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Abstract—This study presents the development of a predictive 

model for PM2.5 concentrations resulting from forest and peatland 

fires in Riau Province, utilizing the stacking regressor technique 

within an ensemble learning framework. The model integrates 

spatiotemporal data from remote sensing and ground-based 

sensors at a resolution of 1 km x 1 km, demonstrating its 

effectiveness in capturing the intricate patterns of PM2.5 

concentrations. By combining Random Forest, Gradient Boosting 

Machine (GBM), and XGBoost, with RidgeCV as a meta-learner, 

the model attained optimal performance, achieving R² = 0.851, 

MAE = 0.045 µg/m³, and MSE = 0.003 µg/m³. The incorporation 

of temporal feature engineering techniques, including lag and 

rolling window methods, significantly enhanced prediction 

accuracy, enabling the model to effectively capture seasonal 

variations and temporal dynamics. Key variables, such as air 

temperature, evapotranspiration, and Aerosol Optical Depth 

(AOD), were found to exhibit strong correlations with PM2.5 

concentrations. The findings from this research contribute to the 

formulation of data-driven policies for air quality management 

and pollution mitigation, with the potential for broader 

application in regions encountering similar environmental 

challenges. 
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I. INTRODUCTION 

PM2.5 (Particulate Matter ≤  2.5 micrometres per cubic 

metre), which mainly comes from biomass burning such as 
forest and land fires, vehicle emissions, and coal combustion, 
causes various serious health impacts [1]. The measurement of 
PM2.5 due to forest fires faces challenges such as the episodic 
nature of fires, limited monitoring stations, and limited data 
availability [2]. Measurement approaches include ground 
stations with high accuracy but limited coverage, as well as 
satellite remote sensing that has wide and continuous coverage 
[3]. Satellite technology is effective in detecting fires, exposure 
to air pollution, and concentrations of aerosol particles including 
PM2.5 [4]. 

This research analyzes the performance of various machine 
learning algorithms, namely Gradient Boosting Machine 
(GBM), eXtreme Gradient Boosting (XGBoost), Support 
Vector Machine (SVM), Neural Network (NN), Long Short-
Term Memory (LSTM), and Recurrent Neural Network (RNN), 
with the evaluation metrics of Coefficient of Determination (R²), 
Mean Absolute Error (MAE), and Mean Squared Error (MSE). 
To improve prediction accuracy, feature engineering is applied 

through the creation of lag and rolling window features. Lag 
features are based on the concept that historical values of a 
variable, such as PM2.5 concentrations, can influence current or 
future values, especially in time series data [5], [6]. Variables 
such as aerosol concentration, relative humidity, ground surface 
temperature, and air temperature are lagged to capture temporal 
influences. In addition, rolling window statistics, such as mean, 
median, and standard deviation, are calculated to capture long-
term trends and seasonal patterns, helping the model understand 
the dynamics of PM2.5 changes influenced by seasonal factors or 
other external events  [7].  Riau Province - Indonesia was chosen 
as the research location because it has the largest peatland in 
Sumatra Island, which is 3.89 million hectares out of a total of 
5.85 million hectares. This condition makes Riau Province an 
appropriate location for study the impact of forest and peatland 
fires on PM2.5 concentrations [8], [9]. The aim of this research is 
to develop a machine learning ensemble model with optimised 
regressor stacking, and to integrate temporal dynamics and trend 
patterns to predict PM2.5 concentrations using 1 km x 1 km 
spatial and daily temporal remote sensing and ground sensor 
data, thereby supporting environmental management and public 
health policy. 

II. RELATED WORK 

Research relevant to this study includes various PM2.5 
prediction models that integrate remote sensing-based predictor 
data, meteorological parameters and land use. Simple regression 
models such as Linear Regression (LR) and Multiple Linear 
Regression (MLR) are often used due to their simplicity, but 
they fail to capture non-linear relationships in high-dimensional 
datasets [10], [11], [12]. In contrast, machine learning 
techniques such as Random Forest (RF), Gradient Boosting 
(GB), and XGBoost have shown better ability in handling 
complex data and producing more accurate predictions [13], 
[14]. 

Further performance improvements are achieved through 
ensemble learning methods, such as Bagging, Boosting, and 
Stacking, which combine multiple models to reduce their 
individual weaknesses and improve prediction reliability [15], 
[16]. For example, research by Chen [17] showed that the 
stacking regressor model with meta-learner was able to achieve 
a coefficient of determination (R²) of 0.85 and a Root Mean 
Squared Error (RMSE) of 17.3 μg/m³, which was superior to the 
single model. In addition, model combinations such as RF, GB, 
and Linear Mixed Regression (LMR) by Matsuki [18] and 
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findings Li [19] demonstrating the importance of spatial 
resolution in improving the accuracy of PM2.5 predictions. 

Recent studies have also shown the successful application of 
ensemble models in predicting PM2.5 concentrations in various 
regions, such as China [18], South Asia [4], United States of 
America [20], and Italy [14]. Stacking regressor, in particular, is 
becoming a highly relevant method due to its ability to integrate 
predictions from base models such as RF, GB, and XGBoost 
using a meta-learner, which optimises the combination of 
predictions to produce more accurate final results [21]. This 
approach has shown its effectiveness in capturing complex and 
non-linear data patterns, which are often unreachable by 
conventional regression models. 

III. METHOD 

A. Location, Period and Research Data 

This research was conducted in Riau Province, Indonesia, 
during the period 1 March 2022 to 31 March 2024. 
Geographically, Riau Province is located between 01°05'00‘’ N 
to 02°25'00‘’ N and 100°00'00‘’ E to 105°05'00‘’ East. Riau is 
the part of Sumatra Island that has the largest area of peatland, 
with 3.89 million hectares out of a total of 5.85 million hectares. 
The province frequently experiences forest and peatland 
ecosystem fires, which have the potential to cause haze disasters 
with transnational impacts. In this study, the prediction of PM2.5 
concentrations due to forest and peatland ecosystem fires uses 
meteorological, environmental and geospatial data. Data were 
obtained from the air quality sensor of the Meteorology, 
Climatology and Geophysics Agency (BMKG) at Sultan Syarif 
Kasim II Airport Pekanbaru (101.45° East, 0.46° LU) as well as 
through satellite remote sensing. Data collection was conducted 
with daily temporal and spatial resolution, using a 30,000-metre 
buffer from the ground sensor, and a spatial buffer every 1,000-
metres within the 30,000-metre range according to the Area of 
Interest (AOI), as shown in Fig. 1. 

 
Fig. 1. Map of the study area and AOI. 

B. Research Stage 

The research utilizes machine learning algorithms as base 
models to enhance prediction accuracy through stacking, 
detailing the procedure, stacking architecture, and performance 
evaluation, as shown in Fig. 2. 

 
Fig. 2. General stages of modelling using the base model algorithm. 

In the initial stage seven different machine learning 
algorithms as base models to get predictions from each model, 
namely LSTM, RF, XGBoost, SVR, GBM, NN, and RNN. Each 
base model generates predictions for the test data, which are 
referred to as (y_LSTM, y_RF, y_XGBoost, y_SVR, y_GBM, 
y_RNN, and y_NN). These predictions are generated from the 
training process performed on the training data. Each base 
model is evaluated using several evaluation metrics such as R2, 
MSE, and MAE. This evaluation aims to measure how well each 
base model performs against the test data. The model with the 
best performance on these evaluation metrics is used as the basis 
for the next stage, which is the development of the ensemble 
learning model - Attention stacking regressor Model. 
Furthermore, the research process involves several main stages 
in applying the stacking regressor method to predict PM2.5 
concentrations. These stages include dataset preparation, feature 
engineering, dataset sharing, basic model development, stacking 
regressor-meta learner modelling, model evaluation and result 
interpretation as visualised in Fig. 3. 

 

Fig. 3. Research stages of ensemble learning model - stacking regressor. 

IV. RESULTS AND DISCUSSION 

A. Research Dataset 

In general, the predictors used as features of the prediction 
model for PM2.5 concentrations resulting from forest and 
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peatland fires, taken from ground and remote measurement 
sensor stations are as shown in below. 

B. PM2.5 Concentration in the Study Period 

During the study, PM2.5 concentrations were analysed 
through two graphs (Fig. 4): PM2.5 Level Distribution and PM2.5 
Trend over Time. Fig. 4(a) shows that most of the PM2.5 
concentrations were in the range of 15-30 µg/m³, falling into the 
Good to Moderate category, with concentrations above 55 µg/m³ 
rarely occurring, signalling generally safe air quality. Fig. 4(b) 
shows the daily trend of PM2.5 from 2022 to 2024, where 74.83% 
of days are in the Moderate category, 22.16% in the Good 
category, and 3.01% in the Unhealthy category for the Sensitive 
Group. Overall, the graph shows that while most days have safe 
to moderate air quality, there are certain periods where PM2.5 
concentrations increase to potentially dangerous levels, 
especially for vulnerable groups. This emphasises the 
importance of continuous air quality monitoring to anticipate 
health risks, particularly during periods of increased pollution. 

A pattern of fluctuations in PM2.5 concentrations was seen 
throughout the year, with a significant peak occurring at the end 
of 2023, which was most likely related to forest and peatland 
fires in Riau, covering more than 2,000 hectares in October 2023 
[22]. 

C. Feature Correlation with PM2.5 Concentration 

Feature correlation analysis aims to identify the variables 
that have the strongest relationship with PM2.5 concentrations in 
the dataset. Results in Fig. 5 shows the correlation heatmap for 
all features in the dataset against the PM2.5 target. Based on the 
results of the correlation analysis of PM2.5 in Fig. 6, the red 
colour represents a strong positive correlation, while the blue 
colour shows a significant negative correlation. 

The feature with the greatest influence is TEMP (air 
temperature), which has a significant positive correlation, 
indicating that an increase in temperature tends to increase PM2.5 
concentrations. In addition, ET (Evapotranspiration) features at 
certain radii, such as ET30, ET27, and ET28, also show strong 
positive correlations, signalling that areas with high 
evapotranspiration rates tend to have greater PM2.5 
concentrations. AOD (Aerosol Optical Depth), especially at 
large radii such as max_AOD, also showed a significant 
relationship with PM2.5, reinforcing the link between aerosol 
particles in the atmosphere and PM2.5 concentrations. These 
features were identified as the most relevant and influential 
variables in the air quality prediction model based on their strong 
relationship with PM2.5. 

TABLE I.  COMMON PREDICTORS USED IN THE STUDY 

Predictor Description Source Unit 
Temporal 

Resolution 

Spatial 

Resolution 

PM2.5 ground Particulate Matter ≤  2.5 μg/m3 BMKG μg/m3 Daily 30 Km 

TEMP Relative Temperature BMKG °C Daily 30 Km 

PRS Air pressure BMKG hPa Daily 30 Km 

PRE Rainfall BMKG mm Daily 30 Km 

RHU Relative Humidity BMKG % Daily 30 Km 

SSD Sunlight hours BMKG Hours Daily 30 Km 

WIN Wind speed BMKG m/s Daily 30 Km 

Min/Max_NDVI_bufer 1 to NDVI_30 NDVI MODIS/061/MYD13A1 Unitless 16 Days 1 Km 

Min/Max _AOD_bufer 1 to NDVI_30 Aerosol Optical Depth 
MODIS (Terra & Aqua 
MAIAC MCD19A2.061) 

Unitless Daily 1 Km 

Min/Max _ET_bufer 1 to NDVI_30 Evapotranspirasi MODIS/061/MOD16A2 kg/m² 8 Days 1 Km 

Min/Max _LSTDay_bufer 1 to NDVI_30 Daytime surface temperature MODIS/061/MOD11A1 °C Daily 1 Km 

Min/Max _LSTNight_bufer 1 to NDVI_30 Nighttime surface temperature MODIS/061/MOD11A1 °C Daily 1 Km 

  
(a)      (b) 

Fig. 4. PM2.5 concentration in the study period (a) Level distribution (b) Concentration trends. 
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Fig. 5. Heatmap of feature correlation with PM2.5 concentration. 

D. Evaluate the Performance of the base Model Algorithm 

Table II shows the model performance evaluation results, for 
PM2.5 concentration prediction. The XGBoost model performed 
best on the training data with R² of 1.00, MAE of 0.07 μg/m³, 
and MSE of 0.01 (μg/m³)², indicating an almost perfect fit. 
However, on the test data, the performance decreased with an R² 
of 0.40, MAE of 7.18 μg/m³, and MSE of 109.65 (μg/m³)². The 
Random Forest model also showed good performance on 
training (R² 0.92, MAE 2.81 μg/m³, MSE 13.38 (μg/m³)²) but 
decreased on testing (R² 0.36, MAE 7.16 μg/m³, MSE 116.71 
(μg/m³)²). The Gradient Boosting Machine, and Neural Network 
models had moderate performance with training R² of 0.84 and 
0.81, and testing R² of 0.41 and 0.42, respectively. Meanwhile, 
the Support Vector Regression, LSTM and RNN models 
showed lower performance, with training R² ranging from 0.17 
to 0.38 and testing R² between 0.14 and 0.27. 

TABLE II.  PERFORMANCE EVALUATION OF TRAINING AND TESTING 

MODELS 

Model 

Dataset Training 

Performance 

Dataset Testing 

Performance 

R² MAE MSE R² MAE MSE 

Random 

Forest 
0.92 2.81 13.38 0.36 7.16 116.71 

XGBoost 1.00 0.07 0.01 0.40 7.18 109.65 

Support 
Vector Reg. 

0.17 8.82 147.42 0.14 8.35 157.03 

GBM 0.84 4.12 28.05 0.41 6.99 108.56 

Neural 

Network 
0.81 4.38 34.22 0.42 7.67 106.85 

LSTM 0.38 7.81 109.17 0.27 8.36 133.65 

RNN 0.33 8.07 118.26 0.23 8.39 141.53 

E. Improving PM2.5 Predictions by Capturing Temporal 

Dynamics and Trend Patterns 

This research applies feature engineering techniques by 
creating lag and rolling window features that allow the model to 
capture dynamics and temporal trend patterns in time series data. 

1) Lag creation: The lag feature is based on the concept that 

the historical value of a variable may affect the current or future 

value, especially in time series data. In the context of air 

pollution, PM2.5 concentration on a particular day can be 

influenced by meteorological conditions, especially AOD [16], 

[17], [18], [19], [20], [21] and the environment on previous 

days. Therefore, the variables that were considered to have 

significant influence and lag features were created include: 

Representation of aerosol concentration in the atmosphere, 

which is correlated with PM2.5 particles, Relative humidity of 

the air, which affects the formation and dispersion of pollutant 

particles, Ground surface temperature during the day, which 

can affect chemical and physical activity in the atmosphere, and 

Air temperature, an important factor in atmospheric processes. 

The lag feature in time series data is calculated using a shift 
function, which represents the value of a variable in the previous 
time period. Conceptually, the lagt-n value describes the value 
of a variable at a given time that has been shifted by n time steps 
backwards, with n representing the number of lag periods taken 
into account. In Python programming, the lag feature is created 
by shifting the data 4 time steps back using the .shift() method. 

The 4-day lag was selected based on exploration to find the 
optimal value. The dynamic characteristics of PM2.5 that can 
persist and be influenced by atmospheric processes make this 
lag important in the model, allowing the utilisation of historical 
information to improve the accuracy of predicting concentration 
changes. 

2) Statistics rolling window: Variables for which rolling 

statistics are calculated, such as max_AOD, mean_AOD, 

min_AOD, RHU, max_LSTDay, and TEMP, use specific time 

windows to apply statistical functions. The rolling mean 

provides a measure of the general trend by calculating the 

average of the values within that window, helping to understand 

the overall data pattern. The rolling mean calculation follows 

Eq. (1). 

𝑅𝑜𝑙𝑙𝑖𝑛𝑔 𝑀𝑒𝑎𝑛 =  
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

 (1) 

Where: 

𝑛 : Total number of values in the window. 

𝑥1: Individual values in the window. 

∑ 𝑥𝑖
𝑛
𝑖=1  : Sum of all values in the window. 

Rolling median, If the number of data is even, the median is 
calculated as the average of the two middle values. If it is odd, 
the median is the centre value itself. The median is more 
resistant to outliers, so it gives a better idea of the centre of the 
data when there are extreme values. The even rolling median is 
calculated with Eq. (2) and the odd rolling median is calculated 
with Eq. (3). 

𝑅𝑜𝑙𝑙𝑖𝑛𝑔 𝑀𝑒𝑑𝑖𝑎𝑛𝑒𝑣𝑒𝑛 =  
𝑥𝑛

2
+ 𝑥𝑛

2+1

2
                         (2) 

𝑅𝑜𝑙𝑙𝑖𝑛𝑔 𝑀𝑒𝑑𝑖𝑎𝑛𝑜𝑑𝑑 =  𝑥𝑛+1

2
                           (3) 

Where: 

𝑛 : Total number of values in the window. 
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Rolling Standard Deviation (Std) measures the spread of 
data; the larger the standard deviation value, the greater the 
variation in the data. This is important for understanding how 
stable or volatile PM2.5 concentrations are. Rolling Standard 
Deviation (Std) is calculated with Eq. (4). 

𝑆𝑡𝑑 =  √
1

𝑛−1
∑ (𝑥𝑖 − 𝑀𝑒𝑎𝑛)2𝑛

𝑖=1                       (4) 

Where: 

𝑛 : Total number of values in the window. 

𝑥𝑖: Individual values in the window. 

𝑀𝑒𝑎𝑛: Average of the values in the window. 

(𝑥𝑖 − 𝑀𝑒𝑎𝑛)2: The squared difference between each value 
and the mean, which measures the deviation of each value from 
its centre. 

Determination of the best rolling window size in modelling 
PM2.5 concentrations was done by utilising the XGBoost 
Regressor model. The tested rolling windows varied from size 3 
to 20. For each rolling window size, the XGBoost model was 
trained and evaluated to obtain R². The model was trained using 
normalised data to ensure the data was in a comparable range. 
The results of the rolling window evaluation can be seen in Fig. 
6. 

 

Fig. 6. Rolling window size evaluation results. 

The analysis shows that the optimal rolling window size for 
PM2.5 prediction is 19 days with an R² Score of 0.6733. Rolling 
window sizes that are too small or too large tend to produce 
suboptimal performance, with the second peak at 5 days (R² = 
0.6284) and the lowest performance at 10 days (R² = 0.4490). A 
larger rolling window is able to capture more historical 
information, thus improving the model's ability to predict PM2.5 
dynamics. However, the application of the rolling and lag 
features led to the appearance of NaN values at the beginning of 
the data (e.g., the first 18 rows for a 19-day rolling window), 
which were removed using data.dropna() after the addition of 
the features. A summary comparison of the datasets before and 
after feature addition can be seen in Table III. The effect of data 
transformation with lag and rolling window features on data 
representation is shown in Fig. 7. The original variables (e.g., 
mean_AOD, RHU, max_LSTDay, min_LSTDay, and TEMP) 
shown in the left graph (blue) do not reflect the temporal 
dynamics clearly. In contrast, the transformed variables with a 

lag period of 4 and a rolling window on the right graph (red) 
show a clearer and more dynamic historical pattern. Features 
such as mean_AOD_lag4 capture the influence of previous 
conditions on current values, thus improving the model's ability 
to understand temporal relationships. This transformation 
significantly improves the model's ability to capture complex 
patterns, which in turn is expected to improve the accuracy of 
PM2.5 predictions. 

 
Fig. 7. Comparison of datasets before and after adding lag and rolling 

window features. 

TABLE III.  SUMMARY OF DATASETS BEFORE AND AFTER LEG AND 

ROLLING WINDOWS PROCESSING 

Criteria 

Before Lag & 

Rolling Feature 

Addition 

After Addition of 

Lag & Rolling 

Feature 

Number of Rows 731 713 

Number of Columns 173 175 

Average mean_AOD 0.2915 0.2934 

Average RHU 80.43 80.45 

Average max_LSTDay 35.23 35.23 

Average min_LSTDay 28.22 28.23 

Mean TEMP 27.54 27.53 

Standard Deviation of 

mean_AOD 
0.1076 0.1076 

RHU Standard Deviation 4.59 4.63 

Standard Deviation of 
max_LSTDay 

0.53 0.32 

min_LSTDay Standard 

Deviation 
1.89 1.47 

TEMP Standard Deviation 1.18 1.18 
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F. Performance of PM2.5 Prediction Model with and without 

Temporal Features 

Before the temporal features were applied, the top three 
basic models-Random Forest, Gradient Boosting Machine, and 
XGBoost-had relatively low R² values of 0.36, 0.41, and 0.40, 
and high MAE and MSE. However, after the temporal features 
were included, the performance of the models improved 
significantly. Random Forest recorded an R² of 0.761, Gradient 
Boosting Machine achieved an R² of 0.767, and XGBoost 
recorded the highest R² of 0.798, with lower MAE and MSE. 
This shows that the application of temporal features can 
substantially improve the accuracy of PM2.5 prediction. Table 4 
presents the performance evaluation of PM2.5 prediction models 
before and after the addition of temporal features (lag and rolling 
window). 

TABLE IV.  EVALUATION OF PM2.5 PREDICTION MODEL PERFORMANCE 

BEFORE AND AFTER INCORPORATING TEMPORAL FEATURES ON THE TEST 

DATASET 

Model 
Before After 

R² MAE MSE R² MAE MSE 

RF 0.36 7.16 116.71 0,761 0,058 0,005 

GBM 0.41 6.99 108.56 0,767 0,058 0,005 

XGBoost 0.40 7.18 109.65 0,798 0,053 0,005 

G. Development of Ensemble Learning Model - Stacking 

Regressor 

An ensemble learning model is applied using the Stacking 
Regressor approach to predict PM2.5 concentrations due to forest 
and land fires along with the use of lag and rolling window 
features. The stacking approach combines multiple machine 
learning models (base learners) to improve prediction accuracy 
by utilising three strengths of each base model (RF, GBM and 
XGBoost). The results from these base models are then fed into 
a meta-learner, which in this case is RidgeCV. RidgeCV was 
selected as the meta-learner in this study for several technical 
reasons. First, RidgeCV employs L2 regularization to prevent 
overfitting and enhance model stability by reducing excessive 
model complexity. Second, RidgeCV is effective in addressing 
multicollinearity among the predictions from base models. 
Third, it automatically performs cross-validation to select the 
optimal alpha parameter, ensuring an appropriate balance 
between bias and variance. Additionally, RidgeCV is 
computationally efficient compared to other meta-learners and 
is versatile in integrating predictions from various base models 
with different characteristics (e.g., Random Forest, which tends 
to be more robust with non-linear data, and XGBoost, which is 
more sensitive to structured data) [23]. 

We used the best alpha value (0.1) from the search results on 
a logarithmic scale from 10-6 to 106 to effectively combine the 
predictions from the base model. Once trained, the stacking 
regressor model using RidgeCV as a meta-learner gave excellent 
results. The evaluation results on the test dataset (see Table V) 
showed an R² value of 0.845, with an MAE of 0.044 μg/m³ and 
MSE of 0.003 (μg/m³)². 

H. Hyperparameter Tuning for Base Model Optimisation and 

Stacking Regressor via Grid Search 

Grid Search with Cross-Validation (GSCV) is a robust 
method for optimizing hyperparameters in deep learning models, 
where cross-validation plays a critical role in enhancing model 
accuracy by systematically using different subsets of the training 
data for both training and testing [24], [25]. This approach 
evaluates the performance of hyperparameters across all 
potential configurations, making it a thorough and exhaustive 
search technique [26]. In this study, hyperparameter tuning was 
conducted using Grid Search to enhance the performance of 
each base model based on neg_mean_squared_error, with five-
fold cross-validation (cv=5) ensuring the stability of 
performance, and n_jobs=-1 utilized to fully leverage all 
available processors. The optimal parameters identified through 
Grid Search were subsequently employed for the base learners, 
as detailed in Table VI. 

TABLE V.  EVALUATION OF ENSEMBLE LEARNING MODEL - STACKING 

REGRESSOR 

Model R² MAE MSE 

Stacking Regressor 0,845 0,044 0,003 

TABLE VI.  INITIAL PARAMETER RESULTS AND HYPERPARAMETER 

TUNING RESULTS WITH GRID SEARCH FOR EACH MODEL 

Model Parameters 

Initial 

Parameters 

values 

Parameter 

value after 

tuning 

GBM 

n_estimators 100 200 

learning_rate 0.1 0.2 

max_depth 3 3 

min_samples_split 2 5 

min_samples_leaf 1 1 

random_state 42 42 

XGBoost 

n_estimators 200 100 

learning_rate 0.1 0.1 

max_depth 5 6 

subsample 0.8 1.0 

min_child_weight 1 1 

colsample_bytree - 1.0 

objective 'reg' 'reg' 

random_state 42 42 

RF 

n_estimators 100 300 

max_depth 
None 

(unlimited) 

None 

(unlimited) 

min_samples_split 2 2 

min_samples_leaf 1 1 

random_state 42 42 

RidgeCV 
(meta-learner) 

alphas 
np.logspace(-6, 
6, 13) 

np.logspace(-6, 
6, 13) 

store_cv_values True (opsional) True (opsional) 
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After tuning, significant improvements were observed in the 
models (Table VII). For Gradient Boosting, the number of 
estimators (n_estimators) increased from 100 to 200, and the 
learning rate (learning_rate) from 0.1 to 0.2, enhancing learning 
detail at the risk of overfitting. In XGBoost, n_estimators 
decreased from 200 to 100, but max_depth and subsample 
increased, balancing tree depth and data sampling efficiency. 
For Random Forest, n_estimators increased from 100 to 300, 
improving model stability and accuracy by averaging more tree 
predictions. 

I. Performance Evaluation of the Stacking Regressor Model 

After optimisation, the three base models were combined 
using the stacked regressor model, where the predictions from 
each base model became the input for the meta-learner 
(RidgeCV). Table VII shows the evaluation of the stacked 
regressor model before and after hyperparameter tuning.  Fig. 8 
displays the scatter plot between the actual and predicted values 
for each tuned base model as well as the meta-learner. The points 
on the stacking regressor are closer to the reference line (y = x), 
indicating higher prediction accuracy compared to the base 
model.  

TABLE VII.  MODEL EVALUATION BEFORE AND AFTER HYPERPARAMETER 

TUNNING 

Model 

Before 

hyperparam

eter tuning 

After 

hyperparam

eter tuning 

Increa

se R² 

MAE 

decrea

se 

MSE 

Decrea

se 

RF 

R² = 0,761, 

MAE = 
0,058, MSE = 

0,005 

R² = 0,776, 

MAE = 
0,057, MSE = 

0,005 

+0,015 -0,001 0,000 

GBM 

R² = 0,767, 

MAE = 
0,058, MSE = 

0,005 

R² = 0,781, 

MAE = 
0,055, MSE = 

0,005 

+0,014 -0,003 0,000 

XGBoo

st 

R² = 0,798, 
MAE = 

0,053, MSE = 

0,005 

R² = 0,835, 
MAE = 

0,048, MSE = 

0,004 

+0,037 -0,005 -0,001 

Stackin

g 

Regress
or 

R² = 0,845, 

MAE = 

0,044, MSE = 
0,003 

R² = 0,851, 

MAE = 

0,045, MSE = 
0,003 

+0,006 +0,001 0,000 

 

  

  

Fig. 8. Scatter plot of hyperparameter tuning performance of prediction model versus actual value. 

V. CONCLUSION 

This study successfully developed an effective prediction 
model for PM2.5 concentrations caused by forest and peatland 
fires in Riau Province, employing an ensemble learning 
approach through the stacking regressor method. The model 
outperforms other methods, demonstrating superior prediction 
performance due to the integration of spatiotemporal data from 
remote sensing and ground sensors. By combining base models 
such as Random Forest, Gradient Boosting Machine (GBM), 

and XGBoost, optimized with RidgeCV as a meta-learner, the 
model achieved optimal performance with R² = 0.851, MAE = 
0.045 µg/m³, and MSE = 0.003 µg/m³. The application of 
temporal feature engineering techniques, including lag and 
rolling window, significantly enhanced the model's accuracy, 
enabling a better understanding of seasonal patterns and 
temporal dynamics in PM2.5 concentrations. Key variables such 
as air temperature, evapotranspiration, and Aerosol Optical 
Depth (AOD) were found to have strong correlations with PM2.5 
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concentrations, highlighting the critical role of atmospheric 
conditions in influencing air pollution levels. This research 
makes a significant contribution to the development of data-
driven air pollution mitigation policies and holds potential for 
global application in regions facing similar pollution challenges, 
supporting efforts for more responsive and evidence-based air 
quality policy planning and public health management. 
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