
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

1069 | P a g e

www.ijacsa.thesai.org

Optimizing Route Planning for Autonomous Electric

Vehicles Using the D-Star Lite Algorithm

Bhakti Yudho Suprapto, Suci Dwijayanti, Desi Windisari, Gatot Aria Pratama

Department of Electrical Engineering, Universitas Sriwijaya, Inderalaya, South of Sumatera, Indonesia

Abstract—Every vehicle, including autonomous vehicles,

requires a route to navigate its journey. Route planning is a

critical aspect of autonomous vehicle operations, as these vehicles

rely on guided paths or sequential steps to move effectively.

Ensuring that the route is optimal is a key consideration. This

study tests the D-Star Lite algorithm to determine the most

efficient route. In simulation tests, the D-Star Lite algorithm was

compared with the A-Star algorithm. The results showed that D-

Star Lite outperformed A-Star, achieving an average distance

reduction of 124 meters. Real-time testing involved finding a

route from node 36 to node 0, resulting in a total distance of 803

meters. Additional tests focused on route replanning in real-time

scenarios. For instance, the initial route passing through nodes 36

→37→38→39→40→41→42→43→44→45→0 was adjusted to an

alternative route: 36→37→38→46→26→11→2→4→1→0. Based

on the results, the D-Star Lite algorithm proves effective in

identifying the best route for autonomous electric vehicles while

also enabling real-time route replanning.

Keywords—Autonomous vehicle; D-Star Lite; path planning;

realtime; replanning route; optimal route

I. INTRODUCTION

Recent advancements in computing and communication
technologies have significantly contributed to the development
of autonomous vehicles. The emergence and evolution of these
vehicles are the results of research in fields such as wireless
communication technology, navigation, sensor technology, ad
hoc networking, data acquisition and distribution, and data
analysis [1] [2]. In addition to their ability to navigate
autonomously to destinations, other critical factors must be
considered in autonomous vehicles, such as the time required
to reach the destination [3]. To plan movements efficiently, it is
equally important to consider the routes the vehicle will follow
[4].

Route planning is a critical aspect of robotics. Autonomous
robots and vehicles require guidance paths or next steps to
navigate effectively [5]. Defining a destination coordinate as a
target ensures that the robot or autonomous vehicle can reach
that destination via a predetermined route. This route must be
the fastest to optimize efficiency and effectiveness while
avoiding unnecessary steps [6]. This aspect is crucial to
ensuring the efficiency and accuracy of the vehicle's movement
[7]. Therefore, using a path planning method that works in
dynamic environments is essential to handle obstacles that may
change or be unpredictable [8]. Several methods can be used to
determine the route, such as the Dijkstra algorithm, A-star, and
D-Star Lite [9].

In research on the Dijkstra algorithm, it is explained that
this algorithm is used for route planning in smart cars by
implementing both the Dijkstra algorithm and the dynamic
window approach [10]. This method was successfully applied
to a self-developed smart car to avoid obstacles and reach a
predetermined position. The study involved both simulation
experiments and real-world testing, demonstrating the
effectiveness and reliability of the Dijkstra algorithm and the
implemented system.

In research on the A-star (A*) algorithm, improvements
were made to the A-star-based path planning algorithm
implemented in autonomous vehicles [11]. These
improvements cover various aspects, such as the use of
evaluation standards to measure performance, incorporating
human guidance or global path planning to develop heuristic
functions, leveraging key points around obstacles for more
effective avoidance, and applying the variable-step-based A-
star algorithm to reduce computation time [11].

However, both of these algorithms have their drawbacks.
The Dijkstra algorithm is categorized as a greedy algorithm
that can optimally find the shortest path solution [12]–[14], but
it requires a longer search time. On the other hand, the A-star
algorithm is a best-first search algorithm that can find the
shortest path more quickly but does not always produce an
optimal solution [15]. Nevertheless, A-star has an advantage
over Dijkstra in its calculations. The A-star algorithm utilizes a
heuristic distance [16] added to the straight-line path, resulting
in a more efficient route. A-star is well-suited for situations
where it is important to find a path quickly and efficiently in
various environments [17]. Both the Dijkstra and A-star
algorithms are only effective in solving the path search process
in static environments (where conditions do not change) [18].
However, for an autonomous vehicle to adapt to unknown and
potentially changing road conditions, a path planning algorithm
that can be implemented in dynamic (changing) environments
is needed. Therefore, the D-Star Lite algorithm will be
developed.

The D-star Lite algorithm can address the efficiency issues
of other algorithms when used in dynamic environments [18].
In previous research [10] and [11] , path planning algorithms
have been implemented using autonomous vehicles, some of
which involved simulations. However, none of the studies
using Dijkstra or A-star algorithms have been able to perform
real-time replanning when obstacles change. In the study [19]
that discusses the D-star Lite algorithm, the goal was to design
a modified D-star Lite algorithm for global path planning in
UAV-based (unmanned aerial vehicle) and mobile robots in
large-scale disaster areas. This algorithm aims to address the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

1070 | P a g e

www.ijacsa.thesai.org

challenges of dynamic environments that are only partially
known by providing shorter paths and faster execution times,
ultimately improving the performance and efficiency of rescue
robots in such situations. Although in study [19] explores the
use of the D-Star Lite algorithm for path planning in dynamic
environments with UAVs and mobile robots, no study has
implemented the D-star Lite algorithm for path planning in
autonomous vehicles. Therefore, this study uses the D-Star Lite
algorithm to determine the fastest route for autonomous
electric vehicles.

The contributions of this study are as follows:
implementing the D-Star Lite algorithm to determine the
fastest route for the autonomous vehicle, with real-time testing
performed using a path on the Universitas Sriwijaya campus,
which represents road conditions in Indonesia. Additionally,
the study compares the D-Star Lite algorithm with other well-
known path planning algorithms.

The paper is organized as follows: Section II explains path
planning, the method is presented in Section III, Section IV
discusses the results and findings, and finally, the paper is
concluded in Section V.

II. PATH PLANNING

Path planning is a technique used to determine the best
route for an autonomous electric vehicle to move from its
current position to the desired destination while avoiding
obstacles along the way [9]. Based on the environment in
which it is applied, path planning can be performed in either
static or dynamic environments.

In a static environment, obstacles have fixed positions and
do not change location. In contrast, in a dynamic environment,
obstacles may be partially known or entirely unknown, and
their positions can change over time.

There are two types of path planning: global and local path
planning.

1) Global path planning: Global path planning involves

determining the route from the starting point to the destination

within a larger environment. This requires extensive mapping

and information about the robot's initial position and target

destination. The focus is on finding the optimal route to reach

the goal without considering the detailed surroundings near

the robot. The global path planning process typically takes

more time, as it involves analyzing the entire environment to

identify the best route over a larger distance.

2) Local path planning: Local path planning focuses on

determining the route around the robot’s current position. Its

primary objective is to avoid nearby obstacles and ensure the

robot reaches its destination safely and efficiently. Local path

planning is faster to execute because it focuses on a smaller

area surrounding the robot.

Both approaches are essential for enabling autonomous
vehicles to navigate complex environments effectively,
combining broad-route optimization with immediate obstacle
avoidance to ensure safety and efficiency.

B. Lifelong Planning A-star Algorithm (LPA*)

The Lifelong Planning A-Star (LPA*) algorithm is an
enhancement of the A-Star algorithm. LPA* is an incremental
version of A-Star, enabling it to adapt to changing
environments by utilizing two key values: g(s), which
represents the cost accumulated so far to move from the current
node to the start node (the formula for calculating g(s) is
provided in Eq. (1) [20]) and rhs(s), which represents the best-
known cost to reach a node from the start node (its formula is
provided in Eq. (2) [20]).

By leveraging these two values, the LPA* algorithm
efficiently recalculates paths as the environment changes,
making it well-suited for dynamic scenarios.

g(𝑠) = 𝑔(𝑠′) +𝑑(𝑠′,𝑠) (1)

rℎ(𝑠) = 𝑚𝑖𝑛𝑠′∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑠)((𝑔(𝑠′) + 𝑑(𝑠′,𝑠)) (2)

where g(𝑠) is the cost to move from the start node to the
current node, s is current node, s’ is the predecessor node, and
𝑑(𝑠,𝑠)) is the cost of moving from the predecessor node to the
current node.

If g(s) = rhs(s), the node can be considered consistent.
However, if the calculated node is inconsistent, it indicates a
possible error in the calculation process.

In the LPA* algorithm, a priority queue is used to store
nodes that are known and need to be evaluated or updated.
Each node in the priority queue is assigned a key value, which
determines the priority of the node. Nodes with the smallest
key value are evaluated and updated first.

The function used to determine the key value of each node
is provided in Eq. (3). This mechanism ensures that the
algorithm efficiently processes nodes in the correct order,
maintaining accuracy and minimizing computational overhead.

k(𝑠) = min(𝑔(𝑠), 𝑟ℎ𝑠(𝑠)) + ℎ(𝑠) (3)

where s is current node, g(s) is g-value of the current node,
rhs(s) is rhs-value of current node and h(s) is heuristic value of
the current node.

C. D-star Lite (D* Lite) algorithm

The D-Star Lite algorithm, first developed by Sven Koenig
and Maxim Likhachev in 2002, is a path planning algorithm
capable of optimally finding a route between a start point and a
goal point in environments that are known, partially known, or
dynamic.

This algorithm operates on a data structure consisting of
interconnected nodes. A node leading to the current position is
called a predecessor node, while a node that will be traversed
next is referred to as a successor node.

D-Star Lite is based on the Lifelong Planning A-Star
(LPA*) algorithm, an incremental version of A-Star that adapts
to changes in the map graph. However, unlike traditional
approaches, D-Star Lite performs route planning starting from
the goal node (finish) and works toward the start node. In this
context, the g(s) value represents the estimated cost from the
current node to the goal node.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

1071 | P a g e

www.ijacsa.thesai.org

This reverse planning approach allows D-Star Lite to
efficiently handle replanning when changes occur in the
environment. The algorithm achieves this by maintaining an
estimated cost for each traversed node, representing the
distance to the goal node. This capability makes D-Star Lite
particularly well-suited for dynamic and unpredictable
environments.

D* Lite uses distance as a fundamental component because
it is a path planning algorithm designed to find the shortest or
least costly path between a start point and a goal. Here’s why
distance plays such a central role [7] [21] [22] [23]:

1) Core purposes path planning: The primary objective of

D* Lite is to navigate an autonomous vehicle efficiently from

a start point to a goal while avoiding obstacles. Distance or

cost is the metric used to evaluate the optimality of the path.

This ensures that the agent follows the shortest or least costly

route, saving time, energy, or other resources.

2) Adaptation to dynamic information: In dynamic and

partially known environments, the map can change due to new

obstacles or updated information. D* Lite re-evaluates the

distance (or cost) between nodes when changes occur,

allowing the algorithm to efficiently update the path without

recalculating everything from scratch. This incremental

approach relies on comparing distances to ensure the agent

can still reach the goal optimally.

3) Grid representation and node expansion: D* Lite often

uses a grid or graph-based representation of the environment

where nodes represent possible positions, and edges represent

paths between these positions. The algorithm assigns a cost to

each edge, typically based on physical distance or other

factors like terrain difficulty. Calculating the shortest path

through these nodes inherently involves summing distances or

costs.

4) Real-world relevance: Distance is a straightforward and

intuitive metric that directly translates to practical scenarios.

Whether it’s minimizing travel time, energy consumption, or

fuel usage, distance serves as a universal measure of

efficiency. For example, in rescue operations, D* Lite’s

reliance on distance ensures that the robot can reach victims or

resources quickly.

D. Euclidean Distance

The Euclidean distance is a technique used to measure the
distance between two points by considering the straight-line
distance between them, not the angles. In Euclidean distance
measurement, the calculation is conducted within a single
plane and involves applying the Pythagorean theorem.

This method is commonly used to compute the distance
between nodes and to determine heuristic values in the D-Star
Lite algorithm. It achieves this by utilizing longitude and
latitude values obtained from GPS sensors.

The formula for Euclidean distance is provided in the
equation below, offering a straightforward way to calculate the
straight-line distance between two points in a given space.

ℎ = √(𝑥𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 − 𝑥𝑠𝑡𝑎𝑟𝑡)
2 + (𝑦𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 − 𝑦𝑠𝑡𝑎𝑟𝑡)

2 (4)

With x is the heuristic distance value, 𝑥𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 is the
longitude value of the target position, 𝑥𝑠𝑡𝑎𝑟𝑡 is the longitude
value of the starting position, 𝑦𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 is the latitude value
of the target position, and 𝑦𝑠𝑡𝑎𝑟𝑡 is the latitude value of the
starting position.

Eq. (4) above can be used to calculate the distance between
two coordinate points, which will be applied in the D-star Lite
algorithm. To obtain the distance in kilometers, Eq. (4) must be
multiplied by the Earth's degree value, approximately
111.319888.

III. METHOD

A. Design System

In this study, the system design is presented in the form of a
flowchart, as shown in Fig. 1 below. The flowchart illustrates
the stages involved in determining the optimal route for an
autonomous electric vehicle, as well as the steps taken to
replan the route if obstacles are encountered.

In Fig. 1, the process begins with reading GPS data via
ROS, followed by inputting the target node. The D-Star Lite
algorithm determines the optimal route by identifying the
direction of the next node based on the previous heading. The
autonomous vehicle then starts moving toward the next node.

Fig. 1. Flowchart of path planning system design.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

1072 | P a g e

www.ijacsa.thesai.org

If obstacles are encountered along the route, the D-Star Lite
algorithm will replan and determine a new direction for the
next node. The autonomous vehicle will continue its
movement. If no obstacles appear along the path, the system
will check the vehicle’s current position. If the current
coordinates match the target coordinates, the autonomous
vehicle will stop, indicating that it has reached the desired
destination. The route search process using the D-Star Lite
algorithm must be able to replan if obstacles are detected while
the autonomous vehicle is moving toward the target point. The
flow diagram for the designed software can be seen in Fig. 2.

In Fig. 2, it can be seen that the algorithm initially reads the
coordinate values from the GPS system, which are transmitted
via ROS serial communication. After obtaining the initial
coordinates, the current coordinates are determined. The next
step is to define the destination or target node. The D-Star Lite
algorithm calculates the global path from the current node to
the target node. The target node result is then sent to the
controller via ROS serial communication.

The camera sensor provides image data that is sent to a
computer for identification processing, which then sends input
to the controller. If the camera detects an obstacle, the D-Star
Lite algorithm adjusts the route and performs replanning,
which is transmitted via ROS serial communication. However,
if no obstacle is detected, the movement continues until the
target node is reached.

Fig. 2. The flowchart of design software.

B. Route Data

At this stage, longitude and latitude coordinate data are
collected directly at each point designated as a node. A total of
47 longitude and latitude data points were obtained during this
process, which will be used for testing purposes in both
simulations and real-time scenarios. The nodes are labeled with
numbers from 0 to 46, as shown in Table I.

TABLE I. NODE POINTS ON THE CAMPUS OF UNIVERSITAS SRIWIJAYA

INDRALAYA

Node Longitude Latitude Description

0 -3.21738259 104.64643749 Engineering Faculty

1 -3.21667979 104.64656550
North of the Faculty of Engineering

T-junction

2 -3.21545079 104.64774530
The Faculty of Medicine
Intersection

3 -3.21548959 104.64955100
The Southern T-Junction of the

Rectorate

4 -3.21667550 104.64773890
The Eastern Intersection of the
Library

5 -3.21666990 104.64954630
The Western Intersection of the

Library

6 -3.21667029 104.65052800
Faculty of Social and Political
Sciences Intersection

7 -3.21737769 104.65052250
South of Faculty of Social and

Political Sciences Intersection

8 -3.21668260 104.65088070
T-Junction of Faculty of Social and
Political Sciences

9 -3.21735050 104.65089470 South of the FISIP T-Junction

10 -3.21399860 104.65086760
The Northern Intersection of the

Faculty of Law

11 -3.21385989 104.64773350 Auditorium intersection

12 -3.21820369 104.65055840
South intersection of Faculty of
Economics

13 -3.21911079 104.65051810
Intersection of Faculty of Computer

Science

14 -3.21950100 104.64873060
West intersection of Faculty of
Agriculture

15 -3.21804735 104.64875234 Intersection behind the library

16 -3.21564319 104.64739540 Faculty of Medicine

17 -3.21670539 104.64872703 Library

18 -3.21391629 104.64873580 Landmark UNSRI

19 -3.21644240 104.65090500
Faculty of Social and Political

Sciences

20 -3.21536880 104.65088300 Faculty of Law

21 -3.21795930 104.65054590 Faculty of Economics

22 -3.21949390 104.64932110
Faculty of Teacher Training and

Education

23 -3.21855209 104.64639790
Faculty of Mathematics and Natural
Sciences

24 -3.21950639 104.64806430 Faculty of Agriculture

25 -3.21911473 104.65089650 Faculty of Computer Science

26 -3.21397368 104.64540105 Faculty of Public Health

27 -3.21735675 104.64956288 South of node 5

28 -3.21805961 104.64956063 South of node 27

29 -3.21903399 104.64654099
South of Faculty of Mathematics

and Natural Sciences

30 -3.21945477 104.64699562 South of node 29

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

1073 | P a g e

www.ijacsa.thesai.org

31 -3.21843234 104.64683263 South of the canteen intersection

32 -3.21803595 104.64686478 Intersection of canteen

33 -3.21940914 104.65020614
West of Faculty of Teacher

Training and Education

34 -3.21579602 104.65035667 North of node 6

35 -3.21394241 104.64953128 Rectorate

36 -3.21736794 104.64538617
Department of Electrical
Engineering

37 -3.21730889 104.64475116
East intersection of Electrical

Engineering Department

38 -3.21735422 104.64370186
T-junction of Faculty of
Engineering

39 -3.21894491 104.64379309 T-junction of south node 38

40 -3.21884979 104.64427315 West of node 39

41 -3.21838310 104.64493115 West of node 40

42 -3.21834656 104.64501846
Behind of Department of

Mechanical Engineering

43 -3.21793954 104.64534572
Behind of Department of Electrical

Engineering

44 -3.21791539 104.64564074 East of node 45

45 -3.21821540 104.64647486
T-junction of Faculty of

Mathematics and Natural Sciences

46 -3.21396715 104.64410885
T-junction of Faculty of Public

Health

The mapping of these 46 nodes is shown in Fig. 3.

Fig. 3. The mapping routes on the Universitas Sriwijaya Indralaya campus.

In this study, the selected location is the road around the
Inderalaya campus of Sriwijaya University because the roads
in this area have challenging characteristics, such as the
absence of road markings, road barriers, and the surface
condition of the roads which is not very smooth. The roads
around the Inderalaya campus reflect those in rural areas of
South Sumatra Province in general. In terms of traffic density,
it is not as congested as rural roads in Sumatra, but it is already
quite busy due to the many students who use the roads by
riding motorcycles, driving cars, or taking buses.

IV. RESULTS AND DISCUSSIONS

A. Path Planning Testing Through Simulation

In this testing, the path planning system is evaluated using
the D-Star Lite algorithm to determine whether the developed
system functions properly. A comparison will also be made
between the route search results using the D-Star Lite
algorithm and the A-Star algorithm from previous research.
This experiment involves finding the best route across 10
different routes. In the first trial, the route search was tested
from the Faculty of Engineering to the Faculty of Law. The
results of this test are presented in Table II, and the traversed
route is shown in Fig. 4.

Fig. 4. Route from the faculty of engineering to the faculty of law: (a) D-Star

Lite method, (b) A-Star method.

TABLE II. TESTING THE ROUTE FROM THE FACULTY OF ENGINEERING TO

THE FACULTY OF LAW

Method Nodes skipped
Total euclidean

distance (m)

Distance based on

google maps (m)

D-Star lite
014175

6819 20
704,9 702

A-Star
0116211
18351020

948,9 948

Distance difference (m) 244 246

In the second trial, the route search was tested from the
Faculty of Engineering to the Faculty of Economics. The
results of this test are presented in Table III, and the traversed
route is shown in Fig. 5.

(a) (b)

Fig. 5. Route from the Faculty of Engineering to the Faculty of Economics:

(a) D-Star Lite Method, (b) A-Star Method

TABLE III. TESTING THE ROUTE FROM THE FACULTY OF ENGINEERING TO

THE FACULTY OF ECONOMICS

Method Nodes skipped
Total euclidean

distance (m)

Distance based on

google maps (m)

D-Star lite
04523313
2152821

633,6 633

A-Star
014175

27721
658,1 658,3

Distance difference (m) 24,5 25,3

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

1074 | P a g e

www.ijacsa.thesai.org

In the third trial, the route search was tested from the
Faculty of Engineering to the Rectorate. The results of this test
are presented in Table IV, and the traversed route is shown in
Fig. 6.

(a) (b)

Fig. 6. Route from the faculty of engineering to the rectorate: (a) D-Star lite

method, (b) A-Star method.

TABLE IV. TESTING THE ROUTE FROM THE FACULTY OF ENGINEERING TO

THE FACULTY OF ECONOMICS

Method Nodes skipped
Total euclidean

distance (m)

Distance based on

google maps (m)

D-Star lite
0116

2111835
648 650,6

A-Star
011621
11835

648 650,6

Distance difference (m) 0 0

In the fourth trial, the route search was tested from the
Faculty of Economics to the Faculty of Medicine. The results
of this test are presented in Table V, and the traversed route
can be seen in Fig. 7.

(a) (b)

Fig. 7. Route from the faculty of economics to the faculty of medicine: (a)

D-Star lite method, (b) A-Star method.

TABLE V. TESTING THE ROUTE FROM THE FACULTY OF ECONOMICS TO

THE FACULTY OF MEDICINE

Method Nodes skipped

Total

euclidean

distance (m)

Distance based

on google maps

(m)

D-Star lite
212827532

16
640,6 640,2

A-Star
2128153231

 23450116
860,6 858,6

Distance difference (m) 220 218,4

In the fifth trial, the route search was tested from the
Faculty of Agriculture to the landmark. The results of this test
are presented in Table VI, and the traversed route is shown in
Fig. 8.

From the five trials conducted, the D-Star Lite algorithm
shows a larger error in comparison to Google Maps readings
than the A-Star algorithm. However, when comparing the
routes taken and the best route searches, the D-Star Lite
algorithm outperforms the A-Star algorithm. This is evident in
the first, second, and fourth trials, with the largest difference
being 244 meters in the second trial. This occurs because the
A-Star algorithm prioritizes only the nodes leading directly to
the destination as the best route, whereas the D-Star Lite
algorithm evaluates each node in the dataset to determine the
shortest path to the destination. Consequently, the D-Star Lite
algorithm sometimes finds a more optimal route than the A-
Star algorithm. Therefore, the D-Star Lite algorithm is a viable
method for finding the best route.

(a) (b)

Fig. 8. Route from the faculty of agriculture to the landmark: (a) D-Star lite

method, (b) A-Star method.

TABLE VI. TESTING THE ROUTE FROM THE FACULTY OF ECONOMICS TO

THE FACULTY OF MEDICINE

Method Nodes skipped

Total

Euclidean

distance (m)

Distance based

on google maps

(m)

D-Star
lite

24302923450
11621118

933,3 934,2

A-Star
24302923450

11621118
933,3 934,2

Distance difference (m) 0 0

B. Route Replanning Testing via Simulation

In this simulation test, the replanning system using the D-
Star Lite algorithm was tested to determine whether it could
successfully perform route replanning when an obstacle
appeared on the route. This experiment included five tests to
evaluate whether the D-Star Lite algorithm's replanning system
could be used in real-time conditions.

In the first trial, a route search was conducted from the
Faculty of Engineering to the Faculty of Law. The best route
identified passed through nodes0  1  4  17  5  6 
8  19  20. After establishing the route, node 17 was
designated as an obstacle or closed, prompting the D-Star Lite
algorithm's replanning system to search for the best alternative
route avoiding the closed node. The resulting route passed
through nodes 0  1  4  2  3  34  6  8  19 
20, as shown in Fig. 9.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

1075 | P a g e

www.ijacsa.thesai.org

(a) (b)

Fig. 9. Replanning route from the faculty of engineering to the faculty of law

(a) Before replanning (b) After replanning.

In the second trial, a route search was conducted from the
Faculty of Economics to the Faculty of Medicine. The best
route identified passed through nodes 21  28  27  5 
3  2  16. After establishing the route, node 3 was
designated as an obstacle or closed, prompting the D-Star Lite
algorithm's replanning system to search for the best alternative
route, avoiding the closed node. The resulting route passed
through nodes 21  28  27  5  17  4  2  16, as
shown in Fig. 10.

(a) (b)

Fig. 10. Replanning route from the Faculty of Economics to the Faculty of

Medicine (a) Before replanning (b) After replanning.

In the third trial, a route search was conducted from the
Faculty of Mathematics and Natural Sciences to the Faculty of
Economics. The best route identified passed through nodes 23
 31  32  15  28  21. After establishing the route,
node 28 was designated as an obstacle or closed, prompting the
D-Star Lite algorithm's replanning system to search for the best
alternative route, avoiding the closed node. The resulting route
passed through nodes 23  31  32  15  14  22  33
 13  12  21, as shown in Fig. 11.

(a) (b)

Fig. 11. Replanning route from the faculty of mathematics and natural

sciences to the faculty of economics (a) Before replanning (b) After

replanning.

In the fourth trial, a route search was conducted from the
Faculty of Law to the Faculty of Agriculture. The best route
identified passed through nodes 20  19  8  9  7  27
 28  15  14  24. After the route was established, node
27 was designated as an obstacle or closed, prompting the D-
Star Lite algorithm's replanning system to search for the best
alternative route, avoiding the closed node 27. The resulting
route passed through nodes 20  19  8  9  7  21 
28  15  14  24, as shown in Fig. 12.

In the fifth trial, a route search was conducted from the
Faculty of Public Health to the Faculty of Law. The best route
identified passed through nodes 26  11  18  35  10
 20. After establishing the route, node 18 was designated as
an obstacle or closed, prompting the D-Star Lite algorithm's
replanning system to search for the best alternative route,
avoiding the closed node. The resulting route passed through
nodes 26  11  2  3  34  6  8  19  20, as
shown in Fig. 13.

(a) (b)

Fig. 12. Replanning route from the faculty of law to the faculty of agriculture

(a) Before replanning (b) After replanning.

(a) (b)

Fig. 13. Replanning route from the faculty of public health to the faculty of

law (a) Before replanning (b) After replanning.

From the five route replanning trials conducted, it is
evident that the route replanning system using the D-Star Lite
algorithm successfully performs the route replanning process.
Therefore, when an obstacle or blockage occurs, it generates a
new optimal route to follow. Consequently, the D-Star Lite
algorithm is suitable for real-time route replanning system
testing.

C. Real-time Path Planning Testing

Next, this section discusses the path planning system
testing under real-time conditions. In this test, an autonomous
electric vehicle is used, with its position monitored in real-time
via GPS. The objective is to evaluate the path planning system,
designed with the D-Star Lite algorithm, to guide the
autonomous electric vehicle towards its destination by
following the optimal route.

In this test, the autonomous electric vehicle will move from
its starting position, the Digital Control Laboratory in the
Electrical Engineering Department (node 36), to its destination,
the Faculty of Engineering Dean's office building (node 0). The
best route will then be determined from the starting position to
the destination. The optimal route found passes through nodes
36  37  38  39  40  41  42  43  44  45
 0. For the autonomous electric vehicle to reach the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

1076 | P a g e

www.ijacsa.thesai.org

destination, it must pass through 10 node stages. The path
taken is shown in Table VII.

In the real-time path planning tests conducted with an
electric vehicle, as shown in Table VII, the autonomous
electric vehicle successfully reached the target position by
following the optimal route determined by the D-Star Lite
algorithm. This demonstrates that the D-Star Lite algorithm is
an effective method for finding the best route for autonomous
electric vehicles.

TABLE VII. REAL-TIME PATH PLANNING TESTING

Node

stages

Total

distance

(m)

Google

maps

distance

(m)

Route based on

google maps

Route taken

electric vehicle

36 
37

70,8 70,9

37 

38
116,6 116,5

38 
39

177,1 181,1

39 
40

54,3 54,5

40 

41
89,6 89,1

41  42 67 67,8

42  43 32,8 32,9

43  44 46,6 48

44  45 55,6 56,8

45  0 92,6 92,4

D. Real-Time Route Replanning Test

In this real-time route replanning experiment, a direct test
will be conducted using an autonomous electric vehicle to
determine whether the route replanning system of the D-Star
Lite algorithm can effectively adjust the route when
encountering obstacles in real-time conditions.

In this test, the autonomous electric vehicle is programmed
to move from its starting point at the Digital Control
Laboratory to the Faculty of Engineering Dean's office. The
planned route passes through the following nodes: 36  37 
38  39  40  41  42  43  44  45  0.

However, when the autonomous electric vehicle reaches
node 38 and detects an obstacle blocking the path to node 39,
the system identifies this path as impassable. The road closure
toward node 39 is illustrated in Fig. 14.

Fig. 14. Road closure condition toward node 39.

Fig. 14 shows the visual closure of the road to node 39.
This road closure occurs when the autonomous electric vehicle
detects an obstacle blocking the path. The D-Star Lite
algorithm handles this condition by dynamically recalculating
an alternative route in real-time to ensure the vehicle can
continue its journey toward the destination.

Once the road closure is detected, the replanning system in
the D-Star Lite algorithm is activated to recalculate and adjust
the route, ensuring that the autonomous electric vehicle can
still reach its predetermined destination. After the replanning
process, the new route is as follows: 36  37  38  46 
26  11  2  4  1  0. A comparison between the
original route (before replanning) and the new route (after
replanning) is shown in Fig. 15.

(a) (b)

Fig. 15. Route replanning from the control and robotic laboratory to the

faculty of engineering (a) Before replanning, (b) After replanning.

The real-time route replanning test demonstrated that the
designed system can dynamically adjust the route in real-time
whenever obstacles are encountered during the autonomous
electric vehicle's journey toward its destination.

D-Star Lite uses distance as a core metric because it aligns
with the algorithm's goal of finding optimal paths while
efficiently adapting to dynamic environments. Distance serves
as a universal measure of cost that simplifies computations,
ensures practical relevance, and facilitates heuristic
optimization.

If we compare the D-Star Lite algorithm with Dijkstra, the
core characteristics are as follows: Dijkstra’s algorithm is one
of the earliest graph-based approaches for finding the shortest

Obstacle /

Blocking

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

1077 | P a g e

www.ijacsa.thesai.org

path between nodes. It is deterministic and guarantees an
optimal solution by systematically exploring all possible paths
in a static and fully known environment. The algorithm’s
primary strength lies in its simplicity and optimality for static
graphs. On the other hand, D-Star Lite is a dynamic and
incremental path planning algorithm designed for
environments that are partially known or subject to change. It
builds on the principles of Dijkstra’s algorithm but introduces
significant enhancements to handle real-time updates
efficiently. By focusing only on affected nodes when the
environment changes, D-Star Lite reduces the computational
overhead typically associated with path recalculations in
dynamic scenarios. For the performance: Dijkstra’s algorithm
guarantees optimal paths in static settings but suffers from high
computational complexity in large graphs due to its exhaustive
exploration. This limitation becomes apparent when applied to
vast areas or dense graphs, as the algorithm must evaluate all
possible nodes and edges systematically [7]. D-Star Lite,
however, is optimized for efficiency in dynamic and partially
known environments. It updates only the necessary parts of the
graph when changes occur, significantly reducing
computational demands. Techniques like auto-clustering
further enhance its performance by segmenting large maps, as
demonstrated in Heo et al. (2022), where the Auto-Splitting D-
Star Lite method reduced unnecessary node expansions [23].

Dijkstra and D-Star Lite algorithms cater to distinct path
planning requirements. Dijkstra’s algorithm is ideal for static,
structured environments where optimality and simplicity are
paramount. D* Lite, on the other hand, is tailored for dynamic
and partially known environments, offering computational
efficiency and adaptability. The choice between these
algorithms depends on the specific use case, environmental
constraints, and computational resources. Future
advancements, such as hybrid approaches or machine learning
integration, may further enhance their capabilities, bridging the
gap between static and dynamic path planning needs.

V. CONCLUSIONS

After conducting five trials to compare the D-Star Lite
algorithm with the A-Star algorithm, it was concluded that D-
Star Lite demonstrates more optimal route-finding capabilities
than A-Star. The average difference in route distance between
the two algorithms was 97.7 meters, with D-Star Lite
consistently providing shorter routes. Additionally, D-Star
Lite's ability to calculate the distance to the target at each node
enables it to perform route replanning effectively when
encountering obstacles.

In the conducted tests, the D-Star Lite algorithm proved
capable of finding the shortest route in real-time, covering a
distance of 803 meters from the starting point at the Digital
Control Laboratory to the Faculty of Engineering. Furthermore,
the D-Star Lite algorithm successfully performed route
replanning. Initially, the route was: 36  37  38  39 
40  41  42  43  44  45  0. After replanning due
to an obstacle, the route was adjusted to: 36  37  38  46
 26  11  2  4  1  0. This study has shown the
effectiveness of using the D-Star Lite algorithm in real-time
applications for autonomous vehicles, even with paths
containing obstacles. However, it is limited to simple obstacles.

Thus, further studies are needed to improve the algorithm's
handling of different types of obstacles along the vehicle's
path.

ACKNOWLEDGMENT

The research/publication of this article was funded by
DIPA of Public Service Agency of Universitas Sriwijaya 2024.
No SP DIPA 023.17.2.677515/2024, On November 24, 2023.
In accordance with the Rector’s Decree Number:
0013/UN9/LP2M.PT/2024, On May 20, 2024.

REFERENCES

[1] R. Hussain and S. Zeadally, “Autonomous Cars: Research Results,
Issues, and Future Challenges,” IEEE Commun. Surv. Tutorials, vol. 21,
no. 2, pp. 1275–1313, 2019, doi: 10.1109/COMST.2018.2869360.

[2] J. Wang, Y. Yan, K. Zhang, Y. Chen, M. Cao, and G. Yin, “Path
planning on large curvature roads using driver-vehicle-road system
based on the kinematic vehicle model,” IEEE Trans. Veh. Technol., vol.
71, no. 1, pp. 311–325, 2021.

[3] C. Jung, D. Lee, B. Kim, and D. H. Shim, “Lane level path planning for
urban autonomous driving using vector map,” in 2020 IEEE
International Conference on Consumer Electronics-Asia (ICCE-Asia),
2020, pp. 1–4.

[4] J. Yu, J. Hou, and G. Chen, “Improved Safety-First A-Star Algorithm
for Autonomous Vehicles,” in 2020 5th International Conference on
Advanced Robotics and Mechatronics (ICARM), Dec. 2020, pp. 706–
710, doi: 10.1109/ICARM49381.2020.9195318.

[5] J. Chen et al., “Path Planning for Autonomous Vehicle Based on a
Two‐Layered Planning Model in Complex Environment,” J. Adv.
Transp., vol. 2020, no. 1, p. 6649867, 2020.

[6] A. H. Ahmad, O. Zahwe, A. Nasser, and B. Clement, “Path Planning
Algorithms For Unmanned Aerial Vehicle: Classification, Performance,
and Implementation,” in 2023 3rd International Conference on
Electrical, Computer, Communications and Mechatronics Engineering
(ICECCME), 2023, pp. 1–6.

[7] S. Sundarraj, R. V. K. Reddy, M. B. Basam, G. H. Lokesh, F. Flammini,
and R. Natarajan, “Route planning for an autonomous robotic vehicle
employing a weight-controlled particle swarm-optimized Dijkstra
algorithm,” IEEE Access, vol. 11, pp. 92433–92442, 2023.

[8] S. Kadry, G. Alferov, and V. Fedorov, “D-Star Algorithm
Modification.,” Int. J. Online Biomed. Eng., vol. 16, no. 8, 2020.

[9] M. Aizat, A. Azmin, and W. Rahiman, “A survey on navigation
approaches for automated guided vehicle robots in dynamic
surrounding,” IEEE Access, vol. 11, pp. 33934–33955, 2023.

[10] L. S. Liu et al., “Path Planning for Smart Car Based on Dijkstra
Algorithm and Dynamic Window Approach,” Wirel. Commun. Mob.
Comput., vol. 2021, 2021, doi: 10.1155/2021/8881684.

[11] S. Erke, D. Bin, N. Yiming, Z. Qi, X. Liang, and Z. Dawei, “An
improved A-Star based path planning algorithm for autonomous land
vehicles,” Int. J. Adv. Robot. Syst., vol. 17, no. 5, pp. 1–13, 2020, doi:
10.1177/1729881420962263.

[12] X. Li, “Path planning of intelligent mobile robot based on Dijkstra
algorithm,” in Journal of Physics: Conference Series, 2021, vol. 2083,
no. 4, p. 42034.

[13] S. W. G. Abusalim, R. Ibrahim, M. Zainuri Saringat, S. Jamel, and J.
Abdul Wahab, “Comparative Analysis between Dijkstra and Bellman-
Ford Algorithms in Shortest Path Optimization,” IOP Conf. Ser. Mater.
Sci. Eng., vol. 917, no. 1, 2020, doi: 10.1088/1757-899X/917/1/012077.

[14] R. Chen, “Dijkstra’s Shortest Path Algorithm and Its Application on
Bus Routing,” Proc. 2022 Int. Conf. Urban Plan. Reg. Econ. 2022）,
vol. 654, no. Upre, pp. 321 – 325, 2022, doi:
10.2991/aebmr.k.220502.058.

[15] A. Candra, M. A. Budiman, and K. Hartanto, “Dijkstra’s and A-Star in
Finding the Shortest Path: A Tutorial,” 2020 Int. Conf. Data Sci. Artif.
Intell. Bus. Anal. DATABIA 2020 - Proc., pp. 28–32, 2020, doi:
10.1109/DATABIA50434.2020.9190342.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

1078 | P a g e

www.ijacsa.thesai.org

[16] Y. Yan, “Research on the A Star Algorithm for Finding Shortest Path,”
Highlights Sci. Eng. Technol., vol. 46, pp. 154–161, 2023.

[17] M. R. Wayahdi, S. H. N. Ginting, and D. Syahputra, “Greedy, A-Star,
and Dijkstra’s algorithms in finding shortest path,” Int. J. Adv. Data Inf.
Syst., vol. 2, no. 1, pp. 45–52, 2021.

[18] K. Xie, J. Qiang, and H. Yang, “Research and optimization of d-start lite
algorithm in track planning,” IEEE Access, vol. 8, pp. 161920–161928,
2020.

[19] S. nyeong Heo, J. Chen, Y. chi Liao, and H. hyol Lee, “Auto-splitting
D* lite path planning for large disaster area,” Intell. Serv. Robot., vol.
15, no. 3, pp. 289–306, 2022.

[20] S. Koenig and M. Likhachev, “Incremental A*,” Adv. Neural Inf.
Process. Syst., 2002.

[21] P. Paliwal, “A survey of a-star algorithm family for motion planning of
autonomous vehicles,” in 2023 IEEE International Students’ Conference
on Electrical, Electronics and Computer Science (SCEECS), 2023, pp.
1–6.

[22] R. Chen, J. Hu, and W. Xu, “An RRT-Dijkstra-based path planning
strategy for autonomous vehicles,” Appl. Sci., vol. 12, no. 23, p. 11982,
2022.

[23] S. Heo, J. Chen, Y. Liao, and H. Lee, “Auto-splitting D* lite path
planning for large disaster area,” Intell. Serv. Robot., vol. 15, no. 3, pp.
289–306, 2022.

