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Abstract—Every vehicle, including autonomous vehicles, 

requires a route to navigate its journey. Route planning is a 

critical aspect of autonomous vehicle operations, as these vehicles 

rely on guided paths or sequential steps to move effectively. 

Ensuring that the route is optimal is a key consideration. This 

study tests the D-Star Lite algorithm to determine the most 

efficient route. In simulation tests, the D-Star Lite algorithm was 

compared with the A-Star algorithm. The results showed that D-

Star Lite outperformed A-Star, achieving an average distance 

reduction of 124 meters. Real-time testing involved finding a 

route from node 36 to node 0, resulting in a total distance of 803 

meters. Additional tests focused on route replanning in real-time 

scenarios. For instance, the initial route passing through nodes 36 

→37→38→39→40→41→42→43→44→45→0 was adjusted to an 

alternative route: 36→37→38→46→26→11→2→4→1→0. Based 

on the results, the D-Star Lite algorithm proves effective in 

identifying the best route for autonomous electric vehicles while 

also enabling real-time route replanning. 

Keywords—Autonomous vehicle; D-Star Lite; path planning; 

realtime; replanning route; optimal route  

I. INTRODUCTION 

Recent advancements in computing and communication 
technologies have significantly contributed to the development 
of autonomous vehicles. The emergence and evolution of these 
vehicles are the results of research in fields such as wireless 
communication technology, navigation, sensor technology, ad 
hoc networking, data acquisition and distribution, and data 
analysis [1] [2]. In addition to their ability to navigate 
autonomously to destinations, other critical factors must be 
considered in autonomous vehicles, such as the time required 
to reach the destination [3]. To plan movements efficiently, it is 
equally important to consider the routes the vehicle will follow  
[4]. 

Route planning is a critical aspect of robotics. Autonomous 
robots and vehicles require guidance paths or next steps to 
navigate effectively [5]. Defining a destination coordinate as a 
target ensures that the robot or autonomous vehicle can reach 
that destination via a predetermined route. This route must be 
the fastest to optimize efficiency and effectiveness while 
avoiding unnecessary steps [6]. This aspect is crucial to 
ensuring the efficiency and accuracy of the vehicle's movement 
[7]. Therefore, using a path planning method that works in 
dynamic environments is essential to handle obstacles that may 
change or be unpredictable [8]. Several methods can be used to 
determine the route, such as the Dijkstra algorithm, A-star, and 
D-Star Lite [9]. 

In research on the Dijkstra algorithm, it is explained that 
this algorithm is used for route planning in smart cars by 
implementing both the Dijkstra algorithm and the dynamic 
window approach [10]. This method was successfully applied 
to a self-developed smart car to avoid obstacles and reach a 
predetermined position. The study involved both simulation 
experiments and real-world testing, demonstrating the 
effectiveness and reliability of the Dijkstra algorithm and the 
implemented system. 

In research on the A-star (A*) algorithm, improvements 
were made to the A-star-based path planning algorithm 
implemented in autonomous vehicles [11]. These 
improvements cover various aspects, such as the use of 
evaluation standards to measure performance, incorporating 
human guidance or global path planning to develop heuristic 
functions, leveraging key points around obstacles for more 
effective avoidance, and applying the variable-step-based A-
star algorithm to reduce computation time [11]. 

However, both of these algorithms have their drawbacks. 
The Dijkstra algorithm is categorized as a greedy algorithm 
that can optimally find the shortest path solution [12]–[14], but 
it requires a longer search time. On the other hand, the A-star 
algorithm is a best-first search algorithm that can find the 
shortest path more quickly but does not always produce an 
optimal solution [15]. Nevertheless, A-star has an advantage 
over Dijkstra in its calculations. The A-star algorithm utilizes a 
heuristic distance [16] added to the straight-line path, resulting 
in a more efficient route. A-star is well-suited for situations 
where it is important to find a path quickly and efficiently in 
various environments [17]. Both the Dijkstra and A-star 
algorithms are only effective in solving the path search process 
in static environments (where conditions do not change) [18]. 
However, for an autonomous vehicle to adapt to unknown and 
potentially changing road conditions, a path planning algorithm 
that can be implemented in dynamic (changing) environments 
is needed. Therefore, the D-Star Lite algorithm will be 
developed. 

The D-star Lite algorithm can address the efficiency issues 
of other algorithms when used in dynamic environments [18]. 
In previous research [10] and [11] , path planning algorithms 
have been implemented using autonomous vehicles, some of 
which involved simulations. However, none of the studies 
using Dijkstra or A-star algorithms have been able to perform 
real-time replanning when obstacles change. In the study [19] 
that discusses the D-star Lite algorithm, the goal was to design 
a modified D-star Lite algorithm for global path planning in 
UAV-based (unmanned aerial vehicle) and mobile robots in 
large-scale disaster areas. This algorithm aims to address the 
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challenges of dynamic environments that are only partially 
known by providing shorter paths and faster execution times, 
ultimately improving the performance and efficiency of rescue 
robots in such situations. Although in study [19] explores the 
use of the D-Star Lite algorithm for path planning in dynamic 
environments with UAVs and mobile robots, no study has 
implemented the D-star Lite algorithm for path planning in 
autonomous vehicles. Therefore, this study uses the D-Star Lite 
algorithm to determine the fastest route for autonomous 
electric vehicles. 

The contributions of this study are as follows: 
implementing the D-Star Lite algorithm to determine the 
fastest route for the autonomous vehicle, with real-time testing 
performed using a path on the Universitas Sriwijaya campus, 
which represents road conditions in Indonesia. Additionally, 
the study compares the D-Star Lite algorithm with other well-
known path planning algorithms. 

The paper is organized as follows: Section II explains path 
planning, the method is presented in Section III, Section IV 
discusses the results and findings, and finally, the paper is 
concluded in Section V. 

II. PATH PLANNING 

Path planning is a technique used to determine the best 
route for an autonomous electric vehicle to move from its 
current position to the desired destination while avoiding 
obstacles along the way [9]. Based on the environment in 
which it is applied, path planning can be performed in either 
static or dynamic environments. 

In a static environment, obstacles have fixed positions and 
do not change location. In contrast, in a dynamic environment, 
obstacles may be partially known or entirely unknown, and 
their positions can change over time. 

There are two types of path planning: global and local path 
planning. 

1) Global path planning: Global path planning involves 

determining the route from the starting point to the destination 

within a larger environment. This requires extensive mapping 

and information about the robot's initial position and target 

destination. The focus is on finding the optimal route to reach 

the goal without considering the detailed surroundings near 

the robot. The global path planning process typically takes 

more time, as it involves analyzing the entire environment to 

identify the best route over a larger distance. 

2) Local path planning: Local path planning focuses on 

determining the route around the robot’s current position. Its 

primary objective is to avoid nearby obstacles and ensure the 

robot reaches its destination safely and efficiently. Local path 

planning is faster to execute because it focuses on a smaller 

area surrounding the robot. 

Both approaches are essential for enabling autonomous 
vehicles to navigate complex environments effectively, 
combining broad-route optimization with immediate obstacle 
avoidance to ensure safety and efficiency. 

B. Lifelong Planning A-star Algorithm (LPA*) 

The Lifelong Planning A-Star (LPA*) algorithm is an 
enhancement of the A-Star algorithm. LPA* is an incremental 
version of A-Star, enabling it to adapt to changing 
environments by utilizing two key values: g(s), which 
represents the cost accumulated so far to move from the current 
node to the start node (the formula for calculating g(s) is 
provided in Eq. (1) [20]) and rhs(s), which represents the best-
known cost to reach a node from the start node (its formula is 
provided in Eq. (2) [20]). 

By leveraging these two values, the LPA* algorithm 
efficiently recalculates paths as the environment changes, 
making it well-suited for dynamic scenarios. 

g(𝑠) = 𝑔(𝑠′) +𝑑(𝑠′,𝑠)              (1) 

rℎ(𝑠) = 𝑚𝑖𝑛𝑠′∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑠)((𝑔(𝑠′) + 𝑑(𝑠′,𝑠))              (2) 

where g(𝑠) is the cost to move from the start node to the 
current node, s is current node, s’ is the predecessor node, and 
𝑑(𝑠,𝑠)) is the cost of moving from the predecessor node to the 
current node. 

If g(s) = rhs(s), the node can be considered consistent. 
However, if the calculated node is inconsistent, it indicates a 
possible error in the calculation process. 

In the LPA* algorithm, a priority queue is used to store 
nodes that are known and need to be evaluated or updated. 
Each node in the priority queue is assigned a key value, which 
determines the priority of the node. Nodes with the smallest 
key value are evaluated and updated first. 

The function used to determine the key value of each node 
is provided in Eq. (3). This mechanism ensures that the 
algorithm efficiently processes nodes in the correct order, 
maintaining accuracy and minimizing computational overhead. 

k(𝑠) = min(𝑔(𝑠), 𝑟ℎ𝑠(𝑠)) + ℎ(𝑠)               (3) 

where s is current node, g(s) is g-value of the current node, 
rhs(s) is rhs-value of current node and h(s) is heuristic value of 
the current node. 

C. D-star Lite (D* Lite) algorithm 

The D-Star Lite algorithm, first developed by Sven Koenig 
and Maxim Likhachev in 2002, is a path planning algorithm 
capable of optimally finding a route between a start point and a 
goal point in environments that are known, partially known, or 
dynamic. 

This algorithm operates on a data structure consisting of 
interconnected nodes. A node leading to the current position is 
called a predecessor node, while a node that will be traversed 
next is referred to as a successor node. 

D-Star Lite is based on the Lifelong Planning A-Star 
(LPA*) algorithm, an incremental version of A-Star that adapts 
to changes in the map graph. However, unlike traditional 
approaches, D-Star Lite performs route planning starting from 
the goal node (finish) and works toward the start node. In this 
context, the g(s) value represents the estimated cost from the 
current node to the goal node. 
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This reverse planning approach allows D-Star Lite to 
efficiently handle replanning when changes occur in the 
environment. The algorithm achieves this by maintaining an 
estimated cost for each traversed node, representing the 
distance to the goal node. This capability makes D-Star Lite 
particularly well-suited for dynamic and unpredictable 
environments. 

D* Lite uses distance as a fundamental component because 
it is a path planning algorithm designed to find the shortest or 
least costly path between a start point and a goal. Here’s why 
distance plays such a central role [7] [21] [22] [23]: 

1) Core purposes path planning: The primary objective of 

D* Lite is to navigate an autonomous vehicle efficiently from 

a start point to a goal while avoiding obstacles. Distance or 

cost is the metric used to evaluate the optimality of the path. 

This ensures that the agent follows the shortest or least costly 

route, saving time, energy, or other resources. 

2) Adaptation to dynamic information: In dynamic and 

partially known environments, the map can change due to new 

obstacles or updated information. D* Lite re-evaluates the 

distance (or cost) between nodes when changes occur, 

allowing the algorithm to efficiently update the path without 

recalculating everything from scratch. This incremental 

approach relies on comparing distances to ensure the agent 

can still reach the goal optimally. 

3) Grid representation and node expansion: D* Lite often 

uses a grid or graph-based representation of the environment 

where nodes represent possible positions, and edges represent 

paths between these positions. The algorithm assigns a cost to 

each edge, typically based on physical distance or other 

factors like terrain difficulty. Calculating the shortest path 

through these nodes inherently involves summing distances or 

costs. 

4) Real-world relevance: Distance is a straightforward and 

intuitive metric that directly translates to practical scenarios. 

Whether it’s minimizing travel time, energy consumption, or 

fuel usage, distance serves as a universal measure of 

efficiency. For example, in rescue operations, D* Lite’s 

reliance on distance ensures that the robot can reach victims or 

resources quickly. 

D. Euclidean Distance 

The Euclidean distance is a technique used to measure the 
distance between two points by considering the straight-line 
distance between them, not the angles. In Euclidean distance 
measurement, the calculation is conducted within a single 
plane and involves applying the Pythagorean theorem. 

This method is commonly used to compute the distance 
between nodes and to determine heuristic values in the D-Star 
Lite algorithm. It achieves this by utilizing longitude and 
latitude values obtained from GPS sensors. 

The formula for Euclidean distance is provided in the 
equation below, offering a straightforward way to calculate the 
straight-line distance between two points in a given space. 

ℎ = √(𝑥𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 − 𝑥𝑠𝑡𝑎𝑟𝑡)
2 + (𝑦𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 − 𝑦𝑠𝑡𝑎𝑟𝑡)

2  (4)  

  

With x is the heuristic distance value, 𝑥𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛  is the 
longitude value of the target position, 𝑥𝑠𝑡𝑎𝑟𝑡  is the longitude 
value of the starting position, 𝑦𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛  is the latitude value 
of the target position, and 𝑦𝑠𝑡𝑎𝑟𝑡  is the latitude value of the 
starting position. 

Eq. (4) above can be used to calculate the distance between 
two coordinate points, which will be applied in the D-star Lite 
algorithm. To obtain the distance in kilometers, Eq. (4) must be 
multiplied by the Earth's degree value, approximately 
111.319888. 

III. METHOD 

A. Design System 

In this study, the system design is presented in the form of a 
flowchart, as shown in Fig. 1 below. The flowchart illustrates 
the stages involved in determining the optimal route for an 
autonomous electric vehicle, as well as the steps taken to 
replan the route if obstacles are encountered. 

In Fig. 1, the process begins with reading GPS data via 
ROS, followed by inputting the target node. The D-Star Lite 
algorithm determines the optimal route by identifying the 
direction of the next node based on the previous heading. The 
autonomous vehicle then starts moving toward the next node. 

 
Fig. 1. Flowchart of path planning system design. 
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If obstacles are encountered along the route, the D-Star Lite 
algorithm will replan and determine a new direction for the 
next node. The autonomous vehicle will continue its 
movement. If no obstacles appear along the path, the system 
will check the vehicle’s current position. If the current 
coordinates match the target coordinates, the autonomous 
vehicle will stop, indicating that it has reached the desired 
destination. The route search process using the D-Star Lite 
algorithm must be able to replan if obstacles are detected while 
the autonomous vehicle is moving toward the target point. The 
flow diagram for the designed software can be seen in Fig. 2. 

In Fig. 2, it can be seen that the algorithm initially reads the 
coordinate values from the GPS system, which are transmitted 
via ROS serial communication. After obtaining the initial 
coordinates, the current coordinates are determined. The next 
step is to define the destination or target node. The D-Star Lite 
algorithm calculates the global path from the current node to 
the target node. The target node result is then sent to the 
controller via ROS serial communication. 

The camera sensor provides image data that is sent to a 
computer for identification processing, which then sends input 
to the controller. If the camera detects an obstacle, the D-Star 
Lite algorithm adjusts the route and performs replanning, 
which is transmitted via ROS serial communication. However, 
if no obstacle is detected, the movement continues until the 
target node is reached. 

 
Fig. 2. The flowchart of design software. 

B. Route Data 

At this stage, longitude and latitude coordinate data are 
collected directly at each point designated as a node. A total of 
47 longitude and latitude data points were obtained during this 
process, which will be used for testing purposes in both 
simulations and real-time scenarios. The nodes are labeled with 
numbers from 0 to 46, as shown in Table I. 

TABLE I. NODE POINTS ON THE CAMPUS OF UNIVERSITAS SRIWIJAYA 

INDRALAYA 

Node Longitude Latitude Description 

0 -3.21738259 104.64643749 Engineering Faculty 

1 -3.21667979 104.64656550 
North of the Faculty of Engineering 

T-junction 

2 -3.21545079 104.64774530 
The Faculty of Medicine 
Intersection 

3 -3.21548959 104.64955100 
The Southern T-Junction of the 

Rectorate 

4 -3.21667550 104.64773890 
The Eastern Intersection of the 
Library 

5 -3.21666990 104.64954630 
The Western Intersection of the 

Library 

6 -3.21667029 104.65052800 
Faculty of Social and Political 
Sciences Intersection 

7 -3.21737769 104.65052250 
South of Faculty of Social and 

Political Sciences Intersection 

8 -3.21668260 104.65088070 
T-Junction of Faculty of Social and 
Political Sciences 

9 -3.21735050 104.65089470 South of the FISIP T-Junction 

10 -3.21399860 104.65086760 
The Northern Intersection of the 

Faculty of Law 

11 -3.21385989 104.64773350 Auditorium intersection 

12 -3.21820369 104.65055840 
South intersection of Faculty of 
Economics 

13 -3.21911079 104.65051810 
Intersection of Faculty of Computer 

Science 

14 -3.21950100 104.64873060 
West intersection of Faculty of 
Agriculture 

15 -3.21804735 104.64875234 Intersection behind the library 

16 -3.21564319 104.64739540 Faculty of Medicine 

17 -3.21670539 104.64872703 Library 

18 -3.21391629 104.64873580 Landmark UNSRI 

19 -3.21644240 104.65090500 
Faculty of Social and Political 

Sciences 

20 -3.21536880 104.65088300 Faculty of Law 

21 -3.21795930 104.65054590 Faculty of Economics 

22 -3.21949390 104.64932110 
Faculty of Teacher Training and 

Education 

23 -3.21855209 104.64639790 
Faculty of Mathematics and Natural 
Sciences 

24 -3.21950639 104.64806430 Faculty of Agriculture 

25 -3.21911473 104.65089650 Faculty of Computer Science 

26 -3.21397368 104.64540105 Faculty of Public Health 

27 -3.21735675 104.64956288 South of node 5 

28 -3.21805961 104.64956063 South of node 27 

29 -3.21903399 104.64654099 
South of Faculty of Mathematics 

and Natural Sciences 

30 -3.21945477 104.64699562 South of node 29 
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31 -3.21843234 104.64683263 South of the canteen intersection 

32 -3.21803595 104.64686478 Intersection of canteen 

33 -3.21940914 104.65020614 
West of  Faculty of Teacher 

Training and Education 

34 -3.21579602 104.65035667 North of node 6 

35 -3.21394241 104.64953128 Rectorate 

36 -3.21736794 104.64538617 
Department of Electrical 
Engineering 

37 -3.21730889 104.64475116 
East intersection of Electrical 

Engineering Department 

38 -3.21735422 104.64370186 
T-junction of Faculty of 
Engineering 

39 -3.21894491 104.64379309 T-junction of south node 38 

40 -3.21884979 104.64427315 West of node 39 

41 -3.21838310 104.64493115 West of node 40 

42 -3.21834656 104.64501846 
Behind of Department of 

Mechanical Engineering 

43 -3.21793954 104.64534572 
Behind of Department of Electrical 

Engineering 

44 -3.21791539 104.64564074 East of node 45 

45 -3.21821540 104.64647486 
T-junction of Faculty of 

Mathematics and Natural Sciences 

46 -3.21396715 104.64410885 
T-junction of Faculty of Public 

Health 

The mapping of these 46 nodes is shown in Fig. 3. 

 
Fig. 3. The mapping routes on the Universitas Sriwijaya Indralaya campus. 

In this study, the selected location is the road around the 
Inderalaya campus of Sriwijaya University because the roads 
in this area have challenging characteristics, such as the 
absence of road markings, road barriers, and the surface 
condition of the roads which is not very smooth. The roads 
around the Inderalaya campus reflect those in rural areas of 
South Sumatra Province in general. In terms of traffic density, 
it is not as congested as rural roads in Sumatra, but it is already 
quite busy due to the many students who use the roads by 
riding motorcycles, driving cars, or taking buses. 

IV. RESULTS AND DISCUSSIONS 

A. Path Planning Testing Through Simulation 

In this testing, the path planning system is evaluated using 
the D-Star Lite algorithm to determine whether the developed 
system functions properly. A comparison will also be made 
between the route search results using the D-Star Lite 
algorithm and the A-Star algorithm from previous research. 
This experiment involves finding the best route across 10 
different routes. In the first trial, the route search was tested 
from the Faculty of Engineering to the Faculty of Law. The 
results of this test are presented in Table II, and the traversed 
route is shown in Fig. 4. 

 
Fig. 4. Route from the faculty of engineering to the faculty of law: (a) D-Star 

Lite method, (b) A-Star method. 

TABLE II. TESTING THE ROUTE FROM THE FACULTY OF ENGINEERING TO 

THE FACULTY OF LAW 

Method Nodes skipped 
Total euclidean 

distance (m) 

Distance based on 

google maps (m) 

D-Star  lite 
014175

6819 20 
704,9 702 

A-Star 
0116211
18351020 

948,9 948 

Distance difference (m) 244 246 

In the second trial, the route search was tested from the 
Faculty of Engineering to the Faculty of Economics. The 
results of this test are presented in Table III, and the traversed 
route is shown in Fig. 5. 

 
(a)    (b) 

Fig. 5. Route from the Faculty of Engineering to the Faculty of Economics: 

(a) D-Star Lite Method, (b) A-Star Method 

TABLE III. TESTING THE ROUTE FROM THE FACULTY OF ENGINEERING TO 

THE FACULTY OF ECONOMICS 

Method Nodes skipped 
Total euclidean 

distance (m) 

Distance based on 

google maps (m) 

D-Star lite 
04523313
2152821 

633,6 633 

A-Star 
014175 

27721 
658,1 658,3 

Distance difference (m) 24,5 25,3 
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In the third trial, the route search was tested from the 
Faculty of Engineering to the Rectorate. The results of this test 
are presented in Table IV, and the traversed route is shown in 
Fig. 6. 

 
(a)    (b) 

Fig. 6. Route from the faculty of engineering to the rectorate: (a) D-Star lite 

method, (b) A-Star method. 

TABLE IV. TESTING THE ROUTE FROM THE FACULTY OF ENGINEERING TO 

THE FACULTY OF ECONOMICS 

Method Nodes skipped 
Total euclidean 

distance (m) 

Distance based on 

google maps (m) 

D-Star lite 
0116 

2111835 
648 650,6 

A-Star 
011621
11835 

648 650,6 

Distance difference (m) 0 0 

In the fourth trial, the route search was tested from the 
Faculty of Economics to the Faculty of Medicine. The results 
of this test are presented in Table V, and the traversed route 
can be seen in Fig. 7. 

 
(a)      (b) 

Fig. 7. Route from the faculty of economics to the faculty of medicine: (a) 

D-Star lite method, (b) A-Star method. 

TABLE V. TESTING THE ROUTE FROM THE FACULTY OF ECONOMICS TO 

THE FACULTY OF MEDICINE 

Method Nodes skipped 

Total 

euclidean 

distance (m) 

Distance based 

on google maps 

(m) 

D-Star lite 
212827532

16 
640,6 640,2 

A-Star 
2128153231

 23450116 
860,6 858,6 

Distance difference (m) 220 218,4 

In the fifth trial, the route search was tested from the 
Faculty of Agriculture to the landmark. The results of this test 
are presented in Table VI, and the traversed route is shown in 
Fig. 8. 

From the five trials conducted, the D-Star Lite algorithm 
shows a larger error in comparison to Google Maps readings 
than the A-Star algorithm. However, when comparing the 
routes taken and the best route searches, the D-Star Lite 
algorithm outperforms the A-Star algorithm. This is evident in 
the first, second, and fourth trials, with the largest difference 
being 244 meters in the second trial. This occurs because the 
A-Star algorithm prioritizes only the nodes leading directly to 
the destination as the best route, whereas the D-Star Lite 
algorithm evaluates each node in the dataset to determine the 
shortest path to the destination. Consequently, the D-Star Lite 
algorithm sometimes finds a more optimal route than the A-
Star algorithm. Therefore, the D-Star Lite algorithm is a viable 
method for finding the best route. 

 
(a)    (b) 

Fig. 8. Route from the faculty of agriculture to the landmark: (a) D-Star lite 

method, (b) A-Star method. 

TABLE VI.  TESTING THE ROUTE FROM THE FACULTY OF ECONOMICS TO 

THE FACULTY OF MEDICINE 

Method Nodes skipped 

Total 

Euclidean 

distance (m) 

Distance based 

on google maps 

(m) 

D-Star 
lite 

24302923450
11621118 

933,3 934,2 

A-Star 
24302923450

11621118 
933,3 934,2 

Distance difference (m) 0 0 

B. Route Replanning Testing via Simulation 

In this simulation test, the replanning system using the D-
Star Lite algorithm was tested to determine whether it could 
successfully perform route replanning when an obstacle 
appeared on the route. This experiment included five tests to 
evaluate whether the D-Star Lite algorithm's replanning system 
could be used in real-time conditions. 

In the first trial, a route search was conducted from the 
Faculty of Engineering to the Faculty of Law. The best route 
identified passed through nodes0  1  4  17  5  6  
8  19  20. After establishing the route, node 17 was 
designated as an obstacle or closed, prompting the D-Star Lite 
algorithm's replanning system to search for the best alternative 
route avoiding the closed node. The resulting route passed 
through nodes 0  1  4  2  3  34  6  8  19  
20, as shown in Fig. 9. 
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(a)     (b) 

Fig. 9. Replanning route from the faculty of engineering to the faculty of law 

(a) Before replanning (b) After replanning. 

In the second trial, a route search was conducted from the 
Faculty of Economics to the Faculty of Medicine. The best 
route identified passed through nodes 21  28  27  5  
3  2  16. After establishing the route, node 3 was 
designated as an obstacle or closed, prompting the D-Star Lite 
algorithm's replanning system to search for the best alternative 
route, avoiding the closed node. The resulting route passed 
through nodes 21  28  27  5  17  4  2  16, as 
shown in Fig. 10. 

 
(a)     (b) 

Fig. 10. Replanning route from the Faculty of Economics to the Faculty of 

Medicine (a) Before replanning (b) After replanning. 

In the third trial, a route search was conducted from the 
Faculty of Mathematics and Natural Sciences to the Faculty of 
Economics. The best route identified passed through nodes 23 
 31  32  15  28  21. After establishing the route, 
node 28 was designated as an obstacle or closed, prompting the 
D-Star Lite algorithm's replanning system to search for the best 
alternative route, avoiding the closed node. The resulting route 
passed through nodes 23  31  32  15  14  22  33 
 13  12  21, as shown in Fig. 11. 

 
(a)     (b) 

Fig. 11. Replanning route from the faculty of mathematics and natural 

sciences to the faculty of economics (a) Before replanning (b) After 

replanning. 

In the fourth trial, a route search was conducted from the 
Faculty of Law to the Faculty of Agriculture. The best route 
identified passed through nodes 20  19  8  9  7  27 
 28  15  14  24. After the route was established, node 
27 was designated as an obstacle or closed, prompting the D-
Star Lite algorithm's replanning system to search for the best 
alternative route, avoiding the closed node 27. The resulting 
route passed through nodes 20  19  8  9  7  21  
28  15  14  24, as shown in Fig. 12. 

In the fifth trial, a route search was conducted from the 
Faculty of Public Health to the Faculty of Law. The best route 
identified passed through nodes 26  11  18  35  10 
 20. After establishing the route, node 18 was designated as 
an obstacle or closed, prompting the D-Star Lite algorithm's 
replanning system to search for the best alternative route, 
avoiding the closed node. The resulting route passed through 
nodes 26  11  2  3  34  6  8  19  20, as 
shown in Fig. 13. 

 
(a)     (b) 

Fig. 12. Replanning route from the faculty of law to the faculty of agriculture 

(a) Before replanning (b) After replanning. 

 
(a)     (b) 

Fig. 13. Replanning route from the faculty of public health to the faculty of 

law (a) Before replanning (b) After replanning. 

From the five route replanning trials conducted, it is 
evident that the route replanning system using the D-Star Lite 
algorithm successfully performs the route replanning process. 
Therefore, when an obstacle or blockage occurs, it generates a 
new optimal route to follow. Consequently, the D-Star Lite 
algorithm is suitable for real-time route replanning system 
testing. 

C. Real-time Path Planning Testing 

Next, this section discusses the path planning system 
testing under real-time conditions. In this test, an autonomous 
electric vehicle is used, with its position monitored in real-time 
via GPS. The objective is to evaluate the path planning system, 
designed with the D-Star Lite algorithm, to guide the 
autonomous electric vehicle towards its destination by 
following the optimal route. 

In this test, the autonomous electric vehicle will move from 
its starting position, the Digital Control Laboratory in the 
Electrical Engineering Department (node 36), to its destination, 
the Faculty of Engineering Dean's office building (node 0). The 
best route will then be determined from the starting position to 
the destination. The optimal route found passes through nodes 
36  37  38  39  40  41  42  43  44  45 
 0. For the autonomous electric vehicle to reach the 

 

 

 

 

 

 
 

 

 

 
 

 

  

 

  

 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 1, 2025 

1076 | P a g e  

www.ijacsa.thesai.org 

destination, it must pass through 10 node stages. The path 
taken is shown in Table VII. 

In the real-time path planning tests conducted with an 
electric vehicle, as shown in Table VII, the autonomous 
electric vehicle successfully reached the target position by 
following the optimal route determined by the D-Star Lite 
algorithm. This demonstrates that the D-Star Lite algorithm is 
an effective method for finding the best route for autonomous 
electric vehicles. 

TABLE VII. REAL-TIME PATH PLANNING TESTING 

Node 

stages 

Total 

distance 

(m) 

Google 

maps 

distance 

(m) 

Route based on 

google maps 

Route taken 

electric vehicle 

36  
37 

70,8 70,9 

 
 

37  

38 
116,6 116,5 

  

38  
39 

177,1 181,1 

 
 

39  
40 

54,3 54,5 

  

40  

41 
89,6 89,1 

  

41  42 67 67,8 

 
 

42  43 32,8 32,9 

  

43  44 46,6 48 

 
 

44  45 55,6 56,8 

 
 

45  0 92,6 92,4 

  

D. Real-Time Route Replanning Test 

In this real-time route replanning experiment, a direct test 
will be conducted using an autonomous electric vehicle to 
determine whether the route replanning system of the D-Star 
Lite algorithm can effectively adjust the route when 
encountering obstacles in real-time conditions. 

In this test, the autonomous electric vehicle is programmed 
to move from its starting point at the Digital Control 
Laboratory to the Faculty of Engineering Dean's office. The 
planned route passes through the following nodes: 36  37  
38  39  40  41  42  43  44  45  0. 

However, when the autonomous electric vehicle reaches 
node 38 and detects an obstacle blocking the path to node 39, 
the system identifies this path as impassable. The road closure 
toward node 39 is illustrated in Fig. 14. 

 

Fig. 14. Road closure condition toward node 39. 

Fig. 14 shows the visual closure of the road to node 39. 
This road closure occurs when the autonomous electric vehicle 
detects an obstacle blocking the path. The D-Star Lite 
algorithm handles this condition by dynamically recalculating 
an alternative route in real-time to ensure the vehicle can 
continue its journey toward the destination. 

Once the road closure is detected, the replanning system in 
the D-Star Lite algorithm is activated to recalculate and adjust 
the route, ensuring that the autonomous electric vehicle can 
still reach its predetermined destination. After the replanning 
process, the new route is as follows: 36  37  38  46  
26  11  2  4  1  0. A comparison between the 
original route (before replanning) and the new route (after 
replanning) is shown in Fig. 15. 

 
(a)   (b) 

Fig. 15. Route replanning from the control and robotic laboratory to the 

faculty of engineering (a) Before replanning, (b) After replanning. 

The real-time route replanning test demonstrated that the 
designed system can dynamically adjust the route in real-time 
whenever obstacles are encountered during the autonomous 
electric vehicle's journey toward its destination. 

D-Star Lite uses distance as a core metric because it aligns 
with the algorithm's goal of finding optimal paths while 
efficiently adapting to dynamic environments. Distance serves 
as a universal measure of cost that simplifies computations, 
ensures practical relevance, and facilitates heuristic 
optimization. 

If we compare the D-Star Lite algorithm with Dijkstra, the 
core characteristics are as follows: Dijkstra’s algorithm is one 
of the earliest graph-based approaches for finding the shortest 
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path between nodes. It is deterministic and guarantees an 
optimal solution by systematically exploring all possible paths 
in a static and fully known environment. The algorithm’s 
primary strength lies in its simplicity and optimality for static 
graphs. On the other hand, D-Star Lite is a dynamic and 
incremental path planning algorithm designed for 
environments that are partially known or subject to change. It 
builds on the principles of Dijkstra’s algorithm but introduces 
significant enhancements to handle real-time updates 
efficiently. By focusing only on affected nodes when the 
environment changes, D-Star Lite reduces the computational 
overhead typically associated with path recalculations in 
dynamic scenarios. For the performance: Dijkstra’s algorithm 
guarantees optimal paths in static settings but suffers from high 
computational complexity in large graphs due to its exhaustive 
exploration. This limitation becomes apparent when applied to 
vast areas or dense graphs, as the algorithm must evaluate all 
possible nodes and edges systematically [7]. D-Star Lite, 
however, is optimized for efficiency in dynamic and partially 
known environments. It updates only the necessary parts of the 
graph when changes occur, significantly reducing 
computational demands. Techniques like auto-clustering 
further enhance its performance by segmenting large maps, as 
demonstrated in Heo et al. (2022), where the Auto-Splitting D-
Star Lite method reduced unnecessary node expansions [23]. 

Dijkstra and D-Star Lite algorithms cater to distinct path 
planning requirements. Dijkstra’s algorithm is ideal for static, 
structured environments where optimality and simplicity are 
paramount. D* Lite, on the other hand, is tailored for dynamic 
and partially known environments, offering computational 
efficiency and adaptability. The choice between these 
algorithms depends on the specific use case, environmental 
constraints, and computational resources. Future 
advancements, such as hybrid approaches or machine learning 
integration, may further enhance their capabilities, bridging the 
gap between static and dynamic path planning needs. 

V. CONCLUSIONS 

After conducting five trials to compare the D-Star Lite 
algorithm with the A-Star algorithm, it was concluded that D-
Star Lite demonstrates more optimal route-finding capabilities 
than A-Star. The average difference in route distance between 
the two algorithms was 97.7 meters, with D-Star Lite 
consistently providing shorter routes. Additionally, D-Star 
Lite's ability to calculate the distance to the target at each node 
enables it to perform route replanning effectively when 
encountering obstacles. 

In the conducted tests, the D-Star Lite algorithm proved 
capable of finding the shortest route in real-time, covering a 
distance of 803 meters from the starting point at the Digital 
Control Laboratory to the Faculty of Engineering. Furthermore, 
the D-Star Lite algorithm successfully performed route 
replanning. Initially, the route was: 36  37  38  39  
40  41  42  43  44  45  0. After replanning due 
to an obstacle, the route was adjusted to: 36  37  38  46 
 26  11  2  4  1  0. This study has shown the 
effectiveness of using the D-Star Lite algorithm in real-time 
applications for autonomous vehicles, even with paths 
containing obstacles. However, it is limited to simple obstacles. 

Thus, further studies are needed to improve the algorithm's 
handling of different types of obstacles along the vehicle's 
path. 
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