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Abstract—Recommender systems recommend products to
users. Almost all businesses utilize recommender systems to sug-
gest their products to customers based on the customer’s previous
actions. The primary inputs for recommendation algorithms are
user preferences, product descriptions, and user ratings on prod-
ucts. Content-based recommendations and collaborative filtering
are examples of traditional recommendation systems. One of the
mathematical models frequently used in collaborative filtering
is matrix factorization (MF). This work focuses on discussing
five variants of MF namely Matrix Factorization, Probabilistic
MF, Non-negative MF, Singular Value Decomposition (SVD),
and SVD++. We empirically evaluate these MF variants on six
benchmark datasets from the domains of movies, tourism, jokes,
and e-commerce. MF is the least performing and SVD is the
best-performing method among other MF variants in terms of
Root Mean Square Error (RMSE).
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I. INTRODUCTION

A large number of websites offer products to their users.
Users purchase products based on a variety of necessities
and tastes. By giving customers the best products, one can
help to accelerate the purchasing process and raise customer
contentment. As the state of technology advances at a rapid
pace, it becomes increasingly difficult to anticipate user pref-
erences and meet their requirements. Recommendations are
quite useful in many aspects of our daily lives. We employ
some external features to learn and make choices about a
user’s preferences for a specific product [1]. The recommender
system is developed to address this issue. These systems learn
from user actions and preferences to predict what content may
most likely catch the user’s interest [2]. Many commercial
sites like YouTube, Amazon, and Netflix are highly benefited
by using highly sophisticated recommender systems. Potential
applications include suggesting books on Amazon, movies
on Netflix, products on Flipkart, and so on. These sites
continuously monitor the user’s watch/view/purchase history
and attempt to make educated guesses about what other
products the user might find interesting. Many times, systems
ask users to provide explicit ratings on used products. This
rating information is a significant input to the recommender
systems [3].

In 1979, a computer-based librarian introduced the first
iteration of the recommender system to offer customers advice
on what books to read. Then it advanced in the 1990’s with
a lot of research achievements in various fields. A research
lab Group Lens at the University of Minnesota in the United

States launched another recommender system implementation
in the 1990’s to assist people [4]. After that, they started
calling it a Group Lens Recommender System. The use of
recommender systems in advancing research across disciplines
and sectors has grown in recent years. Recommender systems
are essential components of many online platforms, providing
users with tailored content and product suggestions. These
systems significantly boost user engagement and satisfaction
by forecasting user preferences through historical data and
behavior analysis [5]. However, despite their extensive use,
traditional recommender systems encounter issues with accu-
rately modeling preferences, ensuring fairness, mitigating bias,
and maintaining transparency. Researchers have been exploring
advanced methodologies to overcome these obstacles and
enhance the effectiveness and dependability of recommender
systems.

Causal inference methods are essential for uncovering the
fundamental causes of user preferences and behaviors, thereby
improving the precision and dependability of recommendations
in recommender systems [6]. By leveraging these techniques,
effective recommendation algorithms can greatly enhance user
satisfaction through personalized content that matches indi-
vidual interests and preferences. Nonetheless, selection bias
remains a significant challenge, as it can result in biased
and inaccurate recommendations by disproportionately repre-
senting certain user groups or preferences based on skewed
data [7]. Achieving fairness in these systems is vital to ensure
that all users receive equitable recommendations, regardless of
their demographics or past behaviors. The integration of large
language models into recommender systems can further refine
the understanding of user context and intent, resulting in more
sophisticated and effective recommendations [8]. Combining
these advanced methodologies helps to mitigate issues of bias
and fairness, ultimately improving the overall performance and
trustworthiness of recommender systems [9].

There are many applications of recommender systems.
Various recommender system techniques are proposed for a
variety of applications related to Government, Business, Online
Shopping, Library, Learning, Tourism, Group activities, and
Healthcare.

1) Government: The government may greatly improve its
communication with its constituents and its ability to serve the
public by adopting the internet recommender system. The citi-
zen services discover and recommend to users more significant
and interesting services. One-time items will receive ratings
from the business perspective services [10]. By considering
the citizen’s profile, more relevant and engaging services to
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the citizen are recommended. In business perspective, one-time
items will receive ratings from the business perspective.

2) Business: Various recommender systems are developed
for business promotions. Some of the systems pay attention
to the recommendations initiated by individual customers that
are Business-to-Customer (B2C) systems. Recommendations
produced for business users on products and service is called
Business-to-Business (B2B) systems.

3) Online shopping: One of the most significant tools in the
realm of online purchasing is the recommender system [11].
Ratings for the purchased products by a user is the primary
information that depicts the interest of the user [12]. Almost
all commercial applications like Amazon, Netflix, and Flipkart
provide the option for giving ratings for the products.

4) Library: To propose resources for research in the uni-
versity’s online libraries, Porcel et al. conducted research and
created a recommender system [13], [14]. Applications for
online libraries can employ systems of recommendations to
help users search and select knowledge and data resources.

5) Learning: Learning recommender systems guide learn-
ers to select the subjects, courses, and learning information
to perform learning activities [15]. Digital libraries contain a
huge amount of e-documents that a user can choose from [16].

6) Tourism: Recommender Systems are also used to give
recommendations for tourism places to tourists. It is mainly
suggested on transportation, restaurants, and lodging for users
to feel comfortable reaching their destinations. Users are
directed to a wide range of online resources. These services
contain different perspectives according to videos, music, and
learning materials that are uploaded by users [17].

7) Group activities: As interactions through online have
increased, the use of group activities has become more popular.
Giving recommendations to a group of users having different
opinions is a crucial task. The idea of group activities is to
learn interactions between the users from the known group
ratings [18]. In various cases, the decision has to be made by
the users in both online or in without internet access. In such
instances, the entire organization makes the decision to balance
users’ expectations in online as well as offline formats. The
online group is to be formed by the system, but the offline
group will be already formed [19].

8) Healthcare: Efficient and effective communication is
very important in healthcare. A growing number of patients
require the care of healthcare professionals from many spe-
cialties, especially those who have chronic illnesses or dis-
eases [20].

There are many other applications in the fields of medicine,
banking, telecom, media, social networks, e-commerce, in-
ternet of things (IoT) [21], [22] other than the ones already
mentioned.

In Section II a brief analysis of the problem statement is
discussed. In Section III we discussed about the taxonomy
of recommender systems followed by in Section IV, a dis-
cussion on matrix factorization techniques is mentioned. In
Section V the empirical evaluation of the datasets and the
rating distribution plots are discussed. Section VI discusses
about the results and discussion and in Section VII gives a brief

comparison of different matrix factorization methods. Finally,
Section VIII ends up with final conclusion and future plan.
The supplementary information for the results is placed in
Section VIII-B.

II. PROBLEM STATEMENT

Consider a set of m users U = {U1, U2, . . . , Um} and a
group of n items I = {I1, I2, . . . , In} and a rating matrix R
of size m×n, Rij denotes the rating provided by the user Ui

to item Ij . Making user recommendations for unrated items
presents a challenge.

The problem of recommender systems is depicted in Fig. 1.

Fig. 1. Example for recommender systems.

This correlates to the issue of matrix completion, which is
to fill the empty cells of R with rating information from the
filled matrix entries. This problem is challenging because the
real-world rating matrices are huge in size and sparse in nature.
For instance, Amazon product recommendation is represented
as a matrix containing around 197 million users and 12 million
products. As a single user may not rate many products, the
product vector of the user has more empty cells than ratings.
Hence, it is extremely challenging to predict recommendations
for the next user action based on these fewer interactions and
it is called a data sparsity problem.

Handling sparse rating data in recommendation systems
is challenging due to extreme sparsity, where missing data
makes it hard to find patterns and leads to less accurate
predictions. Overfitting occurs as models may capture noise
from sparse data, reducing their ability to generalize. The
cold start problem also arises when new users or items lack
enough interaction history, limiting accurate recommendations.
Solutions include regularization, hybrid models, and using
implicit feedback or additional information to address these
issues.

There are numerous methods of solving matrix completion
issues. One of the traditional methods for matrix completion
is matrix factorization (MF). This study focuses on solutions
based on MF. Table I provides the notations utilised in this
work.

Next section describes the existing methods of recommen-
dation.
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TABLE I. NOTATIONS

Notation Usage

R Rating Matrix
m Number of Users
n Number of Items
i user
j item/product
X Latent features for the Users
Y Latent features for the Items
k Number of features extracted
U Set of Users
I Set of Items
δ Regularization Constant
γ Learning Rate
R̃ Prediction rating
β Distribution Parameter Set
α Distribution Hyper parameter
P,Q Orthogonal Matrices
s Singular Matrix

III. LITERATURE

Information filtering in recommender systems involves
choosing and displaying relevant information or items for users
based on their preferences, behaviors, and interactions [23].
This entails processing large amounts of data to find and
present content, products, or services that are most likely to
appeal to the user [24]. By providing tailored suggestions that
suit each user’s particular preferences and needs, the goal is
to enhance the user experience. There are many classifications
of recommender systems in practice. Fig. 2 shows a popular
classification.

Fig. 2. Classification of recommender systems.

Non-personalized and personalised recommender systems
are the two main classifications of recommender systems. Non-
personalized recommenders show users only the most popular
items, regardless of their purchases/interests. Based on their
purchases and reviews, personalised recommenders analyse the
tasks of users and make pertinent product recommendations.
For instance, suggesting the most popular web series such as
MoneyHeist being recommended to all Netflix subscribers
irrespective of their genre choice can be regarded as a non-
personalized recommendation. On the other hand, suggesting
movies/TV shows belonging to a genre that the user watch-
es/rates more often is a personalized recommendation.

Additional categories for personalised recommender sys-

tems include content-based filtering, collaborative filtering, and
hybrid models. Content-Based (CB) Filtering utilises the item
attributes in recommendation. The algorithm creates a list of
products with characteristics comparable to those of products
the customer has already bought or reviewed. A few items from
the list with top similarity will be recommended to the user.
For this purpose, metrics such as cosine, euclidean, pearson,
or spearman are used [25]–[28].

An example showing content-based filtering is depicted in
Fig. 3.

Fig. 3. Content-based filtering.

The recommender system finds additional books (let’s say
BOOK1 and BOOK2) that are comparable to the one the
USER has already read and recommends those to the USER.

The content-based recommendation requires domain
knowledge to identify attributes that may be non-available due
to privacy concerns. This is a major limitation of this class
of recommendation systems. However, CB addresses the cold
start problem effectively. Collaborative Filtering (CF) suggests
items/products based on the user’s previous choices [29]–
[34]. For a specific user i, CF finds additional users who
share i’s preferences and makes suggestions based on their
choices. Their interactions with various products that user
i purchased/rated can be used to determine if they have
comparable tastes. Collaborative filtering key benefit is that
it doesn’t require domain knowledge [35]. The process of CF
for book recommendation is given in Fig. 4.

Fig. 4. Collaborative filtering.

In this example, there are two different users (say USER1
and USER2) who are having similar tastes. If there are two
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different books (say BOOK1 and BOOK2) that are read by
both users, the recommender system identifies the books that
are read by only one user (say USER1) and recommends the
remaining books (say BOOK3) that are not read to the other
user (say USER2).

The two approaches of calculating user similarity are
Neighborhood-based and Model-based methods.

Neighborhood-based Collaborative Filtering (NCF) meth-
ods are also called Memory-based models or Heuristic-based
models. The NCF technique forecasts the similarity between
users and items by analyzing user-item interactions through
heuristics. It employs two approaches: user-user collaborative
filtering and item-item collaborative filtering [36].

• User-User based Collaborative Filtering: When pro-
ducing predictions, the user-based collaborative filter-
ing finds the other users who are engaging in similar
behaviors. For user’s having similar interactions, the
items are recommended. It predicts the interest of
an item that depends on the rating information from
similar users [37]. The steps to compute user-user
similarities are given below:
◦ Build a user vector Ai for each individual user

i. Ai will be of size n, n being the number of
items. A[j] is 1 if user buys item j, otherwise
it is zero.

◦ Compute the similarity matrix M , of size m×
m where m is the number of users such that
M [i1, i2] = similarity(i1, i2).

◦ For every user i, identify a set of users S ∈ U ,
where S contains the users with top similarity
score with i.

◦ Suggest the items that are bought by the users
in S, and that are not bought by i.

The example of user-user based collaborative filtering is
depicted in Fig. 5.

Fig. 5. User-user based collaborative filtering.

To recommend books to USER1, the recommender com-
putes the similar users of USER1, which is USER2 in the first
step. BOOK3 bought by USER2 is not bought by USER1, and
is recommended to USER1.

Item-item based Collaborative Filtering (ICF): By detecting
the associated subjects that users have previously rated, the
item-item based collaborative filtering determines how simi-
lar the items are and provides predictions. It computes the
similarity of how the target item is selected from the k-most
similar items [38]. Additionally, the corresponding parallels are
found. When comparable things are discovered, the prediction
is made using the target user’s rating as well as the average
of the related items. The following are the steps to compute
item-item similarities:

• Find the previously liked items of the target user from
the historical data.

• Identify the most similar items for the previously liked
items.

• Select the maximum likelihood items from similar
item sets.

• Introduce the products to the target user.

The example of item-item based collaborative filtering is
depicted in Fig. 6.

Fig. 6. Item-item based collaborative filtering.

To suggest books to a USER, the recommender system
computes the maximum likelihood of similar books (say
BOOK4) bought by the USER from the historical data and
recommends them to the USER.

Model-based Collaborative Filtering trains a model us-
ing historical information on user-item ratings. Once the
model is trained, ratings can be predicted using the
model [39]. One of the well-liked model-based techniques is
Matrix Factorization (MF ). The goal of this study is to
compare and assess the performance of several MF approaches
in different areas. The next section discusses MF and its
variations in detail.

IV. MATRIX FACTORIZATION TECHNIQUES

In this section, various matrix factorization methods are
discussed. In every matrix factorization method, ratings are
predicted and the recommendations are given to the users. So,
the evaluation metric for our analysis is limited to Root Mean
Square Error (RMSE).

The basic procedure of MF is shown in Fig. 7.

Further, five variations of MF techniques namely matrix
factorization (MF), probabilistic matrix factorization (PMF),
non-negative matrix factorization (NMF), singular value de-
composition (SVD), and SVD++ are elaborated. Each of the
variant addresses the challenges of collaborative filtering like
cold start problem, and data sparsity in different ways.

MF addresses data sparsity by decomposing the user-item
interaction matrix into lower-dimensional user and item matri-
ces, capturing latent factors that help to estimate missing values
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Fig. 7. Flow chart for the procedure of Matrix Factorization (MF).

and fill gaps created by unobserved ratings. However, MF faces
challenges with the cold start problem, as it depends on histor-
ical interactions to learn these latent factors, making it difficult
to generate accurate recommendations for new users or items
without prior rating data. PMF extends MF with a probabilistic
framework that regularizes factorization, helping to manage
sparse data. While PMF also faces cold start challenges due to
reliance on historical data, Bayesian approaches can mitigate
this by incorporating priors on latent factors. NMF decomposes
the matrix into non-negative latent factors, capturing additive
relationships and handling sparse data more effectively. How-
ever, it still relies on sufficient observed data and struggles with
cold start, though variations incorporating content-based data
can help address this limitation. SVD factorizes the matrix into
orthogonal components, capturing key features with reduced
dimensions and approximating missing values through low-
rank approximations. However, it requires observed data for
decomposition, making it less effective for cold start scenarios,
as it lacks a direct mechanism for handling users or items
without prior interactions. SVD++ extends standard SVD by
incorporating both explicit ratings and implicit feedback, such
as clicks and views, which helps mitigate data sparsity by
providing additional data points. While it improves cold start
handling for users through implicit feedback, it still requires
some interaction data and remains limited for completely new
users or items.

A rating matrix R is of size m × n is input to any MF

method, where m, n are the number of users and items. R is
factored into two latent feature matrices X and Y [40], [41].

Three steps are common in these MF methods:

1) Initialization of latent feature matrices X and Y : It is
a common practice to initialize the matrices X and
Y randomly. Different MF techniques use different
data distributions to generate these random numbers.

2) Computation of predicted rating matrix: The pre-
dicted rating matrix R̃ is computed by extracting k
users and items latent features. The value of k can
be fixed empirically. These latent feature matrices are
multiplied to get the overall predicted matrix. The
sample process is shown below.

 r11 .. r1n
. .. .
. .. .
. .. .

rm1 .. rmn

 =

 x11 .. x1k

. .. .

. .. .

. .. .
xm1 .. xmk


y11 .. y1n

. .. .

. .. .

. .. .
yk1 .. ykn


m× n m× k k × n

Where, k is the number of features extracted, m is the
users, n is the items, X is a matrix representing latent features
of the users, Y denotes the latent features of the items. The
relation between R and R̃ is shown in Eq. 1.

R ≈ XY T (1)

R̃ = XY T

The error in the prediction is determined using the differ-
ence between corresponding cells in R and R̃ after computing
R̃. A few common error metrics include Mean Absolute Error
(MAE), Regularised Square Error (RSE), and Root Mean
Square Error (RMSE), as illustrated in Eq. 2, Eq. 3, and Eq. 4,
respectively.

Eq. 2 calculates Root Mean Square Error (RMSE) by
subtracting the original rating from the predicted rating values.

RMSE =

√
1

N

∑
(rij − r̃ij)

2 (2)

where N is the number of predictions, r̃ij is the predicted
rating, and rij is the original rating.

According to Eq. 3, the Regularised Square Error (RSE) is
produced by subtracting the original rating from the predicted
rating values and adding regularisation factors.

RSE = (rij − r̃ij)
2 + δ (3)

Mean Absolute Error (MAE) is calculated as shown in
Eq. 4, by subtracting the original rating’s absolute value from
the anticipated rating values.

MAE =
1

|N |
(|rij − r̃ij |) (4)
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Minimising the discrepancy between the actual and pre-
dicted rating matrices is the key job here.

In general, an objective function shown in Eq. 5 is used
for that task.

min
1

2
||R−XY ||2 (5)

The updating of the latent user and item matrices, which
are covered below, is necessary for the goal function.

1) Update the latent feature matrices X and Y : Different
update rules are used by MF methods to reduce the
error computed in step 2.

2) Step 3 is repeated until either error doesn’t remain the
same in two successive steps or the error is less than
a chosen threshold. But in most of the programming
solutions, a fixed number of iterations is taken as a
terminating point.

To summarise, different MF techniques vary in steps 1
(Initialization), and 3 (update rule). The following sections
describe the variations in detail.

A. Matrix Factorization

1) Initialization of latent feature matrices: The initializa-
tion of X and Y are purely random values with 0 to 1
distribution in basic MF [42], [43].

2) Update rule to reduce the error between actual and
predicted rating matrices:: By multiplying the rating vectors
for the person and the object, as stated in Eq. 6, one can find
the original rating.

rij ≈ xiy
T
j (6)

Utilising the observed ratings while reducing the squared
error is one method for computing the empty ratings in the
matrix. The square error minimization is shown in Eq. 7.

min
∑
i,j

(rij − xiy
T
j )

2 (7)

The result will overfit the training data and to overcome
the overfitting in squared error a regularization term is incorpo-
rated is shown in Eq. 8. Regularization is controlled by using
a regularization constant δ known as Regularized Square Error
(RSE).

min
∑
i,j

(rij − xiy
T
j )

2 + δ(||xi||2 + ||yj ||2) (8)

where ||.|| is the frobenius norm. Alternating least squares
or stochastic gradient descent can be used to estimate this
value. According to Eq. 9, every rating within the training
data has been predicted via stochastic gradient descent, and
the prediction error is calculated.

eij = rij − xiy
T
j (9)

Then update the vectors yj and xi with a constant γ called
the learning rate, and δ as the regularization constant. Updating
the values of yj and xi is shown in Eq. 10.

yj ←− yj + γ(eijxi − δyj)

xi ←− xi + γ(eijyj − δxi) (10)

B. Probabilistic Matrix Factorization

1) Initialization of latent feature matrices: The initializa-
tion of X and Y are random values of 0 to 1 with normal
distribution.

2) Update rule to reduce the error between actual and
predicted rating matrices: By fixing the parameters, the log-
posterior value on the predicted rating matrix R̃ is observed
from the original rating matrix R [44]. To maximize the
log-posterior for the user’s and item’s latent features, some
additional regularization hyperparameters are added and fixed
to minimize the sum of squares as shown in Eq. 11.

E = −1

2

 m∑
i=1

n∑
j=1

(rij − xT
i yj)

2
(i,j)∈ΩRij


− 1

2

δX m∏
i=1

||xi||2Fro + δY

n∏
j=1

||yj ||2Fro

 (11)

where

δX =
σ2
X

σ2
, δY =

σ2
Y

σ2

The procedure for calculating the log-posterior distribution
is as follows: An approach that offers a statistical framework
using the Bayes theorem for the model rating matrix R called
Probabilistic Matrix Factorization (PMF) which is proposed
by Salkhutdinov and Mnih [45]. PMF is a probabilistic linear
model with gaussian distribution which is used for initial latent
feature matrices X and Y . By fixing the parameters, the log-
posterior value on the predicted rating matrix R̃ is observed
from the original rating matrix R [44].

p(β|Z,α) = p(Z|β, α)p(β|α)
p(Z|α)

∝ p(Z|β, α)p(β|α) (12)

In this case, Z represents dataset, β represents the dis-
tribution parameter set, and α represents the distribution hy-
per parameter. The posterior distribution, also known as a-
posteriori, is denoted by p(β|Z,α). p(Z|β, α) is the likelihood
and p(β|α) is the prior. More information about the data
distribution can be obtained through the training process, and
the model parameter β can be adjusted to fit the data. Let
Rij represent the rating of the user i on the item j and let
X ∈ Rm×k and Y ∈ Rk×n are the users and items latent
feature vectors respectively. Here we assume that the entries of
R are normally distributed around the inner product of (Xi, Yj)
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with a common variance. We will now use our rating matrix
for the predictions.

β = {X,Y }, Z = R, α = σ2

where σ2 is the variance of the Gaussian distribution. We
get this by substituting these values in Eq. 12.

p(X,Y |R, σ2) = p(R|X,Y, σ2)p(X,Y |σ2
X , σ2

Y ) (13)

In Eq. 13, X and Y values are independent of each other,
and hence the equation can be rewritten as shown in Eq. 14.

p(X,Y |R, σ2) = p(R|X,Y, σ2)p(X,σ2
X)p(Y, σ2

Y ) (14)

Let Iij be defined as the likelihood of R entries such that
if the value is 1, the entry is observed, and if the value is 0
the entry is not observed. Adopt a gaussian-distributed prob-
abilistic linear model and specify the conditional probability
across the observed ratings as per Eq. 15.

p(R|X,Y, σ2) =

m∏
i=1

n∏
j=1

[N(rij |xT
i yj , σ

2)]Iij (15)

The new assumption about the likelihood is that R’s entries
are independent, every entry has a normal distribution, and
entries all have the same variance σ2.

The prior distributions of X , Y are shown in Eq. 16 and
Eq. 17.

p(X|σ2
X) =

m∏
i=1

N(xi|0, σ2
X) (16)

p(Y |σ2
Y ) =

n∏
j=1

N(yj |0, σ2
Y ) (17)

In these priors we assume that X and Y rows are cor-
related, every entry has a normal distribution, and entries all
have the same variance σ2.

Replacing Eq. 15, Eq. 16 and, Eq. 17 in Eq. 14 we get,

p(R|X,Y, σ2) =

m∏
i=1

n∏
j=1

[N(rij |xT
i yj , σ

2)]Iij

m∏
i=1

N(xi|0, σ2
X)

n∏
j=1

N(yj |0, σ2
Y )

(18)

For training our model, we apply logarithms on both sides
of Eq. 18 and then apply derivatives on both sides of the
equation. Then the expression for log-posterior is like

lnp(X,Y |R, σ2) = − 1

2σ2

m∏
i=1

n∏
j=1

Iij(rij − xT
i yj)

2

− 1

2σ2
X

m∏
i=1

||xi||2Fro −
1

2σ2
Y

n∏
j=1

||yj ||2Fro

Here, the Fro suffix is called the Frobenius norm is given
by

||x||2Fro = xTx

C. Non-Negative Matrix Factorization

There are many applications in which the data is analyzed
to be non-negative, and many of the tools follow this prop-
erty [46]. The idea of NMF, which forces the data to be non-
negative, gave rise to the need for low-rank approximation
for development. NMF is used as a tool for the analysis
of high-dimensional with non-negative entries in the data.
NMF should consist of only non-negative constraints as a
part of the representation. There are different variants of NMF
algorithms proposed [47] and we are using basic NMF. NMF
was introduced with the name positive matrix factorization by
Paatero and Tapper [48]. Researchers paid attention to NMF
after the work given by Lee and Sung. They discussed more
on usage and importance of NMF [49].

1) Initialization of latent feature matrices: The initializa-
tion of latent feature matrices X and Y are taken as non-
negative random values.

2) Update rule to reduce the error between actual and
predicted rating matrices: Finding an estimate of a non-
negative matrix R, which is represented as the product of latent
feature matrices X and Y , is the primary goal of NMF.

R ≈ XY

where R is a m × n rating matrix. The approximation of
R with product of matrices X (m × k) and Y (k × n) by
considering k ≤ (m,n). The latent feature matrices X and
Y , can be derived by using multiplicative update method that
consist of some update rules. The rules are explained in [49].
The non-negativity property is maintained by both matrices X
and Y .

X = X · ×((R · /(X × Y + (R == 0)))× Y T )

Y = Y · ×(XT × (R · /(X × Y + (R == 0))))

Similarly, the dot division of X and Y is X· /Y , where X ·
×Y is element-wise division calculated as the dot product of
X and Y . The product of two matrices X and Y is X×Y . The
transposed version of the matrix X is XT . In the denominator,
the expression R == 0 is used to avoid division by zero.

The properties of NMF are only non-negative values are
allowed into the resultant matrix, since non-negative values
are only allowed, the matrix is allowed to only add but not
subtract, and the result of the factorization is not unique.
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D. Singular Value Decomposition

The singular value decomposition (SVD) method was first
applied for recommender systems [50]. In MF using SVD, the
rating matrix R decomposes into three latent feature matrices
P , s, and Q, as shown in Eq. 19 where the rating matrix R
is of size m × n and the latent factor matrices P is of size
m × m, s is of size m × n, and Q is of size n × n. Here,
P and Q are orthogonal matrices, and s is a singular matrix.
The latent feature matrices X and Y are computed as follows:
X=P .s and Y = Q [51].

R ≈ PsQT (19)

Better performance is achieved by using the SVD approach
on its applications that reduces the dimensionality of user and
item matrix [52].

E. SVD++

The main purpose of SVD++ is to identify the missing
ratings in the matrix by adding implicit feedback to the user’s
latent feature matrix [53]. This technique is observed to be
more accurate in many cases, because of including implicit
feedback to user latent feature matrix [54].

The implicit feedback matrix UV is calculated as follows:
The matrix U is calculated as U = [uij ] ∀(i, j) is 1 if Rij is
present in the original rating matrix 0 otherwise. For every non-
zero entry in the matrix ith row is written as 1√

|Ii|
and is an

m×n matrix. V matrix is calculated as V = [vij ] ∀(i, j) which
is same as an item feature matrix of order n×k. Calculate the
dot product of matrices UV of order m×n and n×k, resulting
in a matrix of the order of m×k. The implicit feedback matrix
UV is to be added to X (say X = X+UV ) before performing
the dot product of X and Y T . V matrix is assigned to Y (say
Y = V ).

The variations of different MF methods used in this work
are tabulated in Table II.

V. EMPIRICAL EVALUATION

The era of each dataset, where it was downloaded from, and
the information that is contained in it are all fully described in
this section. Exploratory data analysis reveals a full description
of the dataset ratings. additionally explains the setup for
conducting the analysis and arriving at the RMSE value.

A. Datasets

The primary goal of utilizing the datasets is to run the sim-
ulations. The datasets are downloaded from Kaggle, Konect,
and Github. Datasets namely Movie Lens-100K, Movie Lens-
1M, Film Trust, Trip Advisor, Jester, and Market datasets are
taken. Each dataset contains information about the users, items,
ratings, and timestamps.

The period of Movie Lens-100K dataset is from September
19th, 1997 to April 22nd,1998 [55]. The period of Movie
Lens-1M dataset is on December 2015 [56]. The period of
the Film Trust dataset is on 2011 [57]. The period of Trip
Advisor dataset is from March 3rd, 2001 to November 1st,

2009 [58]. The period of the Jester dataset is from November
2006 to November 2012 [59]. The period of Market dataset is
from January 1st, to April 30th, 2021 [60]. Table III tabulates
the dataset statistics for numerous datasets.

B. Exploratory Data Analysis

In Fig. 8, the rating distribution plots for several datasets,
including Movie Lens -100K, Movie Lens -1M, Film, Trip
Advisor, Jester, and Market, are displayed. The rating distri-
bution for films in the MovieLens-100K dataset ranges from 1
to 5. In the dataset, the users are the individuals, and the items
are the films. A low rating of one is provided by users 6110
(6.11%) beyond 100000 ratings, while users 34174 (27.14%)
offer a rating of four for films. The rating distribution in the
movie lens-1M dataset ranges from 0.5 to 5. In the dataset, the
users represent individuals, while the items refer to movies. It
has been noted that users 306221 (29.20%) have given films
a rating of four stars, while users 8559 (0.81%) have given
films a poor rating of 0.5 out of 1048576.

According to Fig. 8, the rating distribution for the film trust
dataset is between 0.5 and 4. The films in the dataset are the
items, and the users are the people. It has been noted that out
of 35494 ratings, users 1060 (2.98%) give films a low rating of
0.5 and users 9170 (25.83%) offer films a rating of five. The
1 to 5 rating distribution is part of the Trip Advisor dataset.
The hotels in the dataset are the items, and the users are the
individuals. Users 10082 (5.73%) out of 175765 ratings offer
a low rating of one for hotels, while users 77668 (44.18%)
provide a rating of five for hotels.

The rating distribution for the jester dataset is between −10
and +10, as shown in Fig. 8. In the dataset, the users are the
individuals, and the objects are the jokes. Out of the 1048575
ratings, it is noted that over 4000 people have given ratings
of 10 or above. The rating distribution in the market dataset
ranges from 1 to 5. In the dataset, the users are the individuals
and the items are the things. It has been noted that out of
1048575 users’ ratings, users 609417 (58.11%) give items a
rating of five, while users 63082 (6.01%) give products a poor
rating of two.

VI. RESULTS ANALYSIS

To forecast the missing values in the rating matrix, we
apply five different MF methods such as MF, PMF, NMF,
SVD, and SVD++ with different latent features on six data
sets which are given in Section IV and Table III. For all meth-
ods, we computed RMSE value for different latent features
k = 10, 50, 100, 200, 300, 400 with 10 steps. In this section,
we have shown patterns of RMSE values with different latent
features for various MF methods on six datasets. We have
shown other errors (RSE, RMSE, and MAE) for latent features
k = 1, 2, · · · , 10 with 100 steps in supplementary information
as shown in Section VIII-B.

Fig. 9 describes RMSE value on six different datasets
for the MF method with k = 10, 50, 100, 200, 300, 400 at
different steps. In movie lens-1M, film trust, and jester datasets,
if k-value is increasing there is a constant range of RMSE
maintained. In the movie lens-100K dataset, it is observed that
as k-value is increasing there is a constant range of RMSE for
k values 10, 50, 100, 200 and the RMSE decreases for k values
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TABLE II. DIFFERENCES BETWEEN DIFFERENT VARIATIONS OF MATRIX FACTORIZATION (MF) METHODS

Method Initialization of Latent Features Updation of Latent Features
MF Latent feature matrices X and Y are taken as random values

between 0 and 1.
Update the parameters of X and Y by adding regularization
constant and learning rate to minimize the error.

PMF Latent feature matrices X and Y are taken as normal distribution
random values between 0 and 1.

Update the parameters of X and Y by adding regularization
hyperparameters to minimize the error.

NMF Latent feature matrices X and Y are taken as non-negative
random values.

Apply the rules of the multiplicative update method to update the
parameters of X and Y .

SVD Latent feature matrices X and Y are taken as floating point
numeric dtype random values.

No update rule is used.

SVD++ Latent factor matrices X and Y are taken by adding an implicit
feedback matrix to the user latent feature matrix X .

Adding an implicit feedback matrix to the user latent feature
matrix X is itself an update that is performed.

TABLE III. INSIGHTS INTO SIX DIVERSE DATASETS: MOVIE LENS-100K, MOVIE LENS-1M, FILM TRUST, TRIP ADVISOR, JESTER, AND MARKET
DATASETS

Dataset Users Items Ratings Rating Range Average
Rating

Sparsity

Movie Lens-100K 943 1682 100000 1-5 3.529 0.937
Movie Lens-1M 7848 65133 1048576 0.5-5 3.522 0.998
Film Trust 1508 2071 35494 0.5-4 3.002 0.988
Trip Advisor 145316 1759 175765 1-5 4.000 0.999
Jester 31958 140 1048575 -10 - +10 0.955 0.839
Market 941860 9849 1048575 1-5 4.062 0.999

Fig. 8. Visual insights into Rating Distributions: Movie Lens-100K, Movie Lens-1M, Film Trust, Trip Advisor, Jester, and Market datasets.

300, 400. In the trip advisor dataset, the RMSE value decreases
at finite steps for all k values and slightly increases. There is
an increase in RMSE value if k is 10. In the market dataset,
the RMSE value is decreased for all k values except for k
value 200. Compared to all the datasets, the jester is giving
less RMSE value. As there is a maximum of 140 items in the
jester dataset, we can calculate RMSE value up to k less than
or equal to min(m,n).

Fig. 10 describes RMSE value on six different datasets for
PMF at different steps. There are similar fluctuations in RMSE
value as the k value is altered. In the movie lens-100K, for k
is 10 latent features, it is observed that there is a decrease
in RMSE value from 1.75 to 1.2. At 50 latent features, the
RMSE value increases from 1.35 to 1.45. At 100 and 300
latent features, the RMSE increases from 1.65 to 1.75. At 200
latent features, it is observed that the RMSE decreases more
from 2.0 to 1.5. For = 400 latent features, there is an increase

in RMSE value from 1.55 to 1.9.

In the movie lens-1M, at 10 latent features, it is observed
that there is a decrease in RMSE from 1.8 to 1.35. For k
is 50 latent features, it is observed that the RMSE decreases
from 1.55 to 1.35. For 100 latent features, the RMSE value
reduces from 1.5 to 1.4. At 200 latent features, the RMSE
value increases from 1.2 to 1.35. The RMSE value falls from
1.45 to 1.3 for 300 latent features. There is an increase in
RMSE value from 1.35 to 1.55 at 400 latent features. In the
film trust dataset, all are behaving in the same manner except
for 50 latent features. There is a drastic change in RMSE value
with different behavior from 1.20 to 0.99. For the remaining
k values there are slight fluctuations in RMSE value. In the
trip advisor dataset, different behavior is seen for k = 10
latent features. For all the remaining latent features, there is
a decrease in RMSE value if the latent features are increased.
In the jester dataset, there is an increase in RMSE value as
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Fig. 9. Root Mean Square Error (RMSE) graphs for Matrix Factorization (MF) on six datasets, namely, Movie Lens-100K, Movie Lens-1M, Film Trust, Trip
Advisor, Jester, and Market datasets for 10 steps and 400 latent features.

the latent features are increased. There is a decrease in RMSE
value at 100. The constant RMSE is maintained at k value
140. In the market dataset, there is a decrease in RMSE value
if the k-value increases.

For the NMF method, we have plotted RMSE values
with different latent features on six datasets in Fig. 11. In
all datasets, if the k-value is increasing RMSE decreases.
Compared to all datasets, the NMF method gives less RMSE
value for film trust and market datasets. More RMSE value for
jester, movie lens-100K datasets. For any latent features, the
RMSE value is decreasing with different steps.

Fig. 12 (a), (b), and (c) describes RMSE value of SVD
method with various k values for pair of datasets movie lens-

100K, jester, movie lens-1M, market, and trip advisor, film
trust respectively. Across all datasets, an increase in the k-
value is observed to correspond with a decrease in the RMSE
value. Compared to all datasets, the SVD method gives less
RMSE value for film trust and market datasets. More RMSE
value for movie lens-100K datasets. For the jester dataset a
drastic change in the RMSE value of the SVD method when
increasing the k-value because the number of items is very
less.

Fig. 13 describes RMSE value on six different datasets for
SVD++ method at different steps. In all datasets, if the k-value
is increasing then RMSE also increases. In the jester dataset, it
is observed that the RMSE is maintained constant for different
steps. Compared to all datasets, the SVD++ method gives less
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Fig. 10. Root Mean Square Error (RMSE) graphs for Probabilistic Matrix Factorization (PMF) on six datasets, namely, Movie Lens-100K, Movie Lens-1M,
Film Trust, Trip Advisor, Jester, and Market datasets for 10 steps and 400 latent features.

RMSE value for the film trust dataset and more RMSE value
for the jester dataset.

VII. COMPARISON OF MF METHODS

The comparison of different MF methods on different
datasets namely movie lens-100K, film trust, movie lens-1M,
trip advisor, jester, and market with k = 5 in Table IV, and
k = 10 in Table V, and k = 100 in Table VI. Compared
to all the MF methods NMF, and SVD methods gives less
RMSE value with different k-values. It is observed that in
MF, PMF, and SVD++ methods, by increasing the k-value
RMSE also increases. Whereas in NMF, and SVD methods
there is a decrease in RMSE value as k-value increases. The

k-value in each method is the number of latent features that
are divided into the items. As compared to all MF methods, if
we consider more groups for items in the dataset, MF, PMF,
and SVD++ give more errors for suggesting an item to the
user. Whereas, if we increase the groups in NMF and SVD
methods, the error value that is obtained is less while predicting
a recommendation to the user.

For film trust and movie lens-1M datasets, the prediction
performance of MF is drastically decreasing with an increase
in the number of latent features. The dominant observation is
that the rating distribution for the two datasets is right skewed
and sparse. However, NMF and SVD are not affected much
by this skewed rating as well as the number of latent features.
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Fig. 11. Root Mean Square Error (RMSE) graphs for Non-Negative Matrix Factorization (NMF) on six datasets, namely, Movie Lens-100K, Movie Lens-1M,
Film Trust, Trip Advisor, Jester, and Market datasets for 10 steps and 400 latent features.
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Fig. 12. Root Mean Square Error (RMSE) graphs for Singular Value Decomposition (SVD) on six datasets, namely, Movie Lens-100K, Movie Lens-1M, Film
Trust, Trip Advisor, Jester, and Market datasets for 10 steps and 400 latent features.
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Fig. 13. Root Mean Square Error (RMSE) graphs for SVD++ on six datasets, namely, Movie Lens-100K, Movie Lens-1M, Film Trust, Trip Advisor, Jester,
and Market datasets for 10 steps and 400 latent features.

TABLE IV. RMSE VALUES FOR DIFFERENT VARIATIONS OF MATRIX
FACTORIZATION (MF) ON SIX DIFFERENT DATASETS NAMELY MOVIE
LENS-100K, MOVIE LENS-1M, FILM TRUST, TRIP ADVISOR, JESTER,

AND MARKET AT k = 5

Dataset (↓) / MF
algorithm (→)

MF PMF NMF SVD SVD++

Movie Lens-100K 1.048 1.051 0.720 0.711 0.908
Movie Lens-1M 2.236 1.463 0.111 0.110 0.859
Film Trust 2.722 1.457 0.200 0.199 0.798
Trip Advisor 3.919 1.945 0.106 0.106 1.071
Jester 2.695 17.591 0.798 0.794 4.762
Market 3.597 2.041 0.112 0.112 1.294

VIII. CONCLUSION AND FUTURE SCOPE

A. Conclusion

Information theory is essential for improving the effec-
tiveness of recommendation systems. By measuring the un-

TABLE V. RMSE VALUES FOR DIFFERENT VARIATIONS OF MATRIX
FACTORIZATION (MF) ON SIX DIFFERENT DATASETS NAMELY MOVIE
LENS-100K, MOVIE LENS-1M, FILM TRUST, TRIP ADVISOR, JESTER,

AND MARKET AT k = 10

Dataset (↓) / MF
algorithm (→)

MF PMF NMF SVD SVD++

Movie Lens-100K 3.205 1.343 0.690 0.682 0.900
Movie Lens-1M 2.953 1.271 0.108 0.107 0.855
Film Trust 2.804 0.900 0.190 0.188 0.793
Trip Advisor 3.912 1.824 0.105 0.105 1.069
Jester 3.499 17.521 0.867 0.861 4.707
Market 3.692 2.069 0.108 0.109 1.309

certainty and information content in user preferences and
interactions, it offers a solid framework for creating more
precise and efficient recommendation algorithms. This the-
oretical basis enhances the handling of sparse data, boosts
prediction accuracy, and ensures more personalized user ex-
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TABLE VI. RMSE VALUES FOR DIFFERENT VARIATIONS OF MATRIX
FACTORIZATION (MF) ON SIX DIFFERENT DATASETS, NAMELY, MOVIE
LENS-100K, MOVIE LENS-1M, FILM TRUST, TRIP ADVISOR, JESTER,

AND MARKET AT k = 100

Dataset (↓) / MF
algorithm (→)

MF PMF NMF SVD SVD++

Movie Lens-100K 5.014 1.583 0.577 0.497 0.920
Movie Lens-1M 18.994 1.425 0.096 0.091 0.864
Film Trust 18.886 0.944 0.102 0.082 0.879
Trip Advisor 4.131 1.722 0.092 0.091 1.118
Jester 3.407 17.828 0.383 0.219 4.803
Market 6.539 2.097 0.810 0.080 1.328

periences. As recommendation systems advance, the principles
of information theory will continue to be vital in tackling chal-
lenges related to data complexity, user diversity, and changing
preferences, resulting in more sophisticated and dependable
recommendation solutions. In this study, various MF methods
like MF, PMF, NMF, SVD, and SVD++ have been compared
on different datasets namely movie lens-100K, film trust,
movie lens-1M, trip advisor, jester, and market with different
latent features on different steps. The performance of the MF
methods is evaluated using RMSE. It is observed that MF
is the least-performing MF method among all studied in this
work. SVD is the outperforming method among all other MF
algorithms. However, it has been observed that the number
of latent features is affecting the prediction performance. The
prediction power of MF, PMF, and SVD++ is reducing with an
increase in the number of latent features. On the other hand,
NMF and SVD are performing better with an increase in the
number of latent features.

B. Future Scope

In the future, we would like to extend the concept of
recommendation to different real-world contexts. For example,
this study focuses solely on recommending a single item to
an individual user. However, in practice, there are situations
where recommendations are needed for a group of users. For
example, a group of students might be advised on selecting
an elective course based on their collective interests. This
interest prompts the requirement for and creation of group
recommender systems [61]. Cross-domain recommendation
systems (CDR) can help mitigate this issue. CDRs use the
ratings of the new item/user in one domain in another domain
with transfer learning [62]–[64]. Utilizing these techniques
will help recommendation systems work better by a variety
of semantic information contained in knowledge graphs. A
knowledge graph (KG) is a collection of relational facts,
including information about the entities, entity categories, and
collaborations among entities. KG embeds complex infor-
mation about different relationships among real-world enti-
ties [65], [66].
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SUPPLEMENTARY INFORMATION

In the supplementary information section, RSE graphs for
MF at k = 10, 50, 100, 200, 300, 400 at 10 steps and 100
steps at 10 latent features are shown and RMSE graphs for
MF, PMF, NMF, and SVD methods are provided at 100 steps
and 10 latent features and MAE graphs for the SVD++ method
at k = 10, 50, 100, 200, 300, 400 at 10 steps are shown.

Fig. 14 describes the RSE value on six different datasets
for the MF method on 10 steps and 400 latent features. In all
datasets, it is observed that there is an increase in RSE value as
the k-value increases. Compared to all the datasets less RMSE
value is given by film trust and more RMSE value is given by
the jester dataset.

Fig. 15 describes the RSE value on six different datasets
for the MF method on 100 steps and 10 latent features. In all
datasets, except for jester, it is observed that if the k-value is
increasing then RSE decreases. Compared to all datasets, the
MF method gives less RSE value for the market dataset and
more RSE value for the jester.

Fig. 16 describes the RMSE value on six different datasets
for the MF method at different steps. In all datasets, if the
k-value is increasing then RMSE also increases. Compared
to all datasets, the MF method gives less RMSE value for
film trust, movie lens-1M datasets, and more RMSE value for
movie lens-100K, trip advisor, film trust, and market.

Fig. 17 describes RMSE value on six different datasets
for the PMF method on 100 steps and 10 latent features. In
the movie lens-100K dataset, at k = 1 there is a constant
behavior maintained. For all the remaining k values there are
many alterations in RMSE value. In movie lens-1M, for k = 2,
there is a major deviation in the RMSE value as compared to

all remaining k values. In the film trust dataset, for all the
k values between 1 to 9, there are fluctuations as they are
altered. For k = 10 the RMSE value is high as compared
to the remaining k values. In the trip advisor dataset, all the
k values exhibit different behavior. In the jester dataset, as
compared to the remaining datasets, the RMSE value is too
high as there is a decrease in the RMSE value with different
steps. In the market dataset, all the k values have different
behavior with an increase in steps.

Fig. 18 describes RMSE value on six different datasets
for the NMF method on 100 steps and 10 latent features.
In all datasets, if the k-value is increasing then RMSE also
decreases. Compared to all the datasets, the NMF method gives
less RMSE value for trip advisor, movie lens-1M, and market
datasets and some more RMSE value for movie lens-100K, and
film trust datasets. More RMSE value is given by the jester
dataset due to less items.

Fig. 19 (a), (b), and (c) describes RMSE value of SVD
method with various k values for pair of datasets movie
lens-100K, jester, movie lens-1M, trip advisor, and film trust,
market, respectively. In all datasets, it is observed that as the k
value increases there is a decrease in RMSE value. Compared
to all the datasets, the SVD method gives less RMSE value for
trip advisor, movie lens-1M, and market datasets. More RMSE
value for movie lens-100K and jester datasets.

Fig. 20 describes the MAE value on six different datasets
for the SVD++ at different steps. In movie lens-100K, movie
lens-1M, trip advisor, and market datasets, it is observed that
there is an increase in RMSE value as the step increases. In
the jester dataset, a similar constant RMSE value is maintained
at different steps.
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Fig. 14. Regularized Square Error (RSE) graphs for basic Matrix Factorization (MF) on six datasets, namely, Movie Lens-100K, Movie Lens-1M, Film Trust,
Trip Advisor, Jester, and Market datasets for 10 steps and 400 latent features.
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Fig. 15. Regularized Square Error (RSE) graphs for basic Matrix Factorization (MF) on six datasets, namely, Movie Lens-100K, Movie Lens-1M, Film Trust,
Trip Advisor, Jester, and Market datasets for 100 steps and 10 latent features.
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Fig. 16. Root Mean Square Error (RMSE) graphs for basic Matrix Factorization (MF) on six datasets, namely, Movie Lens-100K, Movie Lens-1M, Film Trust,
Trip Advisor, Jester, and Market datasets for 100 steps and 10 latent features.
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Fig. 17. Root Mean Square Error (RMSE) graphs for probabilistic Matrix Factorization (PMF) on six datasets, namely, Movie Lens-100K, Movie Lens-1M,
Film Trust, Trip Advisor, Jester, and Market datasets for 100 steps and 10 latent features.
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Fig. 18. Root Mean Square Error (RMSE) graphs for Non-Negative Matrix Factorization (NMF) on six datasets, namely, Movie Lens-100K, Movie Lens-1M,
Film Trust, Trip Advisor, Jester, and Market datasets for 100 steps and 10 latent features.
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Fig. 19. Root Mean Square Error (RMSE) graphs for Singular Value Decomposition (SVD) on six datasets, namely, Movie Lens-100K, Movie Lens-1M, Film
Trust, Trip Advisor, Jester, and Market datasets for 100 steps and 100 latent features.
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Fig. 20. Mean Absolute Error (MAE) graphs for SVD++ on six datasets, namely, Movie Lens-100K, Movie Lens-1M, Film Trust, Trip Advisor, Jester, and
Market datasets at 10 steps and 400 latent features.
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