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Abstract—Timely and accurate tumor detection in medical
imaging is crucial for improving patient outcomes and reducing
mortality rates. Traditional methods often rely on manual image
interpretation, which is time-intensive and prone to variabil-
ity. Deep learning, particularly convolutional neural networks
(CNNs), has revolutionized tumor detection by automating the
process and achieving remarkable accuracy. The present paper
investigates the use of YOLOv11, a powerful object detection
model, for tumor detection in several medical imaging modal-
ities, such as CT scans, MRIs, and histopathological images.
YOLOV11 incorporates architectural advancements, including
enhanced feature pyramids and attention processes, allowing
accurate identification of tumors with diverse sizes and complex-
ity. The model’s real-time detection capabilities and lightweight
architecture render it appropriate for use in clinical settings
and resource-limited contexts. Experimental findings indicate
that the fine-tuned YOLOvV11 attains exceptional accuracy and
efficiency, exhibiting an average precision of 91% and a mAP
of 68%. This research highlights YOLOv11’s significance as a
transformational instrument in the integration of AI in medical
imaging, aimed at optimizing diagnostic processes and improving
healthcare delivery.
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I. INTRODUCTION

Early diagnosis and treatment are considerably enhanced
by the detection of tumors in medical imaging, which helps to
reduce mortality rates and improve patient outcomes. Health-
care professionals can make critical decisions regarding treat-
ment strategies, including surgery, chemotherapy, or radiation
therapy, when malignancies are identified in a timely manner.
Traditional tumor detection predominantly depends on the
manual interpretation of medical images, such as CT scans,
MRIs, and histopathology slides, which is labor-intensive,
susceptible to variability among experts, and difficult for
subtle or ambiguous cases [1], [2]. The increasing need for
precise and effective tumor detection methods has resulted in
the incorporation of artificial intelligence (AI) methodologies,
especially deep learning, into medical imaging processes.

Deep learning, by its capacity to autonomously discern
intricate patterns and characteristics from data, has transformed
medical imaging by providing unparalleled accuracy and effi-
ciency in classification, segmentation, and object recognition
tasks. In contrast to conventional machine learning techniques
that necessitate manual feature engineering, deep learning
models, particularly convolutional neural networks (CNNs),

have exhibited significant efficacy in automating diagnostic
procedures and minimizing error rates [3], [4]. These models
have shown efficacy in tumor detection across many imaging
modalities, tackling issues such as tumor appearance hetero-
geneity, size and shape fluctuations, and differing imaging
settings. Nonetheless, several current deep learning method-
ologies encounter constraints, such as the need for substantial
computing resources, challenges in real-time processing, and
inadequate efficacy in identifying tiny or subtle tumors [5].

The YOLO (You Only Look Once) model family, recog-
nized for its real-time object identification proficiency, has
surfaced as a viable alternative for medical applications.
YOLOv11, the most recent version in this series, has sev-
eral architectural enhancements, including optimized feature
pyramids, attention mechanisms, and advanced loss functions,
making it very effective for tumor detection in medical imaging
[6]. These enhancements allow YOLOVI11 to precisely detect
cancers of diverse sizes and forms, even in difficult situations
where tumor margins are ambiguous or when lesions mimic
benign formations [7], [8].

Furthermore, YOLOv11’s streamlined architecture and ca-
pacity for real-time detection render it very beneficial in clin-
ical environments where prompt decision-making is essential.
Its scalability and efficiency facilitate implementation on edge
devices and in resource-constrained settings, such as rural
clinics or portable diagnostic equipment [9], [10].

This work aims to investigate the use of YOLOvI1 for
tumor identification in medical imaging and assess its perfor-
mance across various datasets. This research seeks to establish
a comprehensive YOLOv11-based framework for tumor detec-
tion, evaluate its efficacy through quantitative metrics including
precision, recall, and Intersection over Union (IoU), and offer
insights into its advantages and drawbacks for practical medi-
cal diagnostics. Additionally, the study includes a comparative
performance analysis of YOLOvI1 against YOLOV9, using
the same datasets, to highlight the improvements in detection
accuracy and efficiency.

The rest of the paper is structured as follows: Section
IT offers a review of pertinent literature, summarizing cur-
rent methodologies for tumor diagnosis and developments in
YOLO models. Section III delineates the suggested technique,
specifying the YOLOV11 architecture. Section IV presents the
experimental findings and analysis, including a description of
the dataset, training setting, and performance evaluation of
YOLOvI11, as well as a comparison with baseline models.
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Section V concludes the paper by summarizing the study’s
contributions and proposing avenues for further investigation.

II. LITERATURE REVIEW

Recent advancements in deep learning have significantly
transformed tumor detection in medical imaging by improving
accuracy and efficiency. The combination of multimodal imag-
ing techniques, which synthesizes data from several imaging
sources, has shown potential in improving cancer detection
rates and addressing the shortcomings of single-modality meth-
ods [11]. Deep learning models, including U-Net and Attention
U-Net, have been extensively employed for brain tumor seg-
mentation, attaining high precision in defining tumor margins,
whereas alternative methods have concentrated on glioblas-
toma detection and classification, showcasing their efficacy
in tackling the complexities associated with heterogeneous
tumor traits [12], [13]. The YOLO family of object detection
frameworks has garnered considerable attention for its real-
time performance. A thorough examination of YOLO varia-
tions underscores the progress from YOLOvI to YOLOv10
and their use in medical imaging tasks, including lesion detec-
tion and anatomical structure classification [14], [15]. Recent
advancements, including YOLOvS and YOLOV7, have broad-
ened the model’s utility to tasks such as kidney detection in
MRI and lung segmentation for pulmonary anomaly analysis,
demonstrating the framework’s versatility in addressing diverse
medical imaging challenges [16], [17]. Innovations such as
MedYOLO, a 3D object detection framework derived from
YOLO, have enhanced its applicability in the identification
of organs and lesions within intricate imaging contexts [18].
Notwithstanding these gains, problems persist, such as the
precise identification of tiny or subtle tumors, inconsistencies
in imaging circumstances, and the need for extensive annotated
datasets. Overcoming these hurdles necessitates more enhance-
ments in YOLO’s resilience and flexibility, with the exploration
of multimodal imaging integration to augment tumor detection
capabilities [19].

III. PROPOSED APPROACH

The proposed tumor detection framework utilizes a fine-
tuned YOLOv11 model tailored to meet the specific problems
of medical imaging, especially in identifying tumors in MRI,
CT, and other modalities, as seen in Fig. 1. Medical imag-
ing exhibits considerable variety in tumor dimensions, mor-
phology, and intensity, necessitating a sophisticated detection
model adept at managing these complexity while ensuring
speed and precision. The medical photos are downsized to
a specified resolution of 640x640 pixels to ensure interoper-
ability with the YOLOv11 architecture. Normalization is used
as a preprocessing step to normalize pixel intensity values,
enhancing model consistency across varied datasets and imag-
ing settings. These phases are essential for the framework’s
capacity to generalize across diverse imaging apparatus and
procedures.

The backbone of YOLOvI1 is tasked with extracting
critical characteristics from the input photos. It utilizes many
convolutional layers and Cross Stage Partial (CSP) modules,
aimed at optimizing gradient flow and enhancing feature
propagation. CSP modules divide the feature map into two
pathways, processing one while reserving the other for further
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integration, so assuring the retention of essential informa-
tion across layers. This architectural improvement renders
YOLOvVI11 more proficient at detecting intricate patterns and
subtle anomalies, including tiny or unclear malignancies.
Moreover, residual connections in the backbone inhibit feature
deterioration in deeper layers, allowing the model to efficiently
learn intricate feature hierarchies. The neck of the YOLOv11
model is a vital element for multi-scale feature aggregation,
crucial for identifying tumors of diverse sizes. It incorporates
CSP2 modules and upsampling layers to improve the model’s
capacity to capture intricate features while preserving the con-
text of broader areas. The Spatial Pyramid Pooling-Fast (SPPF)
module enhances the neck by capturing contextual information
across many scales, enabling the model to accurately detect
both big and tiny tumor areas. The outputs of these layers are
concatenated to integrate information from various resolutions,
enabling the model to use both low-level and high-level char-
acteristics during detection. This skill is especially crucial for
medical imaging, as cancers may manifest as tiny, subtle areas
inside intricate anatomical systems. The head of YOLOvI11
is tasked with producing the ultimate forecasts, including
bounding boxes, confidence ratings, and class labels for iden-
tified tumors. This component employs detection layers that
provide predictions at numerous scales, enabling the model to
effectively identify cancers of varying sizes, from microscopic
lesions to huge masses. Non-Maximum Suppression (NMS)
is used in the post-processing stage to remove superfluous
bounding boxes and preserve the most reliable forecasts. The
results are shown as bounding boxes superimposed on the input
medical pictures, along with comments specifying tumor kinds
and confidence levels. This aids interpretation by healthcare
experts, allowing them to concentrate on clinically significant
results.

The YOLOvVI1 model is refined using specialized medi-
cal imaging datasets to enhance performance. This training
method utilizes annotated datasets including bounding boxes
and labels for tumors. Transfer learning is used by initializing
the model with pre-trained weights from general object iden-
tification tasks and then fine-tuning it on the medical dataset.
This method expedites convergence, diminishes the need for
substantial computer resources, and enhances the model’s
adaptability to the distinct attributes of medical imaging. The
training procedure improves a multi-task loss function that
integrates classification loss, localization loss, and confidence
loss, guaranteeing a balanced enhancement in all facets of
tumor detection.

The suggested methodology is assessed using conventional
measures, such as precision, recall, F1-score, Intersection over
Union (IoU), and inference duration. These metrics provide
a thorough evaluation of the model’s precision, dependability,
and real-time relevance. Through the integration of sophisti-
cated feature extraction methods, multi-scale detection func-
tionalities, and refined training processes, YOLOvI11 exhibits
considerable improvements in detection precision and com-
puting efficiency relative to prior YOLO iterations and other
leading models. Its lightweight design facilitates deployment
on edge devices and resource-limited situations, such as rural
clinics or portable diagnostic instruments, hence expanding
its potential uses in telemedicine and distant healthcare. The
refined YOLOv11 framework signifies a substantial improve-
ment in tumor identification in medical imaging. Its capacity
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Fig. 1. Proposed tumor detection framework using a fine-tuned YOLOvI1 model.

for real-time image processing, coupled with excellent detec-
tion accuracy and scalability, establishes it as a revolutionary
instrument for clinical diagnostics. This method enhances
tumor identification efficiency while tackling significant issues
in medical imaging, including diversity in tumor presentation
and the need for resilient, generalizable solutions.

IV. EXPERIMENTAL RESULTS
A. Description of Dataset Analysis

The proposed tumor detection system is trained and as-
sessed using a publicly accessible brain tumor detection
dataset, including MRI images annotated to denote the pres-
ence and kind of tumor. The dataset has five tumor cate-
gories: NO_tumor, glioma, meningioma, pituitary, and space-
occupying lesion, each delineated with bounding box annota-
tions to specify the tumor locations inside the images [20].
Fig. 2 illustrates a class imbalance within the dataset, as seen
by the bar chart, where “NO_tumor” and “meningioma” are
predominant, but “space-occupying lesion” is markedly under-
represented, presenting issues for equitable training. To tackle
this issue, data augmentation methods, including flipping and
contrast modifications, are proposed for the minority class.

B. Training Configuration

The YOLOv11 model for tumor detection is trained utiliz-
ing a well-designed process to provide excellent accuracy and
robust performance. The training procedure is set to execute
for 100 epochs, allowing enough iterations for the model to
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Fig. 2. Tumor detection class distribution.

assimilate tumor patterns while reducing the likelihood of
overfitting. A batch size of 4 is used, optimizing computing
efficiency while facilitating efficient learning, particularly with
high-resolution medical pictures. The learning rate is estab-
lished at 0.001, facilitating slow learning of the model without
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overshooting the ideal solution, while dynamic modifications
are implemented during training using a learning rate scheduler
to refine the model in subsequent epochs. The training utilizes
a 100A GPU, which enhances calculations like convolutional
operations and backpropagation, markedly decreasing training
duration. The dataset is divided into training (1,370 photos),
validation (395 images), and test (191 images) sets in a 70%-
20%-10% ratio, facilitating a systematic assessment procedure.
Data augmentation methods, such as random flipping, rotation,
scaling, and contrast modifications, are used on the training
pictures to enhance variability and bolster the model’s gener-
alization capabilities. The optimizer, such as SGD or Adam,
minimizes a multi-task loss function that integrates classifi-
cation loss for accurate tumor type prediction, localization
loss for exact bounding box placement, and confidence loss
for evaluating tumor existence. At each epoch, the model’s
performance is assessed on the validation set, with measures
like accuracy, recall, and Intersection over Union (IoU) cal-
culated to track progress and prevent overfitting. Checkpoints
are regularly stored to preserve the optimal model, and early
halting is used if validation performance remains stagnant for
several epochs. After training, the model is assessed on the
test set using measures like Fl-score, precision, recall, IoU,
and inference time to verify its successful generalization. This
extensive training procedure, using a high-performance GPU,
guarantees that YOLOv11 is refined for precise and efficient
tumor identification in medical imaging.

C. Results Analysis

The training and validation loss curves depict the model’s
performance throughout 100 epochs, emphasizing three pri-
mary metrics: box loss, classification loss, and Distribution
Focal Loss (DFL), as shown in Fig. 3. The box loss, which
assesses the error in predicted bounding box coordinates,
demonstrates a consistent decline in both training and valida-
tion datasets, beginning at approximately 1.0 and decreasing
to 0.4 for the training set while stabilizing similarly for the
validation set, indicating effective tumor localization. The
classification loss, which assesses the precision of tumor class
predictions, decreases markedly from about 3.0 to 0.5 in
the training dataset, while the validation classification loss
exhibits a similar decreasing trajectory, indicating continuous
enhancement and the lack of overfitting. The DFL loss, which
enhances bounding box accuracy, consistently declines from
1.3 to below 1.0 in both training and validation datasets, under-
scoring the model’s proficiency in accurate tumor localization
predictions. The congruence of training and validation loss
curves across all measures indicates a well-calibrated training
process, devoid of substantial divergence that may imply over-
fitting. The consistent reduction and stability of losses confirm
the reliability of the YOLOv1l model and its capacity for
effective generalization, making it highly suitable for precise
and efficient tumor identification in medical imaging.

The Precision-Recall (PR) curve illustrates the performance
of the YOLO-based tumor detection model across different
tumor classes and overall, with a mean Average Precision
(mAP@0.5) of 0.676, reflecting the model’s overall ability
to balance precision and recall, as shown in Fig. 4. Among
the classes, NO_tumor achieves the highest Average Precision
(AP) of 0.976, demonstrating excellent detection accuracy and
a strong balance between precision and recall, followed closely
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Fig. 3. Training and validation curves.

by meningioma with an AP of 0.936, indicating reliable per-
formance in detecting these tumors. The detection of pituitary
tumors achieves a moderate AP of 0.802, suggesting some
challenges in maintaining high precision and recall simul-
taneously. Glioma shows a noticeable drop in performance,

Precision-Recall Curve

—— NO_tumor 0.976
glioma 0.658
—— meningioma 0.936
—— pituitary 0.802
—— space-occupying lesion- 0.006
w3l classes 0.676 MAP@0.5

Precision

"0.0 0.2 0.4 0.6 0.8 1.0
Recall

Fig. 4. PR Curve for tumor detection across classes.

with an AP of 0.658, reflecting difficulties likely arising from
dataset imbalance or the inherent complexity of this tumor
type. The space-occupying lesion class performs poorly, with
an AP of only 0.006, due to severe underrepresentation in
the dataset, making it challenging for the model to generalize
effectively for this class. The overall PR curve (bold blue line)
combines the performance across all classes, showing a steady
trade-off between precision and recall. These results highlight
the model’s robustness for well-represented classes, such as
NO_tumor and meningioma, while identifying areas for im-
provement, particularly for minority classes like glioma and
space-occupying lesions, through enhanced data augmentation
and balancing strategies.

The F1-Confidence curve illustrates the relationship be-
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tween the Fl-score, which balances precision and recall,
and the confidence threshold for each tumor class and the
overall performance of the model, as depicted in Fig. 5. The
NO_tumor class achieves the highest F1-score, remaining close
to 1.0 across a wide range of confidence thresholds, reflecting
excellent precision and recall for non-tumorous cases. Menin-
gioma follows with consistently high performance, maintaining
an Fl-score close to 0.9, indicating reliable detection. Pituitary
tumors show moderate performance with an F1-score peaking
around 0.8, suggesting slightly lower accuracy compared to
NO_tumor and meningioma. The glioma class demonstrates
lower performance with a peak Fl-score near 0.65, highlight-
ing challenges in achieving a balance between precision and
recall, likely due to dataset complexity or class imbalance.
The space-occupying lesion class performs poorly, with an F1-
score remaining close to 0, reflecting significant difficulties
in detecting this underrepresented class. The bold blue line
represents the overall performance across all classes, with the
peak Fl-score of 0.67 occurring at a confidence threshold of
0.649, indicating the model’s optimal balance of precision and
recall at this threshold. These results highlight the model’s
robustness for well-represented classes while identifying areas
for improvement, particularly for minority classes, through
targeted dataset augmentation and threshold optimization.

F1-Confidence Curve

1.0
—— NO_tumor
glioma
—— meningioma
—— pituitary
\ ——— space-occupying lesion-
= all classes 0.67 at 0.649

0.8

\

F1

0.4

0.2 ‘

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Confidence

Fig. 5. F1-Confidence curve for tumor detection across classes.

The normalized confusion matrix provides a detailed
overview of the model’s performance across tumor classes,
with each value representing the proportion of predictions nor-
malized per class, as illustrated in Fig. 6. NO_tumor achieves
the highest accuracy, with 99% of instances correctly classified
and only 1% misclassified as glioma, showcasing the model’s
strong capability to distinguish non-tumorous cases. Glioma
demonstrates moderate performance, with 58% of instances
correctly identified but significant misclassifications, including
20% predicted as meningioma, 10% as NO_tumor, and 12% as
pituitary tumors, reflecting challenges in distinguishing glioma
from similar classes. Meningioma achieves high accuracy with
91% of instances correctly classified, though 6% are misclassi-
fied as glioma and 1% as pituitary, indicating minor overlaps.
Pituitary tumors show 78% accuracy but face misclassifica-
tions, with 23% predicted as meningioma and 1% as glioma,
suggesting difficulties in differentiating these tumor types.
Space-occupying lesions, despite their underrepresentation, are
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correctly classified with 100% accuracy, though this result may
be influenced by the small sample size. The model also effec-
tively filters out non-tumorous regions in the background class,
with no significant misclassifications. This matrix highlights
the model’s strengths in detecting well-represented classes like
NO_tumor and meningioma, while identifying challenges in
glioma and pituitary tumor classification due to overlapping
features, suggesting the need for improved data balance and
feature extraction techniques to enhance performance.

Confusion Matrix Normalized

Predicted
meningioma glioma NO_tumor
ES ®

backgroundspace-occupying lesion- pituitary

meningioma pituitary space-occupying lesionbackground

True

NO_tumor glioma

Fig. 6. Normalized confusion matrix for tumor detection.

Fig. 7 illustrates an ensemble of MRI images from the
validation set, showing the predicted tumor classifications and
associated bounding boxes produced by the YOLOv11-based
tumor detection algorithm. Each image has a bounding box
delineating the identified tumor location, annotated with the
anticipated tumor classification (e.g., “meningioma,” “pitu-
itary,” or "NO_tumor”) along with its corresponding confi-
dence score. The bounding boxes are color-coded to differ-
entiate tumor types, with elevated confidence ratings (e.g.,
1.0 for "meningioma”) reflecting the model’s assurance in its
predictions. Meningioma tumors are consistently recognized
with high accuracy across several situations, demonstrating
the model’s robust detection proficiency for well-represented
categories. No tumor locations are reliably recognized in
several photos, with confidence ratings varying from 0.9 to
0.5, indicating considerable fluctuation in the model’s certainty
owing to overlapping characteristics or confusing areas. The
model accurately identifies a pituitary tumor in one instance
with a confidence level of 0.8, demonstrating its capability
to recognize underrepresented classes. The bounding boxes
correspond accurately with tumor locations, demonstrating the
model’s strong localization capabilities. Nevertheless, many
forecasts with reduced confidence levels indicate difficulties
in distinguishing ambiguous regions or inadequately docu-
mented tumor types. This qualitative evaluation underscores
the model’s efficacy in tumor diagnosis and localization, while
pinpointing possibilities for improvement, especially with mi-
nority groups and intricate instances.

In Fig. 8, the proposed YOLOv1l model surpasses
YOLOVY in all critical performance parameters for tumor
detection. It attains a much superior accuracy of 0.91 in
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Fig. 7. Predicted results for tumor detection on validation dataset.

contrast to YOLOvV9’s 0.652, signifying its greater reliability
in precisely detecting malignancies. Furthermore, YOLOv11
has a somewhat superior recall of 0.67 compared to 0.627 for
YOLOVY, indicating it identifies a greater number of genuine
tumors. The mean average accuracy at IoU 0.5 (mAP@50)
favors YOLOV11, achieving a score of 0.68, whereas YOLOv9
scores 0.62, indicating its greater overall detection quality.
Moreover, YOLOvV11 has a swifter inference time of 12 ms,
making it more efficient for real-time applications compared to
YOLOV9, which requires 15.7 ms. In summary, YOLOvVI11 is
the superior model for tumor detection owing to its enhanced
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accuracy, sensitivity, detection quality, and speed.

Performance Evaluation Comparison
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Fig. 8. Performance evaluation comparison: YOLOv11 vs YOLOV9.

V. CONCLUSION

The paper presents a tumor detection framework using
a fine-tuned YOLOvV11 model, specifically tailored to tackle
the distinct issues of medical imaging, especially in tumor
detection across MRI, CT, and other imaging modalities.
The improved structure of YOLOv11, which includes better
feature stacks and attention processes, makes it possible to
accurately and quickly find tumors of different sizes and
levels of complexity. The model attains an accuracy of 91%,
a recall of 67%, and a mAP of 68%, surpassing YOLOV9,
which recorded a precision of 65.2%, a recall of 62.7%, and
a mAP of 62%. Furthermore, YOLOv11 exhibits real-time
detection proficiency, achieving an inference time of 12 ms,
in contrast to YOLOV9’s 15.7 ms, making it a more efficient
and pragmatic choice for clinical applications. Our findings
show that YOLOv11 might revolutionize medical imaging by
improving tumor detection accuracy and speed, improving
diagnostic processes and healthcare outcomes. Future work
will explore further enhancements, including the integration of
multimodal imaging data and the development of explainable
Al techniques to improve the interpretability of model predic-
tions, thereby fostering greater trust and adoption in clinical
settings.
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