.25 OVER CDNET2014 DATASET 

Frame Input N=10 N=30 N=50 

#0672 

    

#0808 

    

#1328 

    

#1517 

    

TABLE III.  EXPERIMENTAL RESULTS FOR DIFFERENT VALUES OF PA 

USING N=30 OVER CDNET2014 DATASET 

Frame Input Pa=0.25 Pa=0.5 Pa=0.75 

#0672 

    

#0808 

    

#1328 

    

#1517 

    

Table II presents the experimental results for different 
values of N (number of Gaussian components in the GMM) 
while keeping the probability parameter Pa = 0.25 constant. It 
showcases how varying the number of Gaussian components 

affects the background subtraction performance across multiple 
frames. Increasing N typically balances model complexity and 
overfitting, influencing detection accuracy. Table III evaluates 
the impact of varying probability thresholds for background 
classification using a fixed N=30. The results demonstrate how 
different threshold values influence the system's sensitivity to 
classify pixels as foreground or background, emphasizing the 
importance of parameter tuning for effective detection in 
varying conditions. 

The combined insights from these tables underscore the 
sensitivity of the GMM model to these parameters and 
highlight the necessity for optimization methods, such as CS 
Optimization, to automatically determine the best parameter 
values for achieving optimal detection performance. Through 
the CS optimization method, the algorithm converged on an 
optimal set of parameters, as shown in Table IV: 

TABLE IV.  OPTIMIZED PARAMETER OF IMPROVED GMM AUTOMATIC 

TUNING BY CS OPTIMIZATION METHOD 

c K 𝛼 𝜆 𝛾 th 

0.1 2.0 9.1 1.0 0.6 3.2 

The effectiveness of the automatic parameter tuning was 
compared against empirical tuning, as demonstrated in Table 
V. The automatic tuning approach demonstrates improved 
adaptability, producing masks closer to the ground truth across 
different frames. The empirical tuning approach may suffer 
from inconsistency due to the lack of parameter optimization 
for specific scenarios. The visual comparison indicates that 
automatic tuning effectively reduces background noise and 
captures more accurate object contours, particularly in 
challenging scenarios. 

TABLE V.  COMPARISON OF FOREGROUND MASKS OF AUTOMATIC 

TUNING PARAMETER OF IMPROVED GMM AND EMPIRICAL TUNING 

PARAMETER OF IMPROVED GMM 

Frame Input 
Ground 

Truth 

Automatic 

Tuning 

Empirical 

Tuning 

#0672 

    

#0808 

    

#1328 

    

#1517 

    

Table VI evaluates the average performance metrics of the 
Improved GMM with automatic tuning (optimized parameters) 
and empirical tuning (manually set parameters). The values 
demonstrate that the automatic tuning of parameters using CS 
optimization substantially outperforms empirical tuning. The 
improved precision reduced false positives, and higher overall 
accuracy highlight the importance of optimization in achieving 
robust and reliable vehicle detection. 
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TABLE VI.  AVERAGE PERFORMANCE PARAMETER EVALUATION OF 

AUTOMATIC TUNING IMPROVED GMM AND EMPIRICAL TUNING IMPROVED 

GMM 

Tuning RC PR FM FPR FNR WC AC 

Automatic 0.533 0.634 0.579 0.033 0.467 0.077 92.3% 

Empirical 0.480 0.292 0.422 0.232 0.160 0.225 77.5% 

Fig. 1 provides a visual comparison of the accuracy values 
between automatic and empirical tuning methods. The 
accuracy achieved with automatic tuning is 92.3%, as observed 
in Table VI. This high value underscores the effectiveness of 
automatic tuning in optimizing the Improved GMM parameters 
for robust and consistent detection across frames. Empirical 
tuning achieves an accuracy of 77.52%, significantly lower 
than automatic tuning. The drop in performance highlights the 
limitations of manually setting parameters, which are less 
adaptable to variations in input conditions such as different 
lighting, occlusions, or traffic densities. The results validate the 
incorporation of CS optimization as a robust method for 
parameter optimization in vehicle detection tasks. 

 
Fig. 1. The core principle of the BS method (a) input image (b) reference 

image (c) foreground or background. 

D. Evaluation Metrics 

The poor performance of methods that use GMM for 
background subtraction is mostly caused by assumptions about 
the parameters, where different issues produce varying effects 
on methods performance. Additionally, performance evaluation 
metrics showcase the advantages of background subtraction 
methods in vehicle detection accuracy. The pixel features from 
vehicle detection results were divided into two groups 
(foreground considered positive and background considered 
negative) to evaluate the detection accuracy objectively [18]. 

Pixel-based performance evaluation metrics were widely 
employed to assess the accuracy of image segmentation 
algorithms. These metrics compared the pixel-wise 
segmentation results obtained by the algorithm to the ground 
truth (GT) annotations. Once the GT was determined, several 
generally accepted methods were compared to a proposed 
binary foreground map. In this evaluation, four types of pixels 
are utilized as follows:  

 True positive (TP) 

 False positive (FP) 

 False negative (FN) 

 True negative (TN)  

The TP represents pixels correctly classified as positive by 
the segmentation algorithm and positive in the GT annotation. 
Meanwhile, FP represents pixels classified as positive by the 
segmentation algorithm but are negative in the GT annotation. 
The FN represents negative pixels in the segmentation 
algorithm but positive in the GT annotation. Subsequently, TN 
represents pixels correctly classified as negative by the 
segmentation algorithm and negative in the GT annotation 
[46]. 

Based on these four types of pixels, several metrics were 
computed to evaluate the performance of the segmentation 
algorithm, including recall (RC), precision (PR), F-measure 
(FM), FP rate (FPR), FN rate (FNR), and accuracy (AC). The 
RC is a metric used to evaluate the ability of an algorithm to 
correctly identify positive pixels, which is calculated as the 
ratio of TP pixels to the total number of ground TP pixels (also 
known as a TP rate). The TP rate measures the fraction of 
foreground pixels accurately identified out of the total number 
of foreground pixels, which the algorithm has categorized as 
[47]: 

 𝑅𝐶 = 𝑇𝑃/(𝐹𝑁 + 𝑇𝑃)

Since PR is the fraction of TP pixels over the number of 
positive pixels classified by the segmentation algorithm, the 
proportion of positive predictions that are TPs is measured 
given by: 

 𝑃𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) 

The FM, or F1 score, is the harmonic mean of PR and RC. 
Therefore, FM provides a single metric to evaluate the overall 
performance of the algorithm as follows: 

 𝐹𝑀 = (2 × 𝑅𝐶 × 𝑃𝑅)/(𝑅𝐶 + 𝑃𝑅) 

The FPR is the fraction of FP pixels over the total GT 
negative pixels. Hence, the proportion of negative predictions 
that are FPs is expressed as: 

 𝐹𝑃𝑅 = 𝐹𝑃/(𝐹𝑃 + 𝑇𝑁) 

In FNR, the fraction of FN pixels over the total number of 
GT positive pixels is obtained. Therefore, the proportion of 
positive pixels that are missed by the algorithm is described by: 

 𝐹𝑁𝑅 = 𝐹𝑁/(𝐹𝑁 + 𝑇𝑃) 

The AC is the fraction of correctly classified pixels over the 
total number of pixels and measures the overall correctness of 
the segmentation of the algorithm is represented by: 

 𝐴𝐶 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁 

Finally, wrong classification (WC) is the fraction of 
wrongly classified pixels over the total number of pixels. The 
WC also measures the overall error rate of the segmentation of 
the algorithm is expressed by: 

 𝑊𝐶 = (𝐹𝑃 + 𝐹𝑁)/(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁) 
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These seven indicators explain and evaluate the 
performance of the proposed model. Generally, these metrics 
provide a quantitative evaluation of the performance of the 
segmentation algorithm while aiding in identifying areas where 
the algorithm requires improvement [48]. 

VI. RESULT AND DISCUSSION 

To validate the effectiveness of the proposed Improved 
Gaussian Mixture Model (GMM) [29], extensive experiments 
were conducted using over 1700 frames of moving vehicles on 
the road.  Table VII compares the Improved GMM method 
with several state-of-the-art background subtraction and 
vehicle detection methods. The table includes the evaluation 
metrics used in this study and the results obtained for each 
method under different traffic densities. 

TABLE VII.  SUMMARY OF GMM, EGMM, RMOG, BMOG, CL-VID, RT-
SBS-V2, CVABS AND IMPROVED GMM AVERAGE METRICS 

Method RC PR FM FPR FNR AC WC 

GMM [6] 0.972 0.806 0.891 0.026 0.002 0.970 0.024 

EGMM [14] 0.970 0.783 0.876 0.029 0.004 0.970 0.027 

RmoG [15] 0.970 0.662 0.795 0.047 0.005 0.957 0.043 

BMOG [25] 0.949 0.814 0.906 0.026 0.002 0.974 0.023 

CL-VID [45] 0.967 0.849 0.922 0.019 0.013 0.975 0.018 

RT-SBS-V2 [16] 0.973 0.790 0.881 0.031 0.004 0.969 0.028 

CVABS [17] 0.916 0.849 0.886 0.020 0.084 0.972 0.028 

Improved GMM 0.959 0.835 0.890 0.026 0.041 0.973 0.027 

A high RC value was desirable to minimize FNs. The FNs 
occurred when actual positive instances were incorrectly 
classified as negative, presenting missed detections or 
opportunities. Thus, a high RC indicated that the model 
effectively captured the majority of positive instances and was 
less likely to overlook essential or critical cases [48]. The RC 
value of the Improved GMM outperformed a few methods with 
a value of 0.9586. This improvement is particularly impactful 
in scenarios with heavy traffic densities, where high vehicle 
overlap increases the likelihood of misclassification in 
traditional methods. The adaptability of the Improved GMM 
allows it to differentiate subtle variations in pixel distributions, 
reducing false negatives in densely packed vehicle scenarios, 
such as urban intersections or peak highway traffic conditions. 

Alternatively, a high PR value suggested that the methods 
produced a lower FP rate, which could accurately identify 
positive pixels with a lower tendency to incorrectly classify 
background pixels as foreground. In other words, a high PR 
denoted that the methods of a pixel as foreground was more 
likely to be accurate. The PR value for the Improved GMM 
was 0.8353, which only slightly differed from the highest 
values from CL-VID and CVABS. This demonstrates the 
Improved GMM’s effectiveness in reducing false positives, 
particularly in moderate traffic conditions where objects such 
as pedestrians, shadows, or reflections might otherwise be 
misclassified. By maintaining a robust precision level, the 
Improved GMM ensures reliable vehicle detection, crucial for 
real-world applications like urban traffic monitoring or 
congestion management. 

The FM is a widely used metric that combines PR and RC 
to evaluate the overall performance of a method. A higher FM 
indicated that the methods significantly balanced PR and RC, 
effectively identifying positive pixels while minimizing FPs. 
Therefore, a higher FM value suggested better performance. 
Meanwhile, the FM value for the Improved GMM was among 
the highest among the other state-of-the-art methods. This 
positions the Improved GMM as a balanced performer, 
particularly in traffic scenarios with moderate density, where 
both precision and recall are crucial for maintaining detection 
reliability. Compared to CL-VID and BMOG, which excel in 
heavy and light traffic respectively, the Improved GMM 
demonstrates consistent and reliable performance across varied 
traffic densities, making it a versatile choice for real-world 
applications. The optimal FM value depended on the specific 
application and the desired trade-off between PR and RC [48]. 

A low FNR was considered desirable in most situations in 
which the system accurately identified positive instances and 
minimized missed detections or incorrect negative predictions. 
For example, the Improved GMM achieved a lower FNR 
compared to traditional GMM (0.041 vs. 0.084), highlighting 
its superior ability to identify true positives effectively. This 
improvement is particularly beneficial in high-density traffic 
scenarios, where the risk of missed vehicle detections is higher 
due to occlusions. Like FPR, the desired FNR depended on the 
specific context and application [49]. In some cases, a trade-off 
could occur between the FNR and other factors, including FPR 
or the overall system cost. The appropriate balance could vary 
depending on the situation's specific goals, constraints, and 
acceptable risks. Nonetheless, a low FNR was generally 
preferable to ensure the highest AC and detection performance 
[49]. 

The AC metric measures the percentage of correctly 
classified pixels in the foreground mask. A high AC suggested 
that the methods successfully classified a larger proportion of 
positive and negative pixels relative to the total number of 
pixels. This value accurately reflected the ability of the 
methods to distinguish between foreground and background 
regions. Lastly, WC referred to incidents in which a 
classification or prediction system improperly categorized 
them. For instance, in a real-world traffic monitoring system 
deployed at a busy urban intersection, high WC rates could 
lead to incorrect vehicle counts or misclassifications, 
potentially compromising traffic flow optimization or accident 
detection. The Improved GMM’s ability to minimize WC 
ensures more accurate vehicle detection and tracking, leading 
to improved reliability in such critical applications. Depending 
on the applications, high WC rates could produce errors, 
misinterpretations, and negative consequences [48]. 

Fig. 2 illustrates the comparative recall performance of 
eight computational methods across three different traffic 
densities: light, moderate, and heavy. Recall is a metric that 
measures the percentage of true positive detections from all the 
actual positive instances in the video. Recall measures the 
percentage of true positive detections from all actual positive 
instances in the video. The graph reveals that some methods, 
such as CL-VID and RT-SBS-V2, maintain consistently high 
recall in specific conditions, while others show greater 
variability. For instance, GMM demonstrates a slight edge in 
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heavy traffic scenarios, likely due to its strong adaptability to 
high-density environments. Meanwhile, RT-SBS-V2 excels in 
light conditions, benefiting from its sensitivity to minimal 
background dynamics. Conversely, the CVABS method 
demonstrates a notable decline in recall under moderate traffic 
conditions compared to its performance in light and heavy 
conditions. This inconsistency may indicate specific 
weaknesses, such as sensitivity to moderately complex 
environments with fluctuating vehicle densities or partial 
occlusions. By analyzing the recall trends across traffic 
densities, Fig. 2 highlights the strengths and areas for 
improvement in the Improved GMM, emphasizing its potential 
as a balanced performer for diverse real-world applications. 

 
Fig. 2. The comparison of recall results of our proposed method and the 

other methods. 

The PR values are a key performance indicator, particularly 
in fields with high costs of false positives. Fig. 3 shows that the 
method labelled CL-VID shows the highest PR value in the 
heavy category, underscoring its exceptional accuracy under 
challenging conditions where vehicle overlap, and background 
complexity are prominent. This suggests that CL-VID is 
particularly adept at minimizing false positives when the scene 
dynamics are most intricate. In contrast, RMoG exhibits lower 
PR values, especially in the moderate traffic category. This 
performance discrepancy could be attributed to its limitations 
in handling medium-complexity scenarios, such as moderate 
occlusions or partially visible vehicles. The proposed Improved 
GMM achieves consistently high precision across all traffic 
densities, highlighting its robustness and versatility. While it 
does not outperform CL-VID in the heavy category, its 
balanced performance across light, moderate, and heavy traffic 
conditions signifies its reliability as a general-purpose solution 
for diverse environments. This generalist approach ensures that 
the Improved GMM maintains low false-positive rates 
regardless of traffic complexity, making it a dependable choice 
for real-world applications. 

BMOG and CVABS methods show competitive PR values, 
particularly in moderate and heavy traffic scenarios. Their 
ability to sustain high precision in demanding conditions 
emphasizes their effectiveness in environments with increased 
vehicle density and dynamic lighting changes. A noteworthy 
observation is that PR values exhibit less variation across 
methods compared to RC. This stability indicates that these 
methods generally maintain a consistent ability to identify true 
positives. However, differences in precision suggest that their 

effectiveness in rejecting false positives varies, which is critical 
in applications requiring high reliability and minimal false 
alarms. 

 
Fig. 3. The comparison of precision results of our proposed method and the 

other methods. 

Fig. 4 illustrates the FM results of eight different 
background subtraction methods: GMM, EGMM, RMoG, 
BMOG, CL-VID, RT-SBS-V2, CVABS, and the proposed 
method. As a harmonic mean of precision and recall, FM 
provides a comprehensive measure of segmentation accuracy, 
making it a crucial metric for evaluating the effectiveness of 
these methods. The graph highlights the superior performance 
of CL-VID in scenarios with moderate and heavy background 
motion, showcasing its robustness and adaptability in handling 
complex conditions such as dynamic lighting and high traffic 
density. This positions CL-VID as a strong candidate for 
scenarios requiring high reliability in challenging 
environments. In simpler conditions, the BMOG method 
achieves the highest FM in the light traffic category. This 
indicates its ability to excel in straightforward segmentation 
tasks where background dynamics are less pronounced, making 
it suitable for environments with minimal motion complexity. 

The Improved GMM demonstrates consistent performance 
across all traffic categories. While it does not achieve the top 
FM score in any specific category, its stability across light, 
moderate, and heavy conditions highlights its versatility and 
reliability as a general-purpose solution. This balanced 
performance makes the Improved GMM particularly suitable 
for applications requiring robust results across diverse 
operational scenarios. In contrast, RMoG exhibits lower FM 
values across all categories, signalling potential limitations in 
adapting to varying background complexities. This 
underperformance may stem from its inability to handle 
dynamic textures or abrupt changes effectively. A general trend 
observed from the results is that most methods perform better 
in light and moderate categories, with a slight decline in heavy 
traffic conditions. This trend underscores the increasing 
challenge posed by higher background complexity and 
overlapping objects in heavy traffic scenarios, which can 
impact segmentation accuracy. 

The stable performance of the Improved GMM across 
different conditions underscores its potential for applications 
requiring consistent and reliable segmentation, such as real-
time traffic monitoring and video analytics. While other 
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methods, such as CL-VID and BMOG, excel in specific 
conditions, the Improved GMM offers a balanced approach, 
ensuring dependable performance irrespective of 
environmental variability. 

 
Fig. 4. The comparison of F-measure results of our proposed method and the 

other methods. 

Fig. 5 illustrates the AC results of various background 
subtraction methods under different traffic conditions. The data 
reveals that all methods achieve high accuracy, with most 
exceeding 0.95, reflecting their overall effectiveness in 
segmentation tasks. However, noticeable differences emerge 
when comparing performances across specific traffic 
conditions. BMOG and CL-VID stand out with superior 
accuracy in light and moderate conditions, respectively, 
demonstrating their specialised efficiency in less complex 
environments. Their performances converge under heavy 
traffic conditions, suggesting that their methodologies are 
similarly adept at handling challenging scenarios with high 
background complexity and vehicle overlap. The proposed 
Improved GMM maintains consistently high accuracy across 
all traffic densities, highlighting its robustness and adaptability. 
This consistency suggests that the Improved GMM effectively 
balances precision and recall, making it well-suited for diverse 
operational contexts, including scenarios with fluctuating 
background dynamics. While the RMoG method achieves 
relatively high accuracy, its lower performance in moderate 
and heavy conditions indicates potential limitations in handling 
dynamic or complex backgrounds. This shortfall could be 
attributed to its reduced ability to effectively manage abrupt 
changes or intricate textures. 

The subtle variations in accuracy among these methods 
carry significant implications for practical applications where 
precision is critical. For example, in high-security 
environments or scenarios requiring detailed video analysis, 
even small accuracy differences can influence the choice of 
method. The slight decline in accuracy under heavy traffic 
conditions observed for most methods emphasizes the need for 
enhanced robustness against complex backgrounds, direction 
future research should explore. The consistent performance of 
the proposed Improved GMM suggests a well-balanced 
integration of techniques tailored to address varying 
complexities. This adaptability makes it a compelling option 
for researchers aiming to develop versatile background 
subtraction methods that perform reliably across diverse 
conditions. 

Table VIII compares foreground masks obtained using 
eight different methods. The table shows each method's 
original frame (input), ground truth (GT), and segmentation 
masks. The frames displayed are from three different traffic 
densities: 

1) Frame 1213: Heavy traffic scenario 

2) Frame 1480: Moderate traffic scenario 

3) Frame 795: Light traffic scenario 

The first column displays the original input frames, 
representing the raw video data captured by the camera. The 
second column shows the GT, which consists of manually 
annotated masks indicating the precise locations of vehicles in 
the respective frames. The subsequent columns (third to tenth) 
present segmentation masks produced by the different 
methods, allowing a direct comparison against the GT and 
input frames. 

 
Fig. 5. The comparison of accuracy results of our proposed method and the 

other methods. 

As illustrated in Table VIII, the Improved GMM 
demonstrates satisfactory detection performance across all 
traffic densities. For example, in the heavy traffic scenario, the 
Improved GMM effectively captures vehicle locations and 
shapes with notable accuracy, achieving a balance between 
minimizing false positives and negatives. While the Improved 
GMM exhibits competitive performance, the results also reveal 
the distinct strengths and weaknesses of other methods. For 
instance, CL-VID and BMOG show strong performance in 
scenarios with moderate traffic, excelling in precision and 
segmentation clarity. Meanwhile, EGMM and CVABS 
perform well in light traffic scenarios, accurately identifying 
individual vehicles with minimal background noise. 

False positives and false negatives are present to varying 
degrees across all methods, including the Improved GMM. 
This indicates the inherent challenges of background 
subtraction in dynamic traffic environments, such as 
occlusions, varying lighting conditions, and overlapping 
vehicles. The Improved GMM method aims to strike a balance 
between computational efficiency and segmentation accuracy, 
making it a viable option for real-time applications where 
processing time is a critical constraint. However, the increased 
complexity introduced by the Improved GMM, particularly due 
to features like adaptive learning rates and exponential decay, 
warrants further investigation to fully assess its scalability and 
efficiency under diverse operational scenarios. 
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TABLE VIII.  COMPARISON OF SEGMENTATION MASKS FOR THE 

CDNET2014 DATASET 

Traffic 
Light 

Traffic 
Moderate Traffic 

Heavy 

Traffic 

Input 

   

GT 

   

GMM [6] 

   

EGMM 

[14] 

   

RMoG [15] 

   

BMOG [25] 

   

CL-VID 

[45] 

   

RT-SBS-V2 
[16] 

   

CVABS 

[17] 

   

Improved 

GMM 

   

VII. CONCLUSION AND FUTURE WORK 

This study proposed an Improved GMM for high-accuracy 
vehicle detection across varying traffic densities. By 
incorporating an adaptive time-varying learning rate, 
exponential decay, and outlier processing, the model 
effectively addressed limitations in traditional GMM methods, 
such as fixed learning rates and sensitivity to outliers. The use 
of CS Optimization for automatic parameter tuning further 
enhanced the robustness and adaptability of the model. 
Experimental results demonstrated that the proposed method 
consistently achieved superior performance metrics, including 
accuracy, precision, recall, and F-measure, across light, 
moderate, and heavy traffic scenarios. 

Despite these promising results, several limitations warrant 
consideration. First, the computational complexity of the 
proposed model may present challenges for deployment on 
low-resource systems. Second, the model's reliance on hand-
crafted features might limit its adaptability to rapidly evolving 
traffic scenarios. Future work should explore integrating deep 
learning techniques to complement the Improved GMM for 
enhanced robustness and scalability. Additionally, 
incorporating real-time optimization and reducing 

computational overhead will be critical for broader adoption in 
resource-constrained environments. 

In conclusion, the proposed method offers a significant step 
toward reliable and efficient vehicle detection in diverse traffic 
scenarios, paving the way for further advancements in 
intelligent transportation systems. 
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